JPH05341186A - Limited distance zoom lens system - Google Patents

Limited distance zoom lens system

Info

Publication number
JPH05341186A
JPH05341186A JP4175955A JP17595592A JPH05341186A JP H05341186 A JPH05341186 A JP H05341186A JP 4175955 A JP4175955 A JP 4175955A JP 17595592 A JP17595592 A JP 17595592A JP H05341186 A JPH05341186 A JP H05341186A
Authority
JP
Japan
Prior art keywords
positive lens
lens group
positive
lens
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4175955A
Other languages
Japanese (ja)
Inventor
Toshihiko Ueda
歳彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP4175955A priority Critical patent/JPH05341186A/en
Publication of JPH05341186A publication Critical patent/JPH05341186A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To provide a limited-distance zoom lens system consisting of three groups of lenses (negative, positive, positive) and having a zooming ratio of 2.5(X). CONSTITUTION:A limited-distance zoom lens system comprises a first negative lens group I consisting of positive lenses and at least one negative lens, a second positive lens group II consisting of at least one positive lens and at least one negative lens, and a third positive lens group III consisting of at least one positive lens and at least one negative lens, the groups I-III being disposed in sequence from the magnification side; a diaphgram S is disposed from the magnifying end to the contracting end of the first negative lens group I, and the first negative lens group I and the diaphragm S are fixed as zooming progresses from the end of the longest focal distance to the end or the shorteset focal distance, and the second positive lens group II and the third positive lens group III increase the interval between the second positive lens group II and the third positive lens group III, and then move toward the contraction side in a monotone fashion while contracting the interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、共役長固定で変倍を
行う複写用変倍光学系に係り、詳しくは負,正,正の3
レンズ群構成で、第1負レンズ群Iの近傍に絞りを配置
して光路中に配設されるドーププリズムのような像回転
プリズムを小型化したズーム比2.5倍の高倍率ズーム
レンズ系である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power optical system for copying, which performs variable power with a fixed conjugate length.
A high-magnification zoom lens system with a zoom ratio of 2.5 times, which is a lens group configuration in which a diaphragm is arranged in the vicinity of the first negative lens group I and an image rotating prism such as a doped prism arranged in the optical path is downsized. Is.

【0002】[0002]

【従来の技術】マイクロフィルムリーダの光路図を図1
6に示す。即ち、マイクロフィルム1の像を投影レンズ
系2により像回転用プリズム3,反射鏡4,5および6
を介してスクリーン7に投影して観察される。このよう
なマイクロフィルムリーダやマイクロフィルムプリン
タ、マイクロフィルムリーダプリンタに使用されるレン
ズ系としては、特公昭47−35028号公報,特開昭
57−4016号公報のものや、特開昭57−7371
5号公報のものが知られている。しかし、特公昭47−
35028号公報や特開昭57−4016号公報のもの
は、定倍率のマイクロレンズ系であるため、フレーミン
グが一定で、使い勝手が悪い。一方、特開昭57−73
715号公報のものは、有限距離用のズームレンズ系で
あるものの、絞りをレンズ系中に組み込んでいるため、
ズーミングによって拡大側(スクリーン側)の有効Fナ
ンバーが変化し、スクリーン面の光量が大きく変動して
しまい、視覚的に違和感を与えてしまう不具合があっ
た。
2. Description of the Related Art An optical path diagram of a microfilm reader is shown in FIG.
6 shows. That is, the image of the microfilm 1 is projected by the projection lens system 2 into the image rotation prism 3, the reflecting mirrors 4, 5, and 6.
It is projected on the screen 7 through the and observed. Lens systems used in such microfilm readers, microfilm printers, and microfilm reader printers are those disclosed in Japanese Patent Publication No. 47-35028, Japanese Patent Publication No. 57-4016, and Japanese Patent Publication No. 57-7371.
The one disclosed in Japanese Patent No. 5 is known. However, the Japanese Examined Sho 47-
The one disclosed in JP-A-35028 and the one disclosed in JP-A-57-4016 are microlens systems having a constant magnification, so that the framing is constant and the usability is poor. On the other hand, JP-A-57-73
Although the one disclosed in Japanese Patent No. 715 is a zoom lens system for a finite distance, since the diaphragm is incorporated in the lens system,
There is a problem in that the effective F number on the enlargement side (screen side) changes due to zooming and the amount of light on the screen surface fluctuates greatly, giving a visually uncomfortable feeling.

【0003】そこで、本件発明者は、例えば、特開昭6
2−237415号公報および特開昭62−23741
6号公報のような前絞り有限ズームレンズ系を提案して
いる。
Therefore, the inventor of the present invention has, for example, disclosed in Japanese Patent Laid-Open No.
JP-A-2-237415 and JP-A-62-23741.
A front aperture finite zoom lens system as disclosed in Japanese Patent No. 6 has been proposed.

【0004】[0004]

【発明が解決しようとする課題】この発明は、図1
(A),(B)および図2(A),(B)に示すよう
に、拡大側より絞りSを含んだ固定レンズ群の第1負レ
ンズ群I,移動群の第2正レンズ群IIおよび第3正レン
ズ群III より構成され、最長焦点距離端(以下、L端と
称す)から最短焦点距離端(以下、S端と称す)へのズ
ーミングに伴って第2正レンズ群IIおよび第3正レンズ
群IIIを縮小側に移動させることを特徴としている。
The present invention is based on FIG.
As shown in FIGS. 2A and 2B and FIGS. 2A and 2B, the first negative lens group I of the fixed lens group and the second positive lens group II of the movable group including the diaphragm S from the enlargement side. And the third positive lens group III, and the second positive lens group II and the second positive lens group II and the third positive lens group III are connected with zooming from the longest focal length end (hereinafter referred to as the L end) to the shortest focal length end (hereinafter referred to as the S end). The third positive lens group III is characterized by being moved to the reduction side.

【0005】前述したように、光路中に配設されるドー
ププリズムのような像回転プリズム3を最小にし、ズー
ミング時にも拡大側端面での軸外光束の広がり具合の変
動を抑える目的で、絞りSはズーミングによらず固定と
している。
As described above, in order to minimize the image rotation prism 3 such as a doped prism arranged in the optical path, and to suppress the fluctuation of the spread of the off-axis light beam on the magnifying side end face even during zooming, the diaphragm is used. S is fixed regardless of zooming.

【0006】上記特開昭62−237415号公報およ
び特開昭62−237416号公報に示される従来例で
は、図3(A)に近軸配置図を示すように、ズーム比が
1.5倍以下と比較的小さいためにレンズ系拡大端には
固定レンズを配置せず、固定の絞りSだけを配置した構
成を採っている。
In the prior art examples disclosed in Japanese Patent Laid-Open No. 62-237415 and Japanese Patent Laid-Open No. 62-237416, the zoom ratio is 1.5 times as shown in the paraxial layout diagram in FIG. Since it is relatively small as follows, a fixed lens is not arranged at the magnifying end of the lens system, and only the fixed diaphragm S is arranged.

【0007】しかし、この発明が目的とする倍率レンジ
が2倍程度と大きくなると、正,負の2群ズームを基本
としたタイプのレンズ系では、第1レンズ群Iの移動距
離が大きすぎることと、絞りSを固定した場合にS端で
の第1レンズ群Iに入射する最大画角の主光線の位置が
光軸から大きく離れてしまうことになり、レンズ外径の
増大とともに収差補正が困難となってしまう。
However, when the magnification range aimed at by the present invention becomes as large as about 2 times, the moving distance of the first lens group I is too large in the lens system of the type based on the positive and negative two-group zoom. Then, when the diaphragm S is fixed, the position of the chief ray having the maximum angle of view that is incident on the first lens group I at the S end largely deviates from the optical axis, and the aberration correction is performed as the lens outer diameter increases. It will be difficult.

【0008】この発明では、図3(B)に近軸配置図を
示すように、第1レンズ群Iに絞りSとともに固定の発
散レンズ群を配置することによって、S端では第1負レ
ンズ群Iの発散作用によって第2正レンズ群IIに入射す
る最大画角主光線の角度αが小さくなり(α0 >α
1 )、正,負2群ズームレンズ系で有していた欠点を解
消することができた。また、第1レンズ群Iを負レンズ
群としたことで、移動群である第2正レンズ群IIおよび
第3正レンズ群III の移動が有効に変倍に寄与すること
となる。
According to the present invention, as shown in the paraxial arrangement diagram in FIG. 3B, a fixed diverging lens group is arranged in the first lens group I together with the diaphragm S, so that the first negative lens group at the S end. Due to the diverging action of I, the angle α of the chief ray of maximum field angle incident on the second positive lens group II becomes small (α 0 > α
1 ) We were able to eliminate the drawbacks of the positive and negative two-group zoom lens system. Further, since the first lens group I is the negative lens group, the movement of the second positive lens group II and the third positive lens group III, which are the moving groups, effectively contributes to zooming.

【0009】[0009]

【課題を解決するための手段】この発明の請求項1記載
の発明は、拡大側より順に、正レンズと少なくとも1枚
の負1レンズよりなる第1負レンズ群I、少なくとも1
枚の正レンズと少なくとも1枚の負レンズよりなる第2
正レンズ群II、少なくとも1枚の正レンズと少なくとも
1枚の負レンズよりなる第3正レンズ群III とから構成
され、絞りSを第1負レンズ群Iの拡大端より縮小端に
配置し、最長焦点距離端より最短焦点距離端へのズーミ
ングに伴って第1負レンズ群Iおよび絞りSが固定、第
2正レンズ群IIおよび第3正レンズ群III が第2正レン
ズ群IIと第3正レンズ群III との間隔を増大し、次に縮
小しながらいずれも縮小側に単調に移動することを特徴
とする有限距離ズームレンズ系である。また、この発明
の請求項2記載の発明は、第3正レンズ群III が拡大側
より少なくとも1枚の正レンズ,拡大側に凸面を向けた
負メニスカスレンズ,正レンズ,拡大側に強い凹面を向
けた負レンズとから構成され、第2正レンズ群IIと第3
正レンズ群III の少なくとも1面が非球面より構成され
る。さらに、この発明の請求項3記載の発明は、第2正
レンズ群IIの正レンズの拡大側の面を非球面とし、その
ディビエーション方向が正のパワーを減じる方向である
ことを特徴とする。そして、この発明の請求項4記載の
発明は、第3正レンズ群III の最も拡大側の正レンズを
拡大側に凸面を向けたメニスカスレンズとし、凸面は正
のパワーを減じる方向に,凹面は負のパワーを減じる方
向にディビエーション方向を持つ非球面であることを特
徴とする。
According to a first aspect of the present invention, a first negative lens group I including at least a positive lens and at least one negative one lens in order from the enlargement side, at least 1
A second lens consisting of one positive lens and at least one negative lens
A positive lens group II, and a third positive lens group III composed of at least one positive lens and at least one negative lens, and a stop S is arranged from the enlargement end to the reduction end of the first negative lens group I, The first negative lens unit I and the diaphragm S are fixed with zooming from the longest focal length end to the shortest focal length end, and the second positive lens unit II and the third positive lens unit III are the second positive lens unit II and the third positive lens unit II. This is a finite-distance zoom lens system characterized by increasing the distance from the positive lens group III and then monotonically moving toward the reduction side while reducing the distance. In the invention according to claim 2 of the present invention, the third positive lens group III includes at least one positive lens from the magnification side, a negative meniscus lens with a convex surface facing the magnification side, a positive lens, and a strong concave surface on the magnification side. The second positive lens group II and the third positive lens group II.
At least one surface of the positive lens group III is composed of an aspherical surface. Further, the invention according to claim 3 of the present invention is characterized in that the surface of the second positive lens group II on the magnifying side of the positive lens is an aspherical surface, and the deviation direction thereof is a direction in which positive power is reduced. .. In the invention according to claim 4 of the present invention, the positive lens on the most magnifying side of the third positive lens group III is a meniscus lens having a convex surface on the magnifying side, and the convex surface is in the direction of reducing positive power and the concave surface is It is characterized by an aspherical surface having a deviation direction in the direction of reducing negative power.

【0010】この発明の請求項5記載の発明は、第3正
レンズ群III が拡大側より少なくとも1枚の正レンズ,
拡大側に凸面を向けた負メニスカスレンズ,拡大側に強
い凹面を向けた負レンズ,正レンズより構成され、第2
正レンズ群IIおよび第3正レンズ群III の少なくとも1
面が非球面より構成される。また、この発明の請求項6
記載の発明は、第2正レンズ群IIの正レンズの拡大側の
面を非球面とし、そのディビエーション方向が正のパワ
ーを減じる方向であることを特徴とする。さらに、この
発明の請求項7記載の発明は、第3正レンズ群III の最
も拡大側の正レンズを拡大側に凸面を向けたメニスカス
レンズとし、凸面は正のパワーを増す方向に,凹面は負
のパワーを増す方向にディビエーション方向を持つ非球
面であることを特徴とする。そして、この発明の請求項
8記載の発明は、第1負レンズ群Iの焦点距離をf1
第2正レンズ群IIの焦点距離をf2 および最長焦点距離
端でのレンズ全系の焦点距離をfL とするとき、−1.
0<f1 /fL <−0.5、0.7<f2 /fL <0.
95の各条件式を満足することを特徴とする。
According to a fifth aspect of the present invention, in the third positive lens group III, at least one positive lens is arranged from the magnification side,
A negative meniscus lens with a convex surface facing the magnifying side, a negative lens with a strong concave surface facing the magnifying side, and a positive lens.
At least one of the positive lens group II and the third positive lens group III
The surface is composed of an aspherical surface. In addition, claim 6 of this invention
The described invention is characterized in that the surface of the positive lens of the second positive lens group II on the magnifying side is an aspherical surface, and the deviation direction thereof is a direction in which positive power is reduced. Further, in the invention according to claim 7 of the present invention, the positive lens on the most magnifying side of the third positive lens group III is a meniscus lens having a convex surface directed to the magnifying side, and the convex surface is in the direction of increasing positive power and the concave surface is It is an aspherical surface having a deviation direction in the direction of increasing negative power. According to the eighth aspect of the present invention, the focal length of the first negative lens unit I is f 1 ,
When the focal length of the second positive lens group II is f 2 and the focal length of the entire lens system at the longest focal length end is f L , −1.
0 <f 1 / f L < -0.5,0.7 <f 2 / f L <0.
It is characterized in that each conditional expression 95 is satisfied.

【0011】[0011]

【実施例】以下、図面を参照してこの発明の実施例を説
明する。図1(A),(B)および図2(A),(B)
に示すように、拡大側より順に、正レンズと少なくとも
1枚の負1レンズよりなる第1負レンズ群I、少なくと
も1枚の正レンズと少なくとも1枚の負レンズよりなる
第2正レンズ群II、少なくとも1枚の正レンズと少なく
とも1枚の負レンズよりなる第3正レンズ群III とから
構成され、絞りSを第1負レンズ群Iの拡大端より縮小
端に配置し、最長焦点距離端より最短焦点距離端へのズ
ーミングに伴って第1負レンズ群Iおよび絞りSが固
定、第2正レンズ群IIおよび第3正レンズ群III が第2
正レンズ群IIと第3正レンズ群III との間隔を増大し、
次に縮小しながらいずれも縮小側に単調に移動すること
を特徴とする有限距離ズームレンズ系である。
Embodiments of the present invention will be described below with reference to the drawings. 1 (A), (B) and 2 (A), (B)
As shown in, the first negative lens group I including a positive lens and at least one negative one lens, and the second positive lens group II including at least one positive lens and at least one negative lens in order from the enlargement side. , A third positive lens group III composed of at least one positive lens and at least one negative lens, the diaphragm S is arranged from the enlargement end to the reduction end of the first negative lens group I, and the longest focal length end The first negative lens unit I and the aperture stop S are fixed, and the second positive lens unit II and the third positive lens unit III are moved to the second position with the zooming toward the shortest focal length end.
The distance between the positive lens group II and the third positive lens group III is increased,
Next, it is a finite-distance zoom lens system characterized by moving monotonically toward the reduction side during reduction.

【0012】さらに、第3正レンズ群III および第2正
レンズ群IIが次の2つの構成の何れかであることが望ま
しい。即ち、図1(A),(B)に示すように第3正レ
ンズ群III が拡大側より少なくとも1枚の正レンズ,拡
大側に凸面を向けた負メニスカスレンズ,正レンズ,拡
大側に強い凹面を向けた負レンズとから構成され、第2
正レンズ群IIと第3正レンズ群III の少なくとも1面が
非球面より構成される。(構成1)
Furthermore, it is desirable that the third positive lens group III and the second positive lens group II have either of the following two configurations. That is, as shown in FIGS. 1A and 1B, the third positive lens group III has at least one positive lens from the magnification side, a negative meniscus lens having a convex surface facing the magnification side, a positive lens, and a strong magnification side. A negative lens having a concave surface, and a second lens
At least one surface of the positive lens group II and the third positive lens group III is composed of an aspherical surface. (Structure 1)

【0013】あるいは、図2(A),(B)に示すよう
に、第3正レンズ群III が拡大側より少なくとも1枚の
正レンズ,拡大側に凸面を向けた負メニスカスレンズ,
拡大側に強い凹面を向けた負レンズ,正レンズより構成
され、第2正レンズ群IIと第3正レンズ群III の少なく
とも1面が非球面より構成される。(構成2)
Alternatively, as shown in FIGS. 2A and 2B, the third positive lens group III includes at least one positive lens from the magnification side, a negative meniscus lens having a convex surface on the magnification side,
It is composed of a negative lens and a positive lens with a strong concave surface facing the magnification side, and at least one surface of the second positive lens group II and the third positive lens group III is an aspherical surface. (Structure 2)

【0014】さらに、上記構成1,構成2の何れにおい
ても、絞りSとともに固定である第1負レンズ群Iで発
散された軸上の球面収差の正方向への偏位を第2正レン
ズ群IIを正レンズと負レンズの組み合わせレンズし、第
3正レンズ群III では上記の配置とすることで補正を行
うようになっている。また、S端へのズーミングに伴っ
て軸外光束の第2正レンズ群IIおよび第3正レンズ群II
I への入射点が高くなり、像面湾曲,コマ収差が発生す
るが、第2正レンズ群IIおよび第3正レンズ群III のそ
れぞれ少なくとも1枚を非球面とすることによってレン
ズ構成の枚数をを少なくなるようにしている。
Further, in any of the above-mentioned constitution 1 and constitution 2, the deviation in the positive direction of the axial spherical aberration diverged by the first negative lens unit I, which is fixed together with the diaphragm S, is corrected to the second positive lens unit. II is a combination lens of a positive lens and a negative lens, and the third positive lens group III is arranged as described above to perform the correction. In addition, the second positive lens group II and the third positive lens group II of the off-axis light flux accompanying zooming to the S end
Although the incident point on I becomes high and field curvature and coma aberration occur, the number of lens elements can be reduced by making at least one of the second positive lens group II and the third positive lens group III aspherical. I try to reduce.

【0015】さらに、上記構成1,構成2において、第
2正レンズ群IIの中の非球面形状を次のように設定する
ことにより、軸外収差を効果的に補正することができ
る。即ち、第2正レンズ群IIの正レンズの拡大側の面を
非球面とし、そのディビエーション方向が正のパワーを
減じる方向に設定するのである。
Further, in the above-mentioned configurations 1 and 2, off-axis aberrations can be effectively corrected by setting the aspherical shape in the second positive lens group II as follows. That is, the surface on the magnifying side of the positive lens of the second positive lens group II is an aspherical surface, and its deviation direction is set to the direction in which the positive power is reduced.

【0016】また、次のように第3正レンズ群III の非
球面形状を設定することで、上記構成1において軸外収
差を効果的に補正することができる。即ち、第3正レン
ズ群III の最も拡大側の正レンズを拡大側に凸面を向け
たメニスカスレンズとし、この凸面は正のパワーを減じ
る方向に、凹面は負のパワーを減じる方向にディビエー
ションを持つ非球面であるように設定するのである。
Further, by setting the aspherical shape of the third positive lens group III as follows, it is possible to effectively correct the off-axis aberration in the above configuration 1. That is, the positive lens closest to the magnification side of the third positive lens group III is a meniscus lens having a convex surface directed toward the magnification side, and the convex surface reduces the positive power, and the concave surface decreases the negative power. It is set to have an aspherical surface.

【0017】また、第3正レンズ群の最も拡大側の正レ
ンズを拡大側に凸面を向けたメニスカスレンズとし、こ
の凸面は正のパワーを増す方向に、凹面は負のパワーを
増す方向にディビエーションを持つ非球面であるように
設定することにより、軸外収差を効果的に補正を行うこ
とができる。
The positive lens closest to the magnification side of the third positive lens group is a meniscus lens having a convex surface directed toward the magnification side. The convex surface increases the positive power, and the concave surface increases the negative power. Off-axis aberrations can be effectively corrected by setting an aspherical surface having an aberration.

【0018】また、上記構成1,構成2の構成を用いる
場合でもあるいは用いない場合においても、請求項1の
構成において、第1負レンズ群Iの焦点距離をf1 ,第
2正レンズ群IIの焦点距離をf2 および最長焦点距離端
(L端)でのレンズ全系の焦点距離をfL とするとき、
次の条件式,を満足させることが望ましい。
Further, with or without using the configurations 1 and 2, in the configuration of claim 1, the focal length of the first negative lens group I is f 1 and the second positive lens group II is Let f 2 be the focal length of and the focal length of the entire lens system at the longest focal length end (L end) be f L ,
It is desirable to satisfy the following conditional expression.

【0019】 −1.0<f1 /fL <−0.5・・・・ 0.7<f2 /fL < 0.95・・・-1.0 <f 1 / f L <-0.5 ... 0.7 <f 2 / f L <0.95 ...

【0020】上記条件式は、変倍域を確保するための
条件である。その下限値を越えると、移動群である第2
正レンズ群IIおよび第3正レンズ群III の移動量が大き
くなり、変倍域を確保できなくなる。また、その上限値
を越えると、第1負レンズ群の構成レンズ枚数が増加し
なければならない。
The above-mentioned conditional expression is a condition for securing a variable power range. When the lower limit is exceeded, the second group of movement
The amount of movement of the positive lens group II and the third positive lens group III becomes large, and it becomes impossible to secure the zooming range. If the upper limit is exceeded, the number of constituent lenses of the first negative lens unit must increase.

【0021】上記条件式は、S端へのズーミング時に
第3正レンズ群III への入射光束を低くするための条件
である。この上限値を越えると、M端(中間),S端で
の第3正レンズ群III への入射高さが高くなり、収差補
正が困難になる。また、下限値を越えると、第2正レン
ズ群IIのレンズ構成枚数が増えることになる。
The above conditional expression is a condition for lowering the incident light flux to the third positive lens group III during zooming to the S end. If the upper limit is exceeded, the height of incidence on the third positive lens group III at the M end (intermediate) and the S end becomes high, making aberration correction difficult. On the other hand, when the value goes below the lower limit, the number of lens components of the second positive lens group II increases.

【0022】次に、この発明のズームレンズ系の実施例
1〜実施例6の具体的なレンズ構成を図4〜図9に示
し、その数値を表1,表3,表5,表7,表9および表
11に示す。これらの各表は、上から順に拡大側からの
曲率半径,軸上面間隔,硝材のd線における屈折率およ
びアッベ数の各面での数値ある。また、表2,表4,表
6,表8,表10および表12に非球面係数を示す。こ
れらの非球面係数表は、面頂点の曲率半径をCr0,光軸
からの距離をx,二次曲面パラメータをε,非球面係数
をA4 ,A6 ,A8 とするとき、次式で定義される。
Next, specific lens configurations of Examples 1 to 6 of the zoom lens system of the present invention are shown in FIGS. 4 to 9, and the numerical values thereof are shown in Table 1, Table 3, Table 5, and Table 7. The results are shown in Table 9 and Table 11. These tables show numerical values on the respective surfaces of the radius of curvature from the expansion side, the axial upper surface distance, the refractive index of the glass material at the d-line, and the Abbe number in order from the top. Further, Table 2, Table 4, Table 6, Table 8, Table 10 and Table 12 show aspherical surface coefficients. These aspherical coefficient tables are given by the following equations when the radius of curvature of the surface apex is C r0 , the distance from the optical axis is x, the quadric surface parameter is ε, and the aspherical surface coefficients are A 4 , A 6 , and A 8. Is defined by

【0023】[0023]

【数1】 [Equation 1]

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【表7】 [Table 7]

【0031】[0031]

【表8】 [Table 8]

【0032】[0032]

【表9】 [Table 9]

【0033】[0033]

【表10】 [Table 10]

【0034】[0034]

【表11】 [Table 11]

【0035】[0035]

【表12】 [Table 12]

【0036】また、各実施例の条件式,の数値を表
13に示す。
Table 13 shows the numerical values of the conditional expressions of the respective examples.

【0037】[0037]

【表13】 [Table 13]

【0038】また、実施例1〜実施例6の球面収差,非
点収差および歪曲の収差曲線図を図10〜図15に示
す。これらの収差曲線図は、上からL端,M端(中間)
およびS端における球面収差,非点収差および歪曲収差
である。いずれの実施例も良好に収差補正がなされてい
ることが分かる。
Further, FIGS. 10 to 15 show aberration curve diagrams of the spherical aberration, astigmatism, and distortion of Examples 1 to 6, respectively. These aberration curve diagrams are from the top, L end, M end (middle)
And spherical aberration, astigmatism, and distortion at the S edge. It can be seen that the aberrations are satisfactorily corrected in all the examples.

【0039】[0039]

【発明の効果】以上説明したとおり、この発明の有限距
離ズームレンズ系は、Fナンバー7.4,半画角ω=1
2°,倍率レンジ=−1/20〜−1/50の高倍率の
ズームレンズ系ながら、9枚レンズ構成と少枚数で小型
のレンズ系でありながら変倍時の収差補正が良好になさ
れたレンズ系となっている。また、プリズム全長を小さ
くすることができた。さらに、非球面を第2正レンズ群
および第3正レンズ群に用いることによって効果的に軸
外収差を除去することができ、レンズ枚数を削減するこ
とができた。
As described above, the finite distance zoom lens system of the present invention has an F number of 7.4 and a half angle of view ω = 1.
Although the zoom lens system has a high magnification of 2 ° and a magnification range of −1/20 to −1/50, it is a small lens system with a nine-lens configuration and a small number of lenses. It is a lens system. Moreover, the total length of the prism could be reduced. Further, by using the aspherical surface for the second positive lens group and the third positive lens group, the off-axis aberration can be effectively removed, and the number of lenses can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B)は、この発明の有限距離ズーム
レンズ系の構成1のレンズ群の移動状態を示し、(A)
はL端,(B)はS端での状態である。
1 (A) and 1 (B) show a moving state of a lens group of Configuration 1 of a finite distance zoom lens system of the present invention, and FIG.
Is at the L end, and (B) is at the S end.

【図2】(A),(B)は、この発明の有限距離ズーム
レンズ系の構成2のレンズ群の移動状態を示し、(A)
はL端,(B)はS端での状態である。
2A and 2B show a moving state of a lens group of a finite distance zoom lens system configuration 2 according to the present invention, and FIG.
Is at the L end, and (B) is at the S end.

【図3】(A)は従来の有限距離ズームレンズ系の近軸
配置図、(B)はこの発明の有限距離ズームレンズ系の
近軸配置図、
FIG. 3A is a paraxial layout diagram of a conventional finite distance zoom lens system, and FIG. 3B is a paraxial layout diagram of the finite distance zoom lens system of the present invention;

【図4】この発明の有限距離ズームレンズ系の実施例1
のレンズ構成を示す断面図、
FIG. 4 is a first embodiment of a finite distance zoom lens system according to the present invention.
Sectional view showing the lens configuration of

【図5】この発明の有限距離ズームレンズ系の実施例2
のレンズ構成を示す断面図、
FIG. 5 is a second embodiment of the finite distance zoom lens system according to the present invention.
Sectional view showing the lens configuration of

【図6】この発明の有限距離ズームレンズ系の実施例3
のレンズ構成を示す断面図、
FIG. 6 is a third embodiment of the finite distance zoom lens system according to the present invention.
Sectional view showing the lens configuration of

【図7】この発明の有限距離ズームレンズ系の実施例4
のレンズ構成を示す断面図、
FIG. 7 is a fourth embodiment of the finite distance zoom lens system according to the present invention.
Sectional view showing the lens configuration of

【図8】この発明の有限距離ズームレンズ系の実施例5
のレンズ構成を示す断面図、
FIG. 8 is a fifth example of the finite distance zoom lens system according to the present invention.
Sectional view showing the lens configuration of

【図9】この発明の有限距離ズームレンズ系の実施例6
のレンズ構成を示す断面図、
FIG. 9 is a sixth embodiment of the finite distance zoom lens system according to the present invention.
Sectional view showing the lens configuration of

【図10】「図4」に示す有限距離ズームレンズ系のL
端,M端およびS端における球面収差,非点収差および
歪曲を示す収差曲線図、
10 is an L of the finite distance zoom lens system shown in FIG.
Aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the edges, the M edge, and the S edge,

【図11】「図5」に示す有限距離ズームレンズ系のL
端,M端およびS端における球面収差,非点収差および
歪曲を示す収差曲線図、
11 is an L of the finite distance zoom lens system shown in FIG.
Aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the edges, the M edge, and the S edge,

【図12】「図6」に示す有限距離ズームレンズ系のL
端,M端およびS端における球面収差,非点収差および
歪曲を示す収差曲線図、
12 is an L of the finite distance zoom lens system shown in FIG.
Aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the edges, the M edge, and the S edge,

【図13】「図7」に示す有限距離ズームレンズ系のL
端,M端およびS端における球面収差,非点収差および
歪曲を示す収差曲線図、
13 is an L of the finite distance zoom lens system shown in FIG.
Aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the edges, the M edge, and the S edge,

【図14】「図8」に示す有限距離ズームレンズ系のL
端,M端およびS端における球面収差,非点収差および
歪曲を示す収差曲線図、
14 is an L of the finite distance zoom lens system shown in FIG.
Aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the edges, the M edge, and the S edge,

【図15】「図9」に示す有限距離ズームレンズ系のL
端,M端およびS端における球面収差,非点収差および
歪曲を示す収差曲線図、
FIG. 15 is an L of the finite distance zoom lens system shown in FIG.
Aberration curve diagrams showing spherical aberration, astigmatism, and distortion at the edges, the M edge, and the S edge,

【図16】マイクロフィルム投影光学装置の光路図であ
る。
FIG. 16 is an optical path diagram of a microfilm projection optical device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 拡大側より順に、正レンズと少なくとも
1枚の負1レンズよりなる第1負レンズ群I、少なくと
も1枚の正レンズと少なくとも1枚の負レンズよりなる
第2正レンズ群II、少なくとも1枚の正レンズと少なく
とも1枚の負レンズよりなる第3正レンズ群III とから
構成され、絞りSを第1負レンズ群Iの拡大端より縮小
端に配置し、最長焦点距離端より最短焦点距離端へのズ
ーミングに伴って第1負レンズ群Iおよび絞りSが固
定、第2正レンズ群IIおよび第3正レンズ群III が第2
正レンズ群IIと第3正レンズ群III との間隔を増大し、
次に縮小しながらいずれも縮小側に単調に移動すること
を特徴とする有限距離ズームレンズ系。
1. A first negative lens group I consisting of a positive lens and at least one negative one lens, and a second positive lens group II consisting of at least one positive lens and at least one negative lens in order from the enlargement side. , A third positive lens group III composed of at least one positive lens and at least one negative lens, the diaphragm S is arranged from the enlargement end to the reduction end of the first negative lens group I, and the longest focal length end The first negative lens unit I and the aperture stop S are fixed, and the second positive lens unit II and the third positive lens unit III are moved to the second position with the zooming toward the shortest focal length end.
The distance between the positive lens group II and the third positive lens group III is increased,
Next, a finite-distance zoom lens system characterized by moving monotonically toward the reduction side during reduction.
【請求項2】 第3正レンズ群III が拡大側より少なく
とも1枚の正レンズ,拡大側に凸面を向けた負メニスカ
スレンズ,正レンズ,拡大側に強い凹面を向けた負レン
ズとから構成され、第2正レンズ群IIと第3正レンズ群
III の少なくとも1面が非球面より構成される請求項1
記載の有限距離ズームレンズ系。
2. The third positive lens group III is composed of at least one positive lens from the magnification side, a negative meniscus lens having a convex surface facing the magnification side, a positive lens, and a negative lens having a strong concave surface facing the magnification side. , The second positive lens group II and the third positive lens group
At least one surface of III is composed of an aspherical surface.
Finite distance zoom lens system described.
【請求項3】 第2正レンズ群IIの正レンズの拡大側の
面を非球面とし、そのディビエーション方向が正のパワ
ーを減じる方向であることを特徴とする請求項2記載の
有限距離ズームレンズ系。
3. The finite distance zoom according to claim 2, wherein the surface of the positive lens of the second positive lens group II on the magnifying side is an aspherical surface, and the direction of deviation is a direction in which positive power is reduced. Lens system.
【請求項4】 第3正レンズ群III の最も拡大側の正レ
ンズを拡大側に凸面を向けたメニスカスレンズとし、凸
面は正のパワーを減じる方向に,凹面は負のパワーを減
じる方向にディビエーション方向を持つ非球面であるこ
とを特徴とする請求項2記載の有限距離ズームレンズ
系。
4. The positive lens closest to the magnification side of the third positive lens group III is a meniscus lens having a convex surface directed toward the magnification side, and the convex surface diviates in the direction of reducing positive power and the concave surface diviates in the direction of reducing negative power. The finite distance zoom lens system according to claim 2, wherein the finite distance zoom lens system is an aspherical surface having an azimuth direction.
【請求項5】 第3正レンズ群III が拡大側より少なく
とも1枚の正レンズ,拡大側に凸面を向けた負メニスカ
スレンズ,拡大側に強い凹面を向けた負レンズ,正レン
ズより構成され、第2正レンズ群IIと第3正レンズ群II
I の少なくとも1面が非球面より構成される請求項1記
載の有限距離ズームレンズ系。
5. The third positive lens group III comprises at least one positive lens from the magnification side, a negative meniscus lens having a convex surface facing the magnification side, a negative lens having a strong concave surface facing the magnification side, and a positive lens, Second positive lens group II and third positive lens group II
The finite distance zoom lens system according to claim 1, wherein at least one surface of I is composed of an aspherical surface.
【請求項6】 第2正レンズ群IIの正レンズの拡大側の
面を非球面とし、そのディビエーション方向が正のパワ
ーを減じる方向であることを特徴とする請求項5記載の
有限距離ズームレンズ系。
6. The finite distance zoom according to claim 5, wherein the surface of the positive lens of the second positive lens group II on the magnifying side is an aspherical surface, and the direction of deviation is a direction in which positive power is reduced. Lens system.
【請求項7】 第3正レンズ群III の最も拡大側の正レ
ンズを拡大側に凸面を向けたメニスカスレンズとし、凸
面は正のパワーを増す方向に,凹面は負のパワーを増す
方向にディビエーション方向を持つ非球面であることを
特徴とする請求項5記載の有限距離ズームレンズ系。
7. The positive lens closest to the magnification side of the third positive lens group III is a meniscus lens having a convex surface directed toward the magnification side, and the convex surface is divided in a direction increasing positive power and the concave surface is divided in a direction increasing negative power. The finite distance zoom lens system according to claim 5, wherein the finite distance zoom lens system is an aspherical surface having an azimuth direction.
【請求項8】 第1負レンズ群Iの焦点距離をf1 ,第
2正レンズ群IIの焦点距離をf2 および最長焦点距離端
でのレンズ全系の焦点距離をfL とするとき、次の条件
式,を満足することを特徴とする請求項1記載の有
限距離ズームレンズ系。 −1.0<f1 /fL <−0.5・・・・ 0.7<f2 /fL < 0.95・・・
8. When the focal length of the first negative lens group I is f 1 , the focal length of the second positive lens group II is f 2 and the focal length of the entire lens system at the longest focal length end is f L , The finite distance zoom lens system according to claim 1, wherein the following conditional expression is satisfied. -1.0 <f 1 / f L < -0.5 ···· 0.7 <f 2 / f L <0.95 ···
JP4175955A 1992-06-11 1992-06-11 Limited distance zoom lens system Pending JPH05341186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175955A JPH05341186A (en) 1992-06-11 1992-06-11 Limited distance zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175955A JPH05341186A (en) 1992-06-11 1992-06-11 Limited distance zoom lens system

Publications (1)

Publication Number Publication Date
JPH05341186A true JPH05341186A (en) 1993-12-24

Family

ID=16005180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175955A Pending JPH05341186A (en) 1992-06-11 1992-06-11 Limited distance zoom lens system

Country Status (1)

Country Link
JP (1) JPH05341186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP2011053507A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Projection type variable focus lens and projection type display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
US7869134B2 (en) 2005-04-22 2011-01-11 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP4894754B2 (en) * 2005-04-22 2012-03-14 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
JP2011053507A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Projection type variable focus lens and projection type display device

Similar Documents

Publication Publication Date Title
JP2502282B2 (en) Anti-vibration optical system
JP2628633B2 (en) Compact zoom lens
JP3851677B2 (en) Zoom lens
JP3074026B2 (en) Super wide-angle zoom lens
JP3306129B2 (en) Standard lens
JP3292510B2 (en) Zoom lens
JP3652179B2 (en) Zoom lens
JP3445404B2 (en) Projection lens and projection device
JPH10253885A (en) Wide angle zoom lens system
JPH0642017B2 (en) Compact zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JPH05297275A (en) Aspherical zoom lens and video camera using same
JP2679016B2 (en) Zoom lens system for finite distance
JP2000028919A (en) Middle telephotographic lens
JP3723643B2 (en) High zoom ratio zoom lens system
JP3805390B2 (en) Real-image variable magnification viewfinder optical system
JP2546293B2 (en) Small zoom lens
JP2513481B2 (en) Zoom lens
JP2676400B2 (en) High magnification compact zoom lens
JPH06347697A (en) Aspherical zoom lens and video camera using the same
JPH05127082A (en) Small-sized zoom lens
JPH08110470A (en) Wide angle zoom lens
JP2533779B2 (en) Zoom lens
JPH09211547A (en) Real image system zoom finder
JP3744042B2 (en) Zoom lens