JPH05341047A - Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor - Google Patents

Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor

Info

Publication number
JPH05341047A
JPH05341047A JP11755491A JP11755491A JPH05341047A JP H05341047 A JPH05341047 A JP H05341047A JP 11755491 A JP11755491 A JP 11755491A JP 11755491 A JP11755491 A JP 11755491A JP H05341047 A JPH05341047 A JP H05341047A
Authority
JP
Japan
Prior art keywords
scintillator
rays
zns
bgo
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11755491A
Other languages
Japanese (ja)
Inventor
Shigekazu Usuda
重和 臼田
Akira Mihara
明 三原
Hitoshi Abe
仁 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP11755491A priority Critical patent/JPH05341047A/en
Publication of JPH05341047A publication Critical patent/JPH05341047A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make measurement upon discriminating perfectly alpha and beta(gamma) rays of the gross at the same time with one run of measuring using a waveform discriminating method. CONSTITUTION:A sensor is equipped with composite scintillator consisting of a double combination of ZnS (Ag) scintillator, plastic having a gored short rising (falling) time, stilbene, and BGO or NaI (Tl) scintillator, in which the ZnS (Ag) scintillator is first arranged for a ray source, and then plastic, stilnbene, and BGO or NaI (Tl) scintillator are arranged. Another sensor is fitted with a composite scintillator consisting of a treble combination of ZnS (Ag) scintillator, plastic or stilnbene having a good short rising (falling) time, and BGO or NaI (Tl) scintillator, in which the ZnS (Ag) scintillator is first arranged for a ray source, and then plastic or stilbene is arranged, and finally BGO or NaI (Tl) is arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、波形弁別法により1回
の測定で同時にグロスのα及びβ(γ)線をほぼ完全に
区別して計測する放射線検出器に関するものである。3
重に組み合わせる場合は、グロスのα線、主にβ線、主
にγ線を同時にほぼ区別して測定することができる。こ
れらの測定法及び検出器は、固体、液体・気体試料のエ
ネルギーを特に厳密に問題にしない測定において有効で
ある。例えば、放射線管理用のサーベイメータ、エリア
モニター、放射性ガスモニター、放射性ダストモニター
等の放射線モニターの検出器としての利用が考えられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detector for measuring the .alpha. And .beta. Three
In the case of multiple combinations, gross α-rays, mainly β-rays, and mainly γ-rays can be measured almost simultaneously at the same time. These measuring methods and detectors are effective in the measurement in which the energy of a solid, liquid, or gas sample is not particularly strict. For example, it can be used as a detector for a radiation monitor such as a survey meter for radiation control, an area monitor, a radioactive gas monitor, and a radioactive dust monitor.

【0002】[0002]

【従来の技術】通常、α及びβ(γ)線を測定するに
は、それぞれ専用の検出器を用いて測定する。しかし、
1台の検出器を用いて同時にα及びβ(γ)線を測定す
る必然性のある場合は、各種シンチレータを含む放射線
検出器を用いるエネルギーの相異から求める方法、α線
とβ(γ)線の波形弁別が可能な単一のシンチレータ等
(例えば、CsI(Tl)、スチルベン結晶)を用いる
方法等がある。
2. Description of the Related Art Normally, α and β (γ) rays are measured using dedicated detectors. But,
When it is necessary to simultaneously measure α and β (γ) rays using one detector, a method to obtain from the energy difference using a radiation detector including various scintillators, α ray and β (γ) ray There is a method using a single scintillator or the like (for example, CsI (Tl) or stilbene crystal) capable of discriminating the waveform of the above.

【0003】[0003]

【発明が解決しようとする課題】1台の検出器により同
時にα及びβ(γ)線を測定する場合、その波高すなわ
ちエネルギーの相異から測定する方法は、単一及び複合
シンチレータいずれもα及びβ(γ)線を完全に区別し
て計測することは困難である。一方、波形弁別法により
α及びβ(γ)線を同時に測定する方法としては、単一
のシンチレータを用いる例のみが報告されていた。最も
効果的にα及びβ(γ)線の波形弁別ができるシンチレ
ータとして知られているCsI(Tl)、CsI(N
a)、スチルベン等は、2〜3程度のFOM(Figure o
f merit)値が報告されている。しかし、この程度で
は、エネルギーの相違、温度・測定条件の変動等により
α及びβ(γ)線の弁別に影響を及ぼし、安定した計測
は期待できない。即ち、本発明において解決しようとす
る課題は、α及びβ(γ)線を同時に測定する場合、こ
れらの問題点を無視できるような十分大きな分解能(F
OM値)をもつ検出器を開発したことにある。
When simultaneously measuring α and β (γ) rays with one detector, the method of measuring from the wave height, that is, the difference in energy, is used for both single and compound scintillators. It is difficult to completely distinguish and measure β (γ) rays. On the other hand, as a method for simultaneously measuring α and β (γ) rays by the waveform discrimination method, only an example using a single scintillator has been reported. CsI (Tl) and CsI (N), which are known as scintillators capable of most effectively discriminating the waveform of α and β (γ) rays.
a), stilbene, etc., have about 2-3 FOM (Figure o
f merit) values have been reported. However, at this level, it is not possible to expect stable measurement because the difference in energy, fluctuations in temperature and measurement conditions, etc. affect the discrimination of α and β (γ) rays. That is, the problem to be solved in the present invention is that, when α and β (γ) rays are simultaneously measured, a sufficiently large resolution (F
The purpose is to develop a detector with OM value).

【0004】[0004]

【課題を解決するための手段】ZnS(Ag)薄膜を用
いる放射線検出器は、β及びγ線にはほとんど不感であ
るが、α線にはきわめて高感である。しかも、その立ち
上がり(又は立ち下がり)時間が長いという特徴をも
つ。そこで、β及びγ線に有感でありかつZnS(A
g)に比べβ(γ)線の立ち上がり(又は立ち下がり)
時間がかなり短いプラスチック、スチルベン、BGO又
はNaI(Tl)シンチレータを組み合わせた複合シン
チレータを検出器とすれば、波形弁別により粒子弁別が
可能な単一のシンチレータを検出器とする場合より、は
るかに大きなα及びβ(γ)線の分解能を得ることが可
能となる。β(γ)線を検知するプラスチック又はスチ
ルベンシンチレータは、低い原子番号の元素から成るの
で、ZnS(Ag)シンチレータとこれらシンチレータ
の組み合わせから成る検出器はα線と主にβ線の同時測
定に適する。また、BGO又はNaI(Tl)シンチレ
ータの平均原子番号は高いためγ線やX線の検出効率は
かなり高く、これらシンチレータの組み合わせから成る
検出器はα線と主にγ線やX線の同時測定に適する。さ
らに、BGO又はNaI(Tl)シンチレータの立ち上
がり(又は立ち下がり)時間は、ZnS(Ag)シンチ
レータとプラスチック又はスチルベンシンチレータのそ
れのほぼ中間である。それ故に、これらシンチレータを
3重に組み合わせた複合シンチレータは、グロスのα
線、主にβ線(γ線含む)、主にγ線(β線含む)を同
時にほぼ区別して測定することが可能となる。
A radiation detector using a ZnS (Ag) thin film is almost insensitive to β and γ rays, but extremely sensitive to α rays. Moreover, it has a characteristic that the rising (or falling) time is long. Therefore, it is sensitive to β and γ rays and ZnS (A
Rising (or falling) of β (γ) ray compared to g)
A composite scintillator with a combination of plastic, stilbene, BGO or NaI (Tl) scintillator, whose time is considerably short, is much larger than a single scintillator capable of particle discrimination by waveform discrimination. It is possible to obtain the resolution of α and β (γ) rays. Since a plastic or stilbene scintillator that detects β (γ) rays is composed of elements with a low atomic number, a detector consisting of ZnS (Ag) scintillator and a combination of these scintillators is suitable for simultaneous measurement of α rays and mainly β rays. .. Moreover, since the average atomic number of BGO or NaI (Tl) scintillator is high, the detection efficiency of γ-rays and X-rays is quite high, and the detector consisting of a combination of these scintillators simultaneously measures α-rays and mainly γ-rays and X-rays. Suitable for Moreover, the rise (or fall) time of BGO or NaI (Tl) scintillators is approximately midway between that of ZnS (Ag) scintillators and that of plastic or stilbene scintillators. Therefore, a composite scintillator that combines these scintillators in triplicate is
It becomes possible to measure the lines, mainly β-rays (including γ-rays) and mainly γ-rays (including β-rays) almost simultaneously at the same time.

【0005】1例として、ZnS(Ag)薄膜とNE1
02Aプラスチックシンチレータ(ニュークリアエンタ
ープライズ社製)を使用した場合の検出器の概観を図1
に示す。α線によりZnS(Ag)シンチレータで発行
した蛍光は、NE102Aシンチレータを通り光電子倍
増管(PMT)に導入される。α線はその飛程がきわめ
て短く、ZnS(Ag)薄膜に完全に吸収されるため、
NE102Aプラスチックシンチレータにはβ(γ)線
のみが吸収される。その際、β(γ)線によりNE10
2Aシンチレータで発光した蛍光は直接PMTに導入さ
れる。両放射線によるパルスの立ち上がり時間(又は立
ち下がり時間)はかなり異なるため、波形弁別法により
容易に双方を区別することができる。即ち、立ち上がり
(又は立ち下がり)時間スペクトルを波高分析装置(P
MA)で測定することにより、あるいはα及びβ(γ)
領域に調製した2台のシングルチャンネルアナライザー
(SCA)からの計数値を出力することにより、α及び
β(γ)線を同時に測定する。
As an example, ZnS (Ag) thin film and NE1
Fig. 1 shows an overview of the detector when a 02A plastic scintillator (Nuclear Enterprise) is used.
Shown in. Fluorescence emitted by the ZnS (Ag) scintillator by α rays is introduced into the photomultiplier tube (PMT) through the NE102A scintillator. Since the range of α rays is extremely short and is completely absorbed by the ZnS (Ag) thin film,
Only β (γ) rays are absorbed by the NE102A plastic scintillator. At that time, NE10 is generated by β (γ) rays.
The fluorescence emitted by the 2A scintillator is directly introduced into the PMT. Since the rise times (or fall times) of the pulses due to both radiations are considerably different, the two can be easily distinguished by the waveform discrimination method. That is, the rise (or fall) time spectrum is analyzed by the pulse height analyzer (P
MA) or α and β (γ)
The α and β (γ) rays are simultaneously measured by outputting count values from two single channel analyzers (SCA) prepared in the area.

【0006】図1は、ZnS(Ag)及びNE102A
シンチレータを組み合わせて使用した場合の検出器の概
観図である。それぞれの要素は、シリコンオイル又は光
学接着剤により接した体系で、全体は検出器の窓の部分
を除いてアルミニウム容器等でハウジングして用いる。
FIG. 1 shows ZnS (Ag) and NE102A.
It is a general view of a detector when using it in combination with a scintillator. Each element is a system in which it is contacted with silicone oil or an optical adhesive, and the whole is used by housing it in an aluminum container or the like except for the window portion of the detector.

【0007】図1において、薄いアルミニウム蒸発マイ
ラー膜は、外部からの光を遮断(遮光)する、シンチレ
ータからの蛍光を反射するして効率を高める、さらにシ
ンチレータを保護する役目を担う。また、検出器が汚染
された場合、膜の交換により簡便かつ有効な除染を行う
ことができる。
In FIG. 1, the thin aluminum evaporation Mylar film has the functions of blocking (blocking) light from the outside, reflecting the fluorescence from the scintillator to improve efficiency, and further protecting the scintillator. Further, when the detector is contaminated, the membrane can be replaced for simple and effective decontamination.

【0008】[0008]

【実施例】図2に、上記検出器によるα及びβ(γ)線
の立ち上がり時間スペクトルの1例を示す。即ち、図2
は、2重に組み合わせたZnS(Ag)/NE102A
複合シンチレータを用いて測定されたα及びβ(γ)線
の立ち上がり時間スペクトルである。横軸はチャンネル
(立ち上がり時間:nsec)、縦軸はチャンネル当たりの
カウント数を示す。α線とβ(γ)線の弁別は、極めて
大きな分解能をもち、完全に行われている。波形弁別法
は、Kinbara及びKumaharaが開発した方法〔S. Kinbara,
T. Kumahara: “A General Purpose Pulse Shape Disc
riminating Circuit", Nucl. Instr. Methods, 70, 173
-182 (1969)〕を用いた。測定試料は、α放射能標準体
244Cm)及びβ(γ)放射能標準体(137Cs)である。
第1表は、この測定結果をまとめたものである。α及び
β(γ)線ピークの分解能(FOM)は、約10という
極めて大きな値となった。テイリングはほとんど無視で
きる(10-4程度又はそれ以下)。α線検出効率は、検
出器にほぼ接して測定した場合44.6%であった。ま
た、ZnS(Ag)シンチレータを使用しているので、
α領域のバックグランドは極めて低かった。
EXAMPLE FIG. 2 shows an example of rise time spectra of α and β (γ) rays by the above detector. That is, FIG.
Is a dual combination of ZnS (Ag) / NE102A
3 is a rise time spectrum of α and β (γ) rays measured using a composite scintillator. The horizontal axis represents the channel (rise time: nsec), and the vertical axis represents the number of counts per channel. Discrimination between α rays and β (γ) rays has a very large resolution and is completely performed. The waveform discrimination method is a method developed by Kinbara and Kumahara [S. Kinbara,
T. Kumahara: “A General Purpose Pulse Shape Disc
riminating Circuit ", Nucl. Instr. Methods, 70 , 173
-182 (1969)] was used. The measurement samples are α-radioactivity standard body ( 244 Cm) and β (γ) -radioactivity standard body ( 137 Cs).
Table 1 summarizes the measurement results. The resolution (FOM) of the α and β (γ) ray peaks was an extremely large value of about 10. The tailing is almost negligible (about 10 -4 or less). The α ray detection efficiency was 44.6% when measured almost in contact with the detector. Moreover, since a ZnS (Ag) scintillator is used,
The background in the α region was extremely low.

【0009】 [0009]

【0010】また、ZnS(Ag)とスチルベンを組み
合わせた検出器では、α及びβ(γ)線ピークのFOM
値は、約8であり、プラスチックシンチレータとの組み
合わせによる上記検出器とほぼ同等の特性が得られた。
Further, in the detector in which ZnS (Ag) and stilbene are combined, the FOM of α and β (γ) ray peaks is obtained.
The value was about 8, and a characteristic almost equivalent to that of the above detector obtained by combining with the plastic scintillator was obtained.

【0011】一方、ZnS(Ag)とBGOを組み合わ
せた検出器は、上記検出器と比べ分解能においては劣る
ものの(FOM:約4)、γ線やX線の検出効率は数倍
大きい特徴を持つ。なお、ZnS(Ag)とNaI(T
l)を組み合わせた検出器も、ZnS(Ag)とBGO
を組み合わせた検出器とほぼ同等の性能及び特徴を有す
る。
On the other hand, the detector in which ZnS (Ag) and BGO are combined is inferior to the above-mentioned detector in resolution (FOM: about 4), but the detection efficiency of γ-rays and X-rays is several times higher. .. In addition, ZnS (Ag) and NaI (T
The detector combining l) is also ZnS (Ag) and BGO.
Has almost the same performance and characteristics as the combined detector.

【0012】図3に、3重に組み合わせたZnS(A
g)/NE102A/BGO複合シンチレータによる
241Am及び60Coのα、主にβ及び主にγ線の立ち上がり
時間スペクトルの1例を示す。即ち、図3は、3重に組
み合わせたZnS(Ag)/NE102A/BGO複合
シンチレータによるα、主にβ及び主にγ線の立ち上が
り時間スペクトルである。横軸はチャンネル(立ち上が
り時間:nsec)、縦軸はチャンネル当たりのカウント数
を示す。α線とβ及びγ線の弁別はほぼ完全に、また主
にβ線と主にγ線の弁別もほぼ行われている。α及び主
にβ線ピークのFOM値は約5、またβ及び主にγ線ピ
ークのFOM値は約4であった。
In FIG. 3, ZnS (A
g) / NE102A / BGO composite scintillator
An example of rise time spectra of α, mainly β and mainly γ rays of 241 Am and 60 Co is shown. That is, FIG. 3 is a rise time spectrum of α, mainly β and mainly γ rays by a ZnS (Ag) / NE102A / BGO composite scintillator in triple combination. The horizontal axis represents the channel (rise time: nsec), and the vertical axis represents the number of counts per channel. Discrimination between α rays and β and γ rays is almost complete, and discrimination between mainly β rays and mainly γ rays is almost performed. The FOM value of α and mainly β ray peaks was about 5, and the FOM value of β and mainly γ ray peaks was about 4.

【0013】[0013]

【発明の効果】α及びβ(γ)線の弁別を極めて大きな
分解能をもって行うことにより、以下のことが可能にな
った。
EFFECTS OF THE INVENTION By discriminating α and β (γ) rays with an extremely large resolution, the following has become possible.

【0014】 1台の検出器でグロスのα及びβ(γ)
線を同時に精度よく測定する。 α線のバックグランドは極めて低い。 エネルギーの大小による影響、お互い他放射線の影
響(テイリング)を受けない。 温度変動等による検出器の特性変化に影響を受けな
い。
Gross α and β (γ) with one detector
Accurately measure lines at the same time. The background of α rays is extremely low. They are not affected by the magnitude of energy and the influence of each other's radiation (tailing). It is not affected by changes in detector characteristics due to temperature fluctuations.

【図面の簡単な説明】[Brief description of drawings]

【図1】ZnS(Ag)/NE102A複合シンチレー
タ検出器の概観図である。
FIG. 1 is a schematic view of a ZnS (Ag) / NE102A composite scintillator detector.

【図2】ZnS(Ag)/NE102A複合シンチレー
タを用いて測定されたα及びβ(γ)線の立ち上がり時
間スペクトル図である。
FIG. 2 is a rise time spectrum diagram of α and β (γ) rays measured by using a ZnS (Ag) / NE102A composite scintillator.

【図3】ZnS(Ag)/NE102A/BGO複合シ
ンチレータを用いて測定されたα、主にβ及び主にγ線
の立ち上がり時間スペクトル図である。
FIG. 3 is a rise time spectrum diagram of α, mainly β and mainly γ rays measured by using a ZnS (Ag) / NE102A / BGO composite scintillator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 波形弁別法により、ZnS(Ag)シン
チレータと立ち上がり(又は立ち下がり)時間がかなり
短いプラスチック、スチルベン、BGO又はNaI(T
l)シンチレータを2重に組み合わせた複合シンチレー
タを用いて、グロスのα及びβ(γ)線を同時にしかも
ほぼ完全に区別して測定する方法。
1. A ZnS (Ag) scintillator and a plastic, stilbene, BGO or NaI (T) having a considerably short rise (or fall) time by a waveform discrimination method.
l) A method of simultaneously and almost completely distinguishing between the α and β (γ) rays of the gross by using a composite scintillator in which the scintillators are combined doubly.
【請求項2】 ZnS(Ag)シンチレータ、プラスチ
ック又はスチルベン、BGO又はNaI(Tl)シンチ
レータを3重に組み合わせた複合シンチレータを用い
て、グロスのα線、主にβ線(γ線含む)、主にγ線
(β線含む)を同時にほぼ区別して測定する方法。
2. A composite scintillator in which ZnS (Ag) scintillator, plastic or stilbene, BGO or NaI (Tl) scintillator is triple-combined is used to produce gross α rays, mainly β rays (including γ rays), A method to measure γ-rays (including β-rays) almost simultaneously.
【請求項3】 波形弁別法により、ZnS(Ag)シン
チレータと、立ち上がり(立ち下がり)時間がかなり短
いプラスチック、スチルベン、BGO又はNaI(T
l)シンチレータとを2重に組み合わせた複合シンチレ
ータを用いて、グロスのα及びβ(γ)線を同時にしか
もほぼ完全に区別して測定する検出器であって、線源に
対してZnS(Ag)シンチレータを配置し、次にプラ
スチック、スチルベン、BGO又はNaI(Tl)シン
チレータを配置したことを特徴とする検出器。
3. A ZnS (Ag) scintillator and a plastic, stilbene, BGO or NaI (T) having a considerably short rise (fall) time by a waveform discrimination method.
l) A detector for simultaneously and almost completely distinguishing gross α and β (γ) rays by using a composite scintillator in which a scintillator and a scintillator are combined in a dual manner, and ZnS (Ag) A detector characterized by arranging a scintillator and then a plastic, stilbene, BGO or NaI (Tl) scintillator.
【請求項4】 波形弁別法により、ZnS(Ag)シン
チレータと、立ち上がり(立ち下がり)時間がかなり短
いプラスチック又はスチルベンと、BGO又はNaI
(Tl)シンチレータとを3重に組み合わせた複合シン
チレータを用いて、グロスのα線、主にβ線(γ線を含
む)、主にγ線(β線を含む)を同時にほぼ区別して測
定する検出器であって、線源に対して順次、ZnS(A
g)シンチレータを配置し、次にプラスチック又はスチ
ルベンを配置し、更に次にBGO又はNaI(Tl)を
配置したことを特徴とする検出器。
4. A ZnS (Ag) scintillator, a plastic or stilbene having a considerably short rise (fall) time, and BGO or NaI by a waveform discrimination method.
Using a composite scintillator in which (Tl) scintillators are combined in three layers, gross α rays, mainly β rays (including γ rays), and mainly γ rays (including β rays) are almost simultaneously distinguished and measured. The detector is a ZnS (A
g) A detector characterized by arranging a scintillator, then plastic or stilbene, and then BGO or NaI (Tl).
JP11755491A 1991-05-22 1991-05-22 Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor Pending JPH05341047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11755491A JPH05341047A (en) 1991-05-22 1991-05-22 Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11755491A JPH05341047A (en) 1991-05-22 1991-05-22 Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor

Publications (1)

Publication Number Publication Date
JPH05341047A true JPH05341047A (en) 1993-12-24

Family

ID=14714692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11755491A Pending JPH05341047A (en) 1991-05-22 1991-05-22 Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor

Country Status (1)

Country Link
JP (1) JPH05341047A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483070A (en) * 1994-08-02 1996-01-09 Packard Instrument Company Scintillation counter
JPH11271453A (en) * 1998-03-25 1999-10-08 Toshiba Corp Method and apparatus for discrimination and measurement of radiation
US6392236B1 (en) 1999-07-30 2002-05-21 Kabushiki Kaisha Toshiba Radiation detector
WO2002049499A2 (en) * 2000-12-01 2002-06-27 Neomed Technologies, Inc. Systems and methods for cardiovascular imaging, cardiovascular functional analysis, and detecting coronary artery disease
US6570160B1 (en) 1998-12-28 2003-05-27 Kabushiki Kaisha Toshiba Radiation detecting apparatus
JP2009133748A (en) * 2007-11-30 2009-06-18 Toshiba Corp Radiation detector
JP2010127862A (en) * 2008-11-28 2010-06-10 Japan Atomic Energy Agency alpha-RAY/beta-RAY SIMULTANEOUS MEASURING TYPE BODY SURFACE MONITOR
CN101937090A (en) * 2010-08-12 2011-01-05 上海新漫传感技术研究发展有限公司 High-sensitivity wide-range X-gamma ambient dose equivalent rate monitor probe
JP2012242369A (en) * 2011-05-24 2012-12-10 Seiichi Yamamoto Radiation detector
JP2014502346A (en) * 2010-11-03 2014-01-30 ジェームズ エム. ライアン Neutron spectrometer for two types of materials
JP5446011B2 (en) * 2008-06-25 2014-03-19 独立行政法人放射線医学総合研究所 Gamma ray detector, radiation diagnostic apparatus, tomographic imaging apparatus, analysis method thereof, computer program, and storage medium
US9507035B2 (en) * 2010-11-03 2016-11-29 University Of New Hampshire Tri-material dual-species neutron/gamma spectrometer
JP2019531482A (en) * 2016-10-21 2019-10-31 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド System and method for radiation detection using improved event type discrimination
CN112925004A (en) * 2021-02-05 2021-06-08 中广核研究院有限公司 Beta-gamma discrimination detection device
CN112946721A (en) * 2021-01-22 2021-06-11 西安交通大学 Detector capable of simultaneously identifying alpha, beta and gamma rays and detection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483070A (en) * 1994-08-02 1996-01-09 Packard Instrument Company Scintillation counter
JPH11271453A (en) * 1998-03-25 1999-10-08 Toshiba Corp Method and apparatus for discrimination and measurement of radiation
US6570160B1 (en) 1998-12-28 2003-05-27 Kabushiki Kaisha Toshiba Radiation detecting apparatus
US6392236B1 (en) 1999-07-30 2002-05-21 Kabushiki Kaisha Toshiba Radiation detector
WO2002049499A2 (en) * 2000-12-01 2002-06-27 Neomed Technologies, Inc. Systems and methods for cardiovascular imaging, cardiovascular functional analysis, and detecting coronary artery disease
WO2002049499A3 (en) * 2000-12-01 2003-06-12 Neomed Technologies Inc Systems and methods for cardiovascular imaging, cardiovascular functional analysis, and detecting coronary artery disease
JP2009133748A (en) * 2007-11-30 2009-06-18 Toshiba Corp Radiation detector
JP5446011B2 (en) * 2008-06-25 2014-03-19 独立行政法人放射線医学総合研究所 Gamma ray detector, radiation diagnostic apparatus, tomographic imaging apparatus, analysis method thereof, computer program, and storage medium
JP2010127862A (en) * 2008-11-28 2010-06-10 Japan Atomic Energy Agency alpha-RAY/beta-RAY SIMULTANEOUS MEASURING TYPE BODY SURFACE MONITOR
CN101937090A (en) * 2010-08-12 2011-01-05 上海新漫传感技术研究发展有限公司 High-sensitivity wide-range X-gamma ambient dose equivalent rate monitor probe
JP2014502346A (en) * 2010-11-03 2014-01-30 ジェームズ エム. ライアン Neutron spectrometer for two types of materials
US9507035B2 (en) * 2010-11-03 2016-11-29 University Of New Hampshire Tri-material dual-species neutron/gamma spectrometer
JP2012242369A (en) * 2011-05-24 2012-12-10 Seiichi Yamamoto Radiation detector
JP2019531482A (en) * 2016-10-21 2019-10-31 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド System and method for radiation detection using improved event type discrimination
CN112946721A (en) * 2021-01-22 2021-06-11 西安交通大学 Detector capable of simultaneously identifying alpha, beta and gamma rays and detection method
CN112925004A (en) * 2021-02-05 2021-06-08 中广核研究院有限公司 Beta-gamma discrimination detection device

Similar Documents

Publication Publication Date Title
US7582880B2 (en) Neutron detector using lithiated glass-scintillating particle composite
US5087818A (en) Beta scintillation probe
EP2883085B1 (en) Gamma-ray spectrometer
US5015860A (en) Scintillator materials containing lanthanum fluorides
JPH05341047A (en) Effective method for simultaneous measuring of alpha and beta@(3757/24)gamma) ray and associate sensor
Syntfeld et al. /sup 6/LiI (Eu) in neutron and/spl gamma/-ray spectrometry-a highly sensitive thermal neutron detector
JP2006258755A (en) ZnS(Ag) SCINTILLATION DETECTOR
Reeder Neutron detection using GSO scintillator
Reeder Thin GSO scintillator for neutron detection
Piltingsrud The low-temperature scintillation properties of bismuth germanate and its application to high-energy gamma radiation imaging devices
Woodbury et al. Gamma Radiation from the Reaction C 13 (p, γ) N 14
US5015861A (en) Lead carbonate scintillator materials
Cooper et al. An anticoincidence-shielded Ge (Li) gamma-ray spectrometer and its application to radioanalytical chemistry problems
Stoykov et al. Trigger efficiency of a ZnS: 6 LiF scintillation neutron detector readout with a SiPM
RU2189057C2 (en) Scintillation detector of neutron and gamma radiation
US10191161B1 (en) Device and method for the location and identification of a radiation source
JP2003057346A (en) Radiation monitoring device
Masse et al. A Ge NaI (Tl) spectrometer with Compton suppression and gamma coincidence counting. Application to 189Ir and 101Rh activity measurements
RU189817U1 (en) PAIR GAMMA SPECTROMETER FOR REGISTRATION OF HIGH ENERGY GAMMA RADIATION
RU2158011C2 (en) Neutron and gamma-ray recording detector
RU2143711C1 (en) Detector for registration of ionizing radiation
Brownell et al. Large Plastic Scintillators for Radioactivity Measurement
Palazzolo et al. A beta spectrometer for monitoring environmental matrices
Karavaeva et al. Combined composite scintillation detector for separate measurements of fast and thermal neutrons
Nagornaya et al. A highly efficient alpha, beta, gamma-spectrometer with low background