JPH05341068A - Nuclear fusion device - Google Patents

Nuclear fusion device

Info

Publication number
JPH05341068A
JPH05341068A JP4171973A JP17197392A JPH05341068A JP H05341068 A JPH05341068 A JP H05341068A JP 4171973 A JP4171973 A JP 4171973A JP 17197392 A JP17197392 A JP 17197392A JP H05341068 A JPH05341068 A JP H05341068A
Authority
JP
Japan
Prior art keywords
electron
proton
deuterium
reactor core
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4171973A
Other languages
Japanese (ja)
Inventor
忠正 ▲斉▼藤
Tadamasa Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4171973A priority Critical patent/JPH05341068A/en
Publication of JPH05341068A publication Critical patent/JPH05341068A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To ensure confining of plasma in the center of a reactor core and retaining of the energy by implanting accelerative protons and neutrons while specific angles are held on the same plane relative to the axis of accelerative electron implantation. CONSTITUTION:Protons and electrons are generated by a proton/electron separator device 56 and emitted from a proton supplying part 57 and an electron supplying part 58, respectively. A neutron supplying device 60 makes fusion of proton/electron while they are accelerated under magnetic control and turns them into neutrons, which are implanted into the reactor core 51. The implantation axes of a proton accelerating device 52, electron accelerating device 53, and neutron accelerating device 54 are set spread 120 deg. to the center 0 of the reactor core, and their implantation angles are laid in line on the same plane. The proton, electron, and neutron implanted into the reactor core 51 collide at a specific point 0 in the center of the reactor core and make particle reactions vigorously. At this time, deuteriums are generated continuously at the specific point 0, and plasma is generated by steep increase of the energy, and deuterium-deuterium fusion reaction proceeds to cause generation of a tremendous energy.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は核融合装置に係り、特に
重水素−重水素反応を実現する装置原理に関する。 【0002】 【従来の技術】核融合装置は、核分裂を利用する原子力
発電エネルギー以上の高効率発電が可能であり、また万
一の事故においても放射性による危険性が圧倒的に少な
いため新しいエネルギー技術として研究が進められてい
る。 【0003】核融合利用は、地上における実現可能性の
ある原理としては、例えば重水素と三重水素の融合によ
って水素原子をヘリウムに変換するとにき発生する多量
のエネルギーを利用することを基本とする。 【0004】周知のように核融合の困難性は、プラズマ
の閉じこめ、プラズマ密度、プラズマ保持時間、プラズ
マ温度など、いずれもローソンの条件をきれいに満足さ
せることの困難性にある。ローソンの条件は、一方を成
立させると他方が崩壊するなど、全体としてシステムを
構成するときに数多くの障害を伴う。 【0005】この障害を克服する手段として、従来より
巨大トカマクやレーザー照射加熱などの手段が用いられ
た。核融合を実現する要因は一ではなく、多数の要因が
重畳するものであるから、巨大トカマクやレーザー光加
熱によってもプラズマの長時間保持など連続的なエネル
ギーの取り出しは困難である。 【0006】図4は、従来提案された核融合装置を示す
ものであり、連続的エネルギーの取り出しを可能とする
技術である(特開昭62−187281号公報)。 【0007】同図において、10は直径約80m程度の
電磁加速管、11はその管体、12は管体11に施した
超伝導コイルで、電磁加速管10の一端に炉20を設
け、管体11と炉心21とを連通させる。この管体11
と炉心21との間にはバルブ13を介して軽水素を封入
する。また電磁加速管10の一端には、電子供給装置1
4およびレーザー供給装置15を設ける。このレーザー
供給装置15は、例えば紫外線レーザー或いは炭酸ガス
レーザーを放出する。 【0008】一方、炉心21には、ヘリウムレーザー供
給装置22、および中性子供給装置23を設ける。また
炉心21の内壁で中性子を受ける部分にはグラファイト
等の所謂ブランケット層を設け中性子を吸収させる。 【0009】また炉20には冷却装置30を設け、パイ
プ32およびポンプ33によって軽水を循環させ、炉心
21を冷却するとともに、パイプ41およびポンプ44
によって蒸気温水を循環させて熱エネルギを取り出す。
40は発電装置、42は蒸気駆動タービン、45は発電
機、43は海水等により循環水を冷却する復水器であ
る。 【0010】かかる装置において、管内11に約70k
g/cm2の圧力で軽水素を封入し電子供給牡値14か
ら供給した電子を超伝導コイル12によって炉心21に
向けて加速して打ち込む。このとき、炉心21の軽水素
はレーザー供給装置15から照射されたレーザー光によ
って加熱され、高温となった軽水素に加速された電子が
衝突して一層高温となってプラズマとなり、このプラズ
マとなった軽水素−重水素に中性子供給装置23から中
性子が当てられ、ヘリウムレーザー供給装置22からヘ
リウムレーザー光が照射されて核融合を惹起する。発生
したエネルギーは、冷却剤を加熱してタービン42およ
び発電機45を駆動し、電力に変換される。 【0011】 【発明が解決しようとする課題】ところで、核融合の実
現に要求されるローソンの条件は、プラズマ密度とプラ
ズマ保持時間の積値が十分大きい場合に核融合が進行す
ること、その場合の基準プラズマ温度は1億度を想定す
る。この条件を満たし、点火から連続的核融合運転を実
現するには、プラズマの閉じこめ、プラズマの保持時
間、プラズマ温度、プラズマ密度など、さらに多くの課
題が残る。 【0012】例えば、前記従来の核融合炉では、炉心2
1に対して一方向から電子の打ち込みがなされるため、
電子の衝突側壁面にグラファイト24等の損耗防御材を
配しても、高速加速された電子の衝突によって壁面から
不純物がたたき出され、不純物と電子とが作用し合って
エネルギー保持時間を短くするという問題が生ずる。ま
た、このような不純物による効率低下は、炉心温度が上
昇するにつれて著しく顕著となる。また炉心21におけ
るプラズマ閉じこめも不安定であり、保持時間と密度と
の関係で、どのようにすればローソンの条件を満たすの
か、という課題を残している。 【0013】そこで本発明の目的は、炉心に向けて電子
を打ち込むタイプの核融合炉において、炉心中央部にお
けるプラズマの閉じ込め、およびエネルギ保持をより確
実にする点にある。 【0014】 【課題を解決するための手段】前記目的を達成して課題
を達成するため、本発明に係る核融合装置は、炉心に向
けて加速電子を打ち込む核融合炉を技術的前提として、
加速電子の打ち込み軸線に対し、同一平面上においてそ
れぞれ120度の角度をもたせて加速陽子および加速中
性子の照射軸線を設定した。 【0015】 【作用】加速電子を打ち込む炉心には、それぞれ120
度の拡開角度をもって同一平面上で電子、陽子、中性子
が加速されて打ち込まれ、この三つの粒子は炉心中央の
特定点で衝突する。 【0016】電子、陽子、中性子の打ち込みの流れを連
続的なものとし、また打ち込み速度を毎秒400〜70
0km程度に設定したした場合、この三者は特定点で激
しく衝突し融合して重水素を生み出し、急激にその濃度
を増す。特定点で生ずる重水素は、後続する電子、陽
子、中性子の加速エネルギに押され互いに激しく衝突を
繰返す。このとき重水素−重水素の融合反応が発生し、
一個の三重水素および陽子、電子を飛び出させる。この
反応の過程で飛び出す陽子/電子のエネルギにより、特
定点の温度はレーザー光を用いるまでもなく超高温に変
化する。 【0017】またこの特定点では、高密度で重水素が作
られ爆発的連続反応によって三重水素が生み出される。
本発明の3粒子照射によれば、重水素−重水素の融合反
応によって十分なエネルギを引き出すことが出来るが、
さらに重水素と三重水素がプラズマ状特定点で反応する
から、ヘリウムおよび中性子を発生する通常型核融合も
爆発的連続的に発生する。 【0018】特定点は、強烈な磁場をかけるまでもなく
常に定点に保たれる。この特定点でプラズマ反応が起こ
り核融合が進行するため、プラズマの閉じ込めの困難性
や、不純物混入による炉心のエネルギ損失を解消するこ
とが可能となる。 【0019】 【実施例】以下、添付図面に基づいて本発明の実施例を
説明する。図1は、本発明に係る核融合装置50の一例
を示すもので、51は炉心、52は陽子加速装置、53
は電子加速装置、54は中性子加速装置である。 【0020】陽子と電子は水素ガスタンク55、および
陽子/電子分離装置56によって発生させ、それぞれ陽
子供給部57、電子供給部58から射出する。 【0021】また、60は中性子供給装置であり、図2
に示すように陽子/電子をそれぞれ誘導管61、62に
導き、磁気コイル例えば超伝導コイル63、64等によ
って磁気制御加速しつつ両粒子を融合し中性子へ変化さ
せ、炉心51へ中性子粒子を打ち込む。尚、65は遮蔽
板、66は中性子射出口である。 【0022】一方、70は重水素発生装置、71は重水
素タンク、72は重水素供給装置、73は重水素供給管
である。 【0023】陽子加速装置52、電子加速装置53、中
性子加速装置54の打ち込み軸は、炉心51の中心点O
に対してそれぞれ120度に拡開しして設定しており、
かつそれぞれの打ち込み角度は同一平面上に並列存在す
る。 【0024】従ってかかる装置によれば、陽子加速装置
52、電子加速装置53、中性子加速装置54から炉心
51に打ち込まれる陽子、電子、中性子は、炉心中央の
特定点Oで衝突し、激しく粒子反応する。このとき特定
点Oでは重水素が連続発生すると同時に、余剰陽子等の
発生による爆発的なエネルギ増加によって温度が急激に
上昇しプラズマを発生させる。これにより、特定点Oで
は重水素−重水素融合反応、および重水素−三重水素融
合反応が進行し莫大なエネルギを発生させる。 【0025】このとき特定点Oは、強烈な磁場をかける
までもなく炉心51の中央に安定して存在する。電子、
陽子、中性子の粒子加速を均等にして秒速を同一にすれ
ば良いからである。このときの速度は、重水素に対する
1万V印加時の秒速700km程度を基準とし、効率的
な融合反応を示す速度に設定する。粒子加速は実験上も
光速度の99%程度に達するから、衝突時の秒速は最高
30万km程度まで引き上げることが出来るが、核融合
に要する衝突エネルギは炉心温度との相関で秒速100
0kmもあれば十分であると考えられる。 【0026】かかる装置によれば、プラズマは安定して
炉心中央に存在し、粒子が炉心壁面を高速衝打すること
による不純物発生の問題も生じない。仮に粒子速度の不
均衡によるプラズマ発生位置のずれが生じたときには、
炉親周囲に超伝導コイルを配して炉心51を包囲するよ
うに磁場を発生させ、プラズマの位置を制御することも
可能である。 【0027】また、電子、陽子、中性子の粒子衝突によ
って発生する過剰エネルギにより炉心温度はプラズマ発
生に十分な高温に達すると考えられるが、粒子衝突の初
期段階における反応速度を確実に向上させるには、従来
装置と同様、レーザー光などの加熱粒子手段を打ち込ん
でも良い。 【0028】さらにこの実施例では、中性子の打ち込み
口に重水素流の射出口を並存させる旨説明したが、これ
は初期段階における粒子反応を加速するためのものであ
り、必ずしも重水素射出は必要ではない。また、仮に重
水素を補うため、その射出口を設けるとしても中性子の
打ち込み口に限らず、電子あるいは陽子の打ち込み口ま
たはその他の任意ポイントに重水素の射出口を配しても
良い。粒子打ち込み後数ミリsec以内に特定点Oの重
水素量は十分な量に達し、とくに補充的な重水素原子の
追加を要しないからである。 【0029】発生するエネルギの取り出しは、炉に対し
て電子を打ち込むタイプの核融合炉で採られた各種方式
を採用することが出来る。また例えば図3に示すよう
に、炉心51の一部に粒子開口80を設け、融合反応過
程で飛び出すβ線、中性子線、陽子線、γ線を黒鉛等の
減速材81に当て、ここで減速材81を包むケース82
に充満させた水を沸騰させて当該熱エネルギを取り出す
ようにしても良い。 【0030】 【発明の効果】以上説明したように本発明に係る核融合
装置は、加速電子の打ち込み軸線に対し、同一平面上に
おいてそれぞれ120度の角度をもたせて加速陽子およ
び加速中性子の照射軸線を設定したから、電子、陽子、
中性子の三つの粒子は炉心中央の特定点で融合して急激
にプラズマを発生する。そのプラズマは強烈な磁場をか
けるまでもなく常に定点に保たれ核融合が進行するた
め、プラズマ閉じ込めの困難性や、不純物混入による炉
心のエネルギ損失を解消してエネルギ保持を確実にする
ことが出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fusion device, and more particularly to a device principle for realizing a deuterium-deuterium reaction. 2. Description of the Related Art A nuclear fusion device is capable of high-efficiency power generation exceeding nuclear power generation energy utilizing nuclear fission, and in the unlikely event of an accident, the risk of radiation is overwhelmingly small. Is being researched. The utilization of nuclear fusion is based on the principle of feasibility on the ground that, for example, a large amount of energy generated when a hydrogen atom is converted into helium by fusion of deuterium and tritium is utilized. .. As is well known, the difficulty of nuclear fusion lies in the difficulty of neatly satisfying Lawson's conditions such as confinement of plasma, plasma density, plasma holding time, and plasma temperature. Lawson's condition entails many obstacles when constructing the system as a whole, such that when one is established, the other collapses. As means for overcoming this obstacle, means such as giant tokamak and laser irradiation heating have been conventionally used. Since the factor that realizes nuclear fusion is not one, but many factors are superposed, it is difficult to take out continuous energy such as holding plasma for a long time even with a giant tokamak or laser light heating. FIG. 4 shows a conventionally proposed nuclear fusion device, which is a technique enabling continuous energy extraction (Japanese Patent Laid-Open No. 62-187281). In the figure, 10 is an electromagnetic accelerating tube having a diameter of about 80 m, 11 is its tubular body, 12 is a superconducting coil applied to the tubular body 11, and a furnace 20 is provided at one end of the electromagnetic accelerating tube 10. The body 11 and the core 21 are communicated with each other. This tube 11
Light hydrogen is sealed between the core and the core 21 via the valve 13. The electron supply device 1 is provided at one end of the electromagnetic acceleration tube 10.
4 and a laser supply device 15 are provided. The laser supply device 15 emits an ultraviolet laser or a carbon dioxide laser, for example. On the other hand, the reactor core 21 is provided with a helium laser supply device 22 and a neutron supply device 23. A so-called blanket layer of graphite or the like is provided on the inner wall of the core 21 for receiving neutrons to absorb the neutrons. A cooling device 30 is provided in the furnace 20, and light water is circulated by a pipe 32 and a pump 33 to cool the core 21, and a pipe 41 and a pump 44 are provided.
The steam hot water is circulated to take out heat energy.
40 is a power generator, 42 is a steam drive turbine, 45 is a generator, and 43 is a condenser for cooling circulating water with seawater or the like. In such a device, the inside of the pipe 11 is about 70 k
Light hydrogen is sealed at a pressure of g / cm 2 and the electrons supplied from the electron supply threshold 14 are accelerated by the superconducting coil 12 toward the core 21 and driven. At this time, the light hydrogen in the core 21 is heated by the laser light emitted from the laser supply device 15, and the accelerated hydrogen collides with the light hydrogen having a high temperature to become a further high temperature and become a plasma. Neutrons are applied to the light hydrogen-deuterium from the neutron supply device 23, and helium laser light is emitted from the helium laser supply device 22 to induce nuclear fusion. The generated energy heats the coolant, drives the turbine 42 and the generator 45, and is converted into electric power. By the way, the Lawson's condition required to realize the fusion is that the fusion proceeds when the product value of the plasma density and the plasma holding time is sufficiently large. It is assumed that the reference plasma temperature of 100 million degrees Celsius. In order to satisfy this condition and realize continuous fusion operation from ignition, more problems such as plasma confinement, plasma holding time, plasma temperature, and plasma density remain. For example, in the conventional fusion reactor, the core 2
Since electrons are injected from one direction to 1,
Even if a wear protection material such as graphite 24 is provided on the side wall of the collision of electrons, impurities are knocked out from the wall by the collision of electrons accelerated at high speed, and the impurities and the electrons act to shorten the energy retention time. The problem arises. In addition, such a decrease in efficiency due to impurities becomes significantly remarkable as the core temperature rises. Further, the plasma confinement in the core 21 is also unstable, and there remains the problem of how to satisfy the Lawson's condition due to the relationship between the holding time and the density. Therefore, an object of the present invention is to further ensure the plasma confinement and the energy retention in the central portion of the core in a fusion reactor of the type in which electrons are injected into the core. In order to achieve the above object and achieve the object, the fusion apparatus according to the present invention is based on the technical premise of a fusion reactor in which accelerated electrons are injected into the core.
Irradiation axes of accelerated protons and accelerated neutrons were set by making an angle of 120 degrees on the same plane with respect to the axis of implantation of accelerated electrons. The reactor core into which accelerated electrons are injected has 120
Electrons, protons, and neutrons are accelerated and injected in the same plane with a spread angle of 4 degrees, and these three particles collide at a specific point in the center of the core. The injection flow of electrons, protons and neutrons is made continuous, and the injection speed is 400 to 70 per second.
When set to about 0 km, the three parties violently collide at a specific point and fuse to produce deuterium, which rapidly increases its concentration. The deuterium generated at a specific point is repeatedly pushed violently by being pushed by the accelerating energies of the following electrons, protons and neutrons. At this time, a deuterium-deuterium fusion reaction occurs,
Makes one tritium, proton, and electron fly out. Due to the proton / electron energy that jumps out in the course of this reaction, the temperature at the specific point changes to an ultrahigh temperature without using laser light. At this specific point, deuterium is produced at a high density and tritium is produced by an explosive continuous reaction.
According to the three-particle irradiation of the present invention, sufficient energy can be extracted by the deuterium-deuterium fusion reaction,
Furthermore, since deuterium and tritium react at specific plasma-like points, conventional fusion that generates helium and neutrons also occurs continuously in an explosive manner. The specific point is always kept at a fixed point without applying a strong magnetic field. Since a plasma reaction occurs and nuclear fusion proceeds at this specific point, it becomes possible to eliminate the difficulty of confining plasma and energy loss in the core due to the inclusion of impurities. Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a nuclear fusion device 50 according to the present invention, in which 51 is a core, 52 is a proton accelerator, and 53.
Is an electron accelerator and 54 is a neutron accelerator. Protons and electrons are generated by a hydrogen gas tank 55 and a proton / electron separation device 56, and are emitted from a proton supply section 57 and an electron supply section 58, respectively. Reference numeral 60 denotes a neutron supply device, which is shown in FIG.
Protons / electrons are guided to induction tubes 61 and 62, respectively, and are magnetically controlled and accelerated by magnetic coils such as superconducting coils 63 and 64 to fuse both particles into neutrons and implant neutron particles into the core 51. .. Incidentally, 65 is a shielding plate, and 66 is a neutron emission port. On the other hand, 70 is a deuterium generator, 71 is a deuterium tank, 72 is a deuterium supply device, and 73 is a deuterium supply pipe. The implantation axes of the proton accelerator 52, the electron accelerator 53, and the neutron accelerator 54 are the center points O of the core 51.
For each, it is expanded to 120 degrees and set,
Moreover, the respective driving angles exist in parallel on the same plane. Therefore, according to such an apparatus, the protons, electrons and neutrons that are driven into the core 51 from the proton accelerator 52, the electron accelerator 53, and the neutron accelerator 54 collide with each other at a specific point O in the center of the core, causing a violent particle reaction. To do. At this time, at the specific point O, deuterium is continuously generated, and at the same time, the temperature sharply rises due to the explosive increase in energy due to the generation of surplus protons and the like to generate plasma. As a result, the deuterium-deuterium fusion reaction and the deuterium-tritium fusion reaction proceed at the specific point O to generate enormous energy. At this time, the specific point O is stably present in the center of the core 51 without applying a strong magnetic field. Electronic,
This is because it is sufficient to make the particle acceleration of protons and neutrons uniform and to make the second speed the same. The speed at this time is set to a speed that shows an efficient fusion reaction, with reference to a speed of about 700 km / sec when 10,000 V is applied to deuterium. Since the particle acceleration reaches about 99% of the light velocity in the experiment, the second speed at the time of collision can be increased up to about 300,000 km, but the collision energy required for nuclear fusion is 100 seconds per second in correlation with the core temperature.
It is considered that 0 km is sufficient. According to such an apparatus, the plasma stably exists in the center of the core, and the problem of generation of impurities due to high-speed impact of particles on the core wall surface does not occur. If there is a shift in the plasma generation position due to particle velocity imbalance,
It is also possible to arrange a superconducting coil around the core and generate a magnetic field so as to surround the core 51 to control the position of plasma. Further, it is considered that the core temperature reaches a high temperature sufficient for plasma generation due to excess energy generated by particle collision of electrons, protons and neutrons, but it is necessary to surely improve the reaction rate in the initial stage of particle collision. As in the conventional device, heating particle means such as laser light may be driven in. Further, in this embodiment, it is explained that the deuterium flow injection port is made to coexist with the neutron injection port, but this is for accelerating the particle reaction in the initial stage, and deuterium injection is not always necessary. is not. Even if the ejection port is provided to supplement deuterium, the deuterium ejection port may be provided not only at the neutron implantation port but also at the electron or proton implantation port or at any other arbitrary point. This is because the deuterium amount at the specific point O reaches a sufficient amount within a few milliseconds after the particle implantation, and it is not particularly necessary to add supplementary deuterium atoms. For extracting the generated energy, various methods adopted in a fusion reactor of a type in which electrons are injected into the furnace can be adopted. Further, for example, as shown in FIG. 3, a particle opening 80 is provided in a part of the core 51, and β rays, neutron rays, proton rays, and γ rays emitted in the fusion reaction process are applied to a moderator 81 such as graphite, and the moderator 81 is decelerated there. Case 82 for wrapping material 81
Alternatively, the heat energy may be taken out by boiling the water filled with the water. As described above, in the fusion device according to the present invention, the irradiation axes of the accelerated protons and accelerated neutrons are set at 120 degrees on the same plane with respect to the implantation axis of the accelerated electrons. Since we set the electron, proton,
The three particles of neutrons fuse at a specific point in the center of the core and suddenly generate plasma. The plasma is always maintained at a fixed point without applying a strong magnetic field, and nuclear fusion progresses. Therefore, it is possible to eliminate the difficulty of plasma confinement and the energy loss of the core due to the inclusion of impurities to ensure energy retention. ..

【図面の簡単な説明】 【図1】本発明に係る核融合装置の一例を示す原理図で
ある。 【図2】本発明に係る中性子発生装置の一例を示す図で
ある。 【図3】本発明に係るエネルギ取り出し方式をの一例を
示す図である。 【図4】従来の核融合装置の一例を示す原理図である。 【符号の説明】 50 核融合装置 51 炉心 52 陽子加速装置 53 電子加速装置 54 中性子加速装置 57 陽子供給部 58 電子供給部 60 中性子供給装置 61、62 誘導管 65 遮蔽板 66 中性子射出口 70 重水素発生装置 73 重水素供給管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a principle view showing an example of a nuclear fusion device according to the present invention. FIG. 2 is a diagram showing an example of a neutron generator according to the present invention. FIG. 3 is a diagram showing an example of an energy extraction system according to the present invention. FIG. 4 is a principle diagram showing an example of a conventional nuclear fusion device. [Description of Codes] 50 Nuclear Fusion Device 51 Reactor Core 52 Proton Accelerator 53 Electron Accelerator 54 Electron Accelerator 54 Neutron Accelerator 57 Proton Supply Unit 58 Electron Supply Unit 60 Neutron Supply Device 61, 62 Induction Tube 65 Shield Plate 66 Neutron Ejection Port 70 Deuterium Generator 73 Deuterium supply pipe

Claims (1)

【特許請求の範囲】 炉心に向けて加速電子を打ち込む核融合炉において、 加速電子の打ち込み軸線に対し、同一平面上においてそ
れぞれ120度の角度をもたせて加速陽子および加速中
性子の照射軸線を設定した核融合装置。
[Claims] In a fusion reactor in which accelerated electrons are injected into the core, the irradiation axes of accelerated protons and accelerated neutrons are set at 120 degrees on the same plane with respect to the accelerated electron injection axis. Nuclear fusion device.
JP4171973A 1992-06-05 1992-06-05 Nuclear fusion device Pending JPH05341068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4171973A JPH05341068A (en) 1992-06-05 1992-06-05 Nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4171973A JPH05341068A (en) 1992-06-05 1992-06-05 Nuclear fusion device

Publications (1)

Publication Number Publication Date
JPH05341068A true JPH05341068A (en) 1993-12-24

Family

ID=15933181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4171973A Pending JPH05341068A (en) 1992-06-05 1992-06-05 Nuclear fusion device

Country Status (1)

Country Link
JP (1) JPH05341068A (en)

Similar Documents

Publication Publication Date Title
US10361005B2 (en) Apparatus for magnetic and electrostatic confinement of plasma
US9822769B2 (en) Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine
JP4131519B2 (en) Controlled fusion and direct energy conversion in magnetic field reversal configuration
US10643753B2 (en) Hollow particle beam emitter
WO2005001845A2 (en) Fusion apparatus and methods
US10811159B2 (en) Fueling method for small, steady-state, aneutronic FRC fusion reactors
Parker et al. Plasma physics and controlled nuclear fusion research (Summaries of the 12th IAEA International Conference, Nice, France, 12-19 October 1988)
Ongena Fusion: A true challenge for an enormous reward
Spalding Cusp containment and thermonuclear reactors
Kukulin et al. Pinch-based thermonuclear D 3 He fusion driven by a femtosecond laser
JPH05341068A (en) Nuclear fusion device
Cohen et al. Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine
Subotowicz Propulsion concepts for nuclear matter compression energy and “cold” fusion energy sources in interstellar flight
Harrison Basic Concepts of Fusion
Abdelaziz Prospects for energy by thermonuclear fusion
Nishikawa et al. Progress in fusion research
Furth Path toward fusion energy
Ideal et al. Fusion energy: concepts and prospects
Jassby Neutral-beam-injected tokamak fusion reactors: a review
Chen et al. Introduction to Controlled Fusion
Meade The road to sustainable fusion power
JPS62187281A (en) Nuclear fusion reaction method and device thereof
Meaning et al. Definition of the Subject
Gasparotto Present status of fusion research: the next-step tokamak (ITER) and the demonstration reactor
WO1991017546A1 (en) Resonant direct nuclear reactions for energy and tritium production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950516