JPH0534098A - Controller for missile - Google Patents

Controller for missile

Info

Publication number
JPH0534098A
JPH0534098A JP19206391A JP19206391A JPH0534098A JP H0534098 A JPH0534098 A JP H0534098A JP 19206391 A JP19206391 A JP 19206391A JP 19206391 A JP19206391 A JP 19206391A JP H0534098 A JPH0534098 A JP H0534098A
Authority
JP
Japan
Prior art keywords
subtractor
guidance
missile
control
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19206391A
Other languages
Japanese (ja)
Other versions
JP2999023B2 (en
Inventor
Keiji Sakurai
啓司 櫻井
Osamu Nakajima
修 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19206391A priority Critical patent/JP2999023B2/en
Publication of JPH0534098A publication Critical patent/JPH0534098A/en
Application granted granted Critical
Publication of JP2999023B2 publication Critical patent/JP2999023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To control a missile so as to be capable of approaching a target linearly by a method wherein the generation of rotational speed, generated by the rotation of the missile, is prevented by a signal generated by an auxiliary guidance device, in the steering control of the missile. CONSTITUTION:A steering operating device 30 is constituted of an acceleration control filter 31, a subtractor 32, a rate control filter 33, another subtractor 34, a phase compensating filter 35 and an auxiliary guidance device 36. The auxiliary guidance device 36 generates a signal for cancelling an effect (pw) generated by the rotation of a missile and transmits it to the subtractor 34. In this case, the auxiliary guidance device generates a signal gammas obtained by subtracting the product of the roll rate Ps of sensor output by an attack angle (alpha) from a yaw rate gammas from a sensor 6 and transmits it to the subtractor 34. By this method, the generation of a rotational speed, generated by the rotation of the missile, can be prevented, the effect of (pw) is cancelled whereby the missile can approach a target linearly even though the missile is being rotated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、飛しょう体の運動制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motion control device for a flying object.

【0002】[0002]

【従来の技術】図3に従来の技術の一例としてヨー(ya
w )方向の加速度制御系を示す。図中(A)は従来のヨ
ー方向の制御系全体のブロック線図を示し、(B)は
(A)の操角演算装置3の詳細を示す。この制御系によ
りヨー舵角指命δycつまりヨー方向の指命は以下の演算
により決定される。 (1)誘導信号から求まるヨー方向加速度指命nycと現
在の飛しょう体加速度つまりセンサ出力のヨー方向加速
度nysの誤差εn を計算する。 (2)誤差εn から求まるヨーレート指命γc とセンサ
出力のヨーレートγs の誤差計算及び舵角指令ycの算
出を行なう。
2. Description of the Related Art FIG. 3 shows an example of a conventional technique.
w) Shows the acceleration control system in the direction. In the figure, (A) shows a block diagram of the entire conventional yaw direction control system, and (B) shows the details of the steering angle computing device 3 of (A). With this control system, the yaw steering angle instruction δyc, that is, the instruction in the yaw direction is determined by the following calculation. (1) An error εn between the yaw direction acceleration command nyc obtained from the guidance signal and the current flying body acceleration, that is, the yaw direction acceleration nys of the sensor output is calculated. (2) The error calculation of the yaw rate command γc obtained from the error εn and the yaw rate γs of the sensor output, and the steering angle command yc are calculated.

【0003】[0003]

【発明が解決しようとする課題】制御系を持つ飛しょう
体が機軸まわりに回転しながら目標に接近する場合、飛
しょう体のヨー方向の運動方程式は ay =Fy /m−ru+pw 但し ay ;ヨー方向加速度 Fy ;機体に働くヨー方向の力 m;機体の質量 u;X軸方向(機軸方向)の速度成分 v;Y軸方向の(ヨー方向)の速度成分 w;Z軸方向(X,Y軸に垂直)の速度成分 p;ロールレート r;ヨーレート となるが、従来の制御装置では(1)式のpw項が零に
ならない。
When a flying object having a control system approaches a target while rotating around the axis, the equation of motion of the flying object in the yaw direction is ay = Fy / m-ru + pw where ay; Directional acceleration Fy; Force in the yaw direction acting on the aircraft m; Mass of the aircraft u; Velocity component in the X-axis direction (machine direction) v; Velocity component in the Y-axis direction (yaw direction) w; Z-axis direction (X, Y) The velocity component (perpendicular to the axis) is p; roll rate is r; yaw rate, but in the conventional control device, the pw term in equation (1) does not become zero.

【0004】そのため、図4に示すように符号を定める
とpw共に正ならばヨー方向加速度ay およびヨー方向
速度vは正となり、負の旋回加速度−ny が生じること
になる。したがって飛しょう体は直線的に目標に接近す
ることができ、飛しょう時間と飛しょう距離は長くな
り、終末で誘導信号の収束が送れるなどの誘導制御上好
ましくない影響を与えるため、誘導精度は悪くなる。こ
の現象は、ピッチ方向に最大旋回加速度を発生する非対
称形状を持つ飛しょう体がその方向に目標を捕らえるた
めに回転する際、特に問題になる。本発明は前述の問題
を解決した制御装置を提供することを目的とする。
Therefore, if the signs are determined as shown in FIG. 4, if both pw are positive, the yaw direction acceleration ay and the yaw direction speed v are positive, and a negative turning acceleration -ny is generated. Therefore, the flying object can approach the target in a straight line, the flying time and the flying distance become long, and the guidance accuracy is reduced because it adversely affects the guidance control such as the convergence of the guidance signal at the end. become worse. This phenomenon becomes a particular problem when a flying object having an asymmetrical shape that generates maximum turning acceleration in the pitch direction rotates to catch a target in that direction. An object of the present invention is to provide a control device that solves the above problems.

【0005】[0005]

【課題を解決するための手段】本発明に係る飛しょう体
の制御装置は、検知装置(1)と誘導演算装置(2)と
操舵演算装置(30)と制御装置(4)を前記順に配置
した制御装置において、検知装置(1)は飛しょう体と
目標の相対運動により発生する角速度を入力して誘導信
号を誘導演算装置(2)に出力し、操舵演算装置(3
0)は誘導演算装置(2)からの加速度指令を入力する
とともにセンサ6を介して飛しょう体の加速度及び角速
度を入力し、制御装置(4)は操舵演算装置(30)か
ら操舵指令(δyc)を入力し飛しょう体を制御する装置
において、
In a flying vehicle control apparatus according to the present invention, a detection apparatus (1), a guidance calculation apparatus (2), a steering calculation apparatus (30), and a control apparatus (4) are arranged in the order described above. In the control device, the detection device (1) inputs the angular velocity generated by the relative motion of the flying object and the target, outputs a guidance signal to the guidance calculation device (2), and outputs the steering calculation device (3).
0) inputs the acceleration command from the guidance calculation device (2) and the acceleration and angular velocity of the flying object via the sensor 6, and the control device (4) receives the steering command (δyc from the steering calculation device (30). ) To control the flying object,

【0006】前記操舵演算装置(30)は加速度制御フ
ィルタ(31)と減算器(32)とレート制御フィルタ
(33)と減算器(34)と位相補償フィルタ(35)
と誘導補助装置(36)からなり、
The steering arithmetic unit (30) includes an acceleration control filter (31), a subtractor (32), a rate control filter (33), a subtractor (34) and a phase compensation filter (35).
And a guide assist device (36),

【0007】加速度制御フィルタ(31)は誘導演算装
置(2)からの出力(nyc)を入力し、減算器(32)
は加速度制御フィルタ(31)の出力(nyc)とセンサ
(6)の出力(nys)を入力し、差信号(εn =nyc−
nys)をレート制御フィルタ(33)に出力し、減算器
(34)はレート制御フィルタ(33)の出力(γc )
と誘導補助装置(36)からの出力(γs ´=γs −p
s α)との差信号(ε=γc −γs ´)を位相補償フィ
ルタ(35)に出力することを特徴とする。
The acceleration control filter (31) receives the output (nyc) from the guidance calculation device (2) and subtracts it from the subtractor (32).
Inputs the output (nyc) of the acceleration control filter (31) and the output (nys) of the sensor (6), and outputs the difference signal (εn = nyc-
nys) to the rate control filter (33), and the subtractor (34) outputs the rate control filter (33) (γ c).
And the output from the guidance assist device (36) (γs' = γs-p
The difference signal (ε = γc−γs ′) from s α) is output to the phase compensation filter (35).

【0008】[0008]

【作用】誘導補助装置36により、飛しょう体の回転で
発生する効果(pw)を打ち消すような信号を発生させ
減算器34に送る。すなわち、センサ6からのヨーレー
トγs からセンサ出力のロールレートps と迎角αの積
を引いた信号γs ´(=γs −ps α)を誘導補助装置
に発生させ減算器34に送る。
The guidance assisting device 36 generates a signal for canceling the effect (pw) generated by the rotation of the flying object and sends it to the subtractor 34. That is, a signal γs' (= γs-psα) obtained by subtracting the product of the roll rate ps of the sensor output and the angle of attack α from the yaw rate γs from the sensor 6 is generated in the guidance assisting device and sent to the subtractor 34.

【0009】そのようにすることにより、飛しょう体の
回転により生ずる旋回速度の発生を防止でき、pwの効
果は打ち消され、飛しょう体は回転しながらも直線的に
目標に接近することができる。
By doing so, it is possible to prevent the turning speed from being generated due to the rotation of the flying object, the effect of pw is canceled, and the flying object can linearly approach the target while rotating. ..

【0010】[0010]

【実施例】本発明の実施例を図1〜図2に示す。EXAMPLE An example of the present invention is shown in FIGS.

【0011】図1は本発明の実施例に係る制御系のブロ
ック線図を示し、図中(A)は本発明の制御系の全体構
成、(B)は(A)の中の演算装置30の詳細を示す。
図1(A)に示すように本発明装置は検知装置1と誘導
演算装置2と操舵装置30と制御装置4を前記順に配置
するとともに、
FIG. 1 is a block diagram of a control system according to an embodiment of the present invention. In the figure, (A) is the overall configuration of the control system of the present invention, and (B) is the arithmetic unit 30 in (A). Shows the details of.
As shown in FIG. 1A, in the device of the present invention, the detection device 1, the guidance calculation device 2, the steering device 30, and the control device 4 are arranged in the order described above, and

【0012】検知装置1は飛しょう体と目標の相対運動
により発生する角速度を入力し、誘導信号を誘導演算装
置2に出力する。操舵演算装置30は誘導演算装置2か
らの加速度指令を入力するとともにセンサ6を介して飛
しょう体の加速度及び角速度を入力し、制御装置4は操
舵演算装置30から操舵指令を入力し飛しょう体を制御
する。図1(B)は操舵演算装置30の詳細を示す。
The detection device 1 inputs the angular velocity generated by the relative motion of the flying object and the target, and outputs a guidance signal to the guidance calculation device 2. The steering calculation device 30 inputs the acceleration command from the guidance calculation device 2 and the acceleration and angular velocity of the flying object through the sensor 6, and the control device 4 inputs the steering command from the steering calculation device 30 and the flying object. To control. FIG. 1B shows the details of the steering calculation device 30.

【0013】操舵演算装置30は加速度制御フィルタ3
1と減算器32とレート制御フィルタ33と減算器34
と位相補償フィルタ35と誘導補助装置36からなり、
加速度制御フィルタ31は誘導演算装置2からの出力
(ヨー方向加速度指令nyc)を入力し、減算器32は加
速度制御フィルタ31の出力(信号nyc)とセンサ6の
出力(ヨー方向加速度nys)を入力し、差信号(εn =
nyc−nys)をレート制御フィルタ33に出力する。減
算器34はレート制御フィルタ33の出力(ヨーレート
指令γc )と誘導補助装置36からの出力(γs ´)を
入力し、差信号(ε=γc −γs ´)を位相補償フィル
タ35に出力する。位相補償フィルタ35はヨー舵角指
令δycを制御装置4に操舵指令を出力する。
The steering calculation device 30 includes an acceleration control filter 3
1, subtractor 32, rate control filter 33, and subtractor 34
And a phase compensation filter 35 and a guiding auxiliary device 36,
The acceleration control filter 31 inputs the output (yaw direction acceleration command nyc) from the guidance calculation device 2, and the subtractor 32 inputs the output of the acceleration control filter 31 (signal nyc) and the output of the sensor 6 (yaw direction acceleration nys). And the difference signal (εn =
nyc-nys) is output to the rate control filter 33. The subtractor 34 inputs the output of the rate control filter 33 (yaw rate command γc) and the output from the guidance assisting device 36 (γs '), and outputs a difference signal (ε = γc-γs') to the phase compensation filter 35. The phase compensation filter 35 outputs a yaw steering angle command δyc to the control device 4 as a steering command.

【0014】誘導補助装置36は乗算器37と減算器3
8からなり、乗算器37はセンサ6からのロールレート
出力ps と迎角αを入力し、減算器38はセンサ6から
のロールレート出力ps と、乗算器37からの出力を入
力し、差信号(γs ´=γs−ps α)を減算器34に
出力する。
The guidance assisting device 36 includes a multiplier 37 and a subtractor 3
8, the multiplier 37 receives the roll rate output ps from the sensor 6 and the angle of attack α, and the subtractor 38 receives the roll rate output ps from the sensor 6 and the output from the multiplier 37 and outputs the difference signal. (Γs ′ = γs−ps α) is output to the subtractor 34.

【0015】すなわち誘導補助装置36は(1)式のp
wの効果を打ち消すようなヨーレートγs ´(=γs −
ps α)を信号として減算器34に送るため、(1)式
のpwの効果は打ち消されることになる。図2は本発明
の制御装置を有する飛しょう体の運動例を示す。図示の
如く回転しながら目標に接近する場合、直線的に目標に
接近し衝突することができる。従って終末での誘導信号
の収束性も良く誘導精度は向上する。
That is, the guidance assisting device 36 is p in the equation (1).
A yaw rate γs' (= γs − that cancels the effect of w
Since ps α) is sent to the subtractor 34 as a signal, the effect of pw in the equation (1) is canceled. FIG. 2 shows an example of motion of a flying object having the control device of the present invention. When approaching the target while rotating as shown, the target can be linearly approached and collided. Therefore, the convergence of the guidance signal at the end is good and the guidance accuracy is improved.

【0016】[0016]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)飛しょう体の全誘導時間を短縮することができ
る。 (2)飛しょう体の飛しょうを安定させることができ
る。 (3)飛しょう体のミスデスタンス(目標からのずれ)
を減少させることができる。
Since the present invention is constructed as described above, it has the following effects. (1) It is possible to shorten the total induction time of the flying body. (2) The flight of the flying object can be stabilized. (3) Miss distance of the flying object (deviation from the target)
Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る制御系を示す図。FIG. 1 is a diagram showing a control system according to an embodiment of the present invention.

【図2】本発明の実施例に係る制御系を有する飛しょう
体の飛しょう例を示す図。
FIG. 2 is a diagram showing a flying example of a flying object having a control system according to an embodiment of the present invention.

【図3】従来の制御系の例を示す図。FIG. 3 is a diagram showing an example of a conventional control system.

【図4】従来の制御系を有する飛しょう体の飛しょう例
を示す図。
FIG. 4 is a diagram showing a flying example of a flying body having a conventional control system.

【符号の説明】[Explanation of symbols]

1…検知装置、2…誘導演算装置、3…操舵演算装置、
4…制御装置、5…飛しょう体、6…センサ、30…操
舵演算装置、31…加速度制御フィルタ、32…減算
器、33…レート制御フィルタ、34…減算器、35…
位相補償フィルタ、36…誘導補助装置、37…乗算
器、38…減算器。
1 ... Detection device, 2 ... Guidance calculation device, 3 ... Steering calculation device,
4 ... Control device, 5 ... Flying object, 6 ... Sensor, 30 ... Steering calculation device, 31 ... Acceleration control filter, 32 ... Subtractor, 33 ... Rate control filter, 34 ... Subtractor, 35 ...
Phase compensation filter, 36 ... Guidance assisting device, 37 ... Multiplier, 38 ... Subtractor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G06F 15/50 7060−5L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G06F 15/50 7060-5L

Claims (1)

【特許請求の範囲】 【請求項1】 検知装置(1)と誘導演算装置(2)と
操舵演算装置(30)と制御装置(4)を前記順に配置
した制御装置において、検知装置(1)は飛しょう体と
目標の相対運動により発生する角速度を入力して誘導信
号を誘導演算装置(2)に出力し、操舵演算装置(3
0)は誘導演算装置(2)からの加速度指令を入力する
とともにセンサ6を介して飛しょう体の加速度及び角速
度を入力し、制御装置(4)は操舵演算装置(30)か
ら操舵指令(δyc)を入力し飛しょう体を制御する装置
において、 前記操舵演算装置(30)は加速度制御フィルタ(3
1)と減算器(32)とレート制御フィルタ(33)と
減算器(34)と位相補償フィルタ(35)と誘導補助
装置(36)からなり、 加速度制御フィルタ(31)は誘導演算装置(2)から
の出力(nyc)を入力し、減算器(32)は加速度制御
フィルタ(31)の出力(nyc)とセンサ(6)の出力
(nys)を入力し、差信号(εn =nyc−nys)をレー
ト制御フィルタ(33)に出力し、減算器(34)はレ
ート制御フィルタ(33)の出力(γc )と誘導補助装
置(36)からの出力(γs ´=γs −ps α)との差
信号(ε=γc −γs ´)を位相補償フィルタ(35)
に出力することを特徴とする飛しょう体の制御装置。
Claims: What is claimed is: 1. A control device in which a detection device (1), a guidance calculation device (2), a steering calculation device (30), and a control device (4) are arranged in the order mentioned above. Inputs the angular velocity generated by the relative motion of the flying object and the target, outputs a guidance signal to the guidance calculation device (2), and outputs the steering calculation device (3
0) inputs the acceleration command from the guidance calculation device (2) and the acceleration and angular velocity of the flying object via the sensor 6, and the control device (4) receives the steering command (δyc from the steering calculation device (30). ) Is input to control the flying object, the steering operation device (30) is an acceleration control filter (3
1), a subtractor (32), a rate control filter (33), a subtractor (34), a phase compensation filter (35), and a guidance assist device (36). The acceleration control filter (31) is a guidance calculation device (2). ), The subtractor (32) receives the output (nyc) of the acceleration control filter (31) and the output (nys) of the sensor (6), and outputs the difference signal (εn = nyc-nys). ) Is output to the rate control filter (33), and the subtractor (34) outputs the output (γc) of the rate control filter (33) and the output (γs ′ = γs −ps α) from the guidance assist device (36). The difference signal (ε = γc−γs ′) is applied to the phase compensation filter (35).
A flying object control device characterized by outputting to.
JP19206391A 1991-07-31 1991-07-31 Flying object control device Expired - Fee Related JP2999023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19206391A JP2999023B2 (en) 1991-07-31 1991-07-31 Flying object control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19206391A JP2999023B2 (en) 1991-07-31 1991-07-31 Flying object control device

Publications (2)

Publication Number Publication Date
JPH0534098A true JPH0534098A (en) 1993-02-09
JP2999023B2 JP2999023B2 (en) 2000-01-17

Family

ID=16285011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19206391A Expired - Fee Related JP2999023B2 (en) 1991-07-31 1991-07-31 Flying object control device

Country Status (1)

Country Link
JP (1) JP2999023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132765B (en) * 2017-06-01 2020-04-28 烟台南山学院 Attack angle and attack time control method based on trajectory planning

Also Published As

Publication number Publication date
JP2999023B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
JPH05197423A (en) Controller for mobile body
JPH0534098A (en) Controller for missile
JP2004359002A (en) Self-controlling method and device for unmanned helicopter
JPH11105797A (en) Landing gear
JP3919911B2 (en) Azimuth and orientation reference device
JPH095105A (en) Settlement computing method during movement of inertial navigation device
JP3882282B2 (en) Flying object guidance control device
JPH07104853A (en) Automatically guided flight system for airplane
KR100207601B1 (en) Apparatus for stabilizer system using gyroscope
JPS5987513A (en) Stabilizing device in inertia space
JPH07102839B2 (en) Attitude control method by wheel of spacecraft
JP2881225B1 (en) Inertial navigation device
JP4042581B2 (en) Flying body
JPH07234722A (en) Controller for attitude of flight vehicle
JPH0761800B2 (en) Attitude control method and attitude control device for spinning machine body
JPH0761799B2 (en) Attitude control method and attitude control device for spinning machine body
JPH03248210A (en) Automatic running system for running vehicle
JPH059806B2 (en)
JPS63311115A (en) Position detector
JPH0558314A (en) Auxiliary steering device for vehicle
JPH08164898A (en) Attitude control device
JPS6124240B2 (en)
JP2573194B2 (en) 3-axis attitude control device
JPS59219700A (en) Auto-pilot for missile
Ackermann et al. Examples for Modelling of Plants with Uncertain Parameters

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

LAPS Cancellation because of no payment of annual fees