JPH05340778A - Air flowmeter - Google Patents

Air flowmeter

Info

Publication number
JPH05340778A
JPH05340778A JP4149209A JP14920992A JPH05340778A JP H05340778 A JPH05340778 A JP H05340778A JP 4149209 A JP4149209 A JP 4149209A JP 14920992 A JP14920992 A JP 14920992A JP H05340778 A JPH05340778 A JP H05340778A
Authority
JP
Japan
Prior art keywords
resistor
flow meter
heating resistors
heating
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4149209A
Other languages
Japanese (ja)
Inventor
Yoshito Sekine
義人 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4149209A priority Critical patent/JPH05340778A/en
Publication of JPH05340778A publication Critical patent/JPH05340778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce the fluctuation of the output of an air flowmeter by straightening a drift current in the direction perpendicular to a straight line along which measurement cannot be performed due to heating resistors arranged on the straight line so as to stabilize the flow velocity in the measurable area of the heating resistors. CONSTITUTION:Projecting sections 1a and 1b are formed from the internal wall surface of the main flow passage 1f of the body 1 of the flowmeter so as to constituted a throttle section 1c in the main flow passage 1f. The throttle section 1c is constituted so that the direction of the segment connecting the section 1c and resistors 2c1 and 2c2 can become parallel with the direction of the maximum width of the section 1c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱抵抗体を用いた空
気流量計に係り、特に、自動車エンジンの吸気系を構成
して、その吸入空気量を検出するのに適する内燃機関用
空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow meter using a heating resistor, and more particularly to an air flow rate for an internal combustion engine which constitutes an intake system of an automobile engine and is suitable for detecting the intake air amount thereof. Regarding the total.

【0002】[0002]

【従来の技術】内燃機関に供給される混合気の空燃比を
理論空燃比に保つことは排気ガスの清浄化、燃費の向上
のために重要である。これらを実現するには内燃機関へ
の燃料供給制御を行う必要がある。このためには、機関
への吸入空気量を正確に計測できる空気流量計が必要で
ある。
2. Description of the Related Art Maintaining an air-fuel ratio of a mixture supplied to an internal combustion engine at a stoichiometric air-fuel ratio is important for cleaning exhaust gas and improving fuel efficiency. In order to realize these, it is necessary to control the fuel supply to the internal combustion engine. For this purpose, an air flow meter that can accurately measure the intake air amount to the engine is required.

【0003】実用に耐える内燃機関用空気流量計に要求
される条件は、機関ピストンの往復動により生じる偏り
および乱れを含んだ脈動流を1対50ないし、1対10
0という広い流量範囲で使用でき、機関のバックファイ
ア等による汚損に対し、耐久性を持ち、かつ、軽量コン
パクトであり、低コストで製造できることである。
The conditions required for an air flow meter for an internal combustion engine that can withstand practical use are 1 to 50 to 1 to 10 pulsating flow including deviation and turbulence caused by reciprocating motion of an engine piston.
It can be used in a wide flow rate range of 0, has durability against contamination by engine backfire, etc., is lightweight and compact, and can be manufactured at low cost.

【0004】発熱抵抗体を使った流量計は、内燃機関へ
のマッチングが比較的容易で、出力の信号処理、すなわ
ち、空気流量への換算手続きが簡単である。小型かつ計
測精度が高く、耐久性がある等の利点を持ち、上記の用
途に適している。このような流量計は、発熱抵抗体を熱
線として使い熱線風速計の原理を用いて計測するもので
あり、以下のように動作する。
A flow meter using a heating resistor is relatively easy to match with an internal combustion engine, and output signal processing, that is, a procedure for converting to an air flow rate is simple. It has the advantages of small size, high measurement accuracy and durability, and is suitable for the above applications. Such a flow meter uses a heating resistor as a heating wire and measures using the principle of a heating wire anemometer, and operates as follows.

【0005】まず、空気流中に電気的に加熱した抵抗体
を置き、その抵抗体をブリッジ回路を構成する抵抗要素
とし、その温度を一定に保つような回路構成を与える。
このとき発熱抵抗体付近の流速変動により、発熱量に変
化を生じた場合の抵抗体両端の電圧の変化から流量を検
知する。
First, an electrically heated resistor is placed in the air flow, the resistor is used as a resistance element forming a bridge circuit, and a circuit configuration is provided to keep its temperature constant.
At this time, the flow rate is detected from the change in the voltage across the resistor when the amount of heat generated changes due to the flow velocity fluctuation near the heat generating resistor.

【0006】ブリッジ回路は、発熱抵抗体の抵抗値を一
定に保つように構成され、熱線素子は抵抗の温度依存性
の大きい白金,ニッケル等を線状,薄膜状に加工し、こ
れを単独にまたはセラミックス,ガラス,ポリイミド樹
脂などのボビンまたは、基板に巻線または接続したもの
が用いられる。内燃機関用空気流量計では、熱線抵抗体
とは独立に温度補償用の非加熱抵抗体が設置され、これ
もブリッジ回路の一抵抗要素を成している。
The bridge circuit is constructed so as to keep the resistance value of the heating resistor constant, and the heat wire element is made by processing platinum, nickel or the like, which has a large temperature dependence of resistance, into a linear or thin film shape, which is used alone. Alternatively, a bobbin of ceramics, glass, polyimide resin or the like, or one wound or connected to a substrate is used. In an air flow meter for an internal combustion engine, an unheated resistor for temperature compensation is installed independently of the heat ray resistor, and this also constitutes one resistance element of the bridge circuit.

【0007】次に、このような流量計が設置される吸気
管路内の計測条件について考える。吸気管路内の流れの
状態に注目すると、流量計の上流側で発生する流れの偏
りが流量計の計測値変動を引き起こすという問題がある
ことがわかる。流量計の上流側吸気配管系は狭いエンジ
ンルーム内に配置されるため、必然的に多数のベンド,
直角な角部をもつ。このため、吸気配管内の空気流もこ
のベンド,角部で遠心力の影響を受けて偏向し、乱れ,
渦を生じ、配管断面内の流速分布も不均一な偏った流れ
(偏流)となる。偏流の形状は、上流側配管系のレイア
ウト、流量計の回転取付け位置の違いにより異なる。偏
流の形状が異なると流量計の発熱抵抗体付近の流速も変
動し、配管内を通過する平均空気流量が一定であるにも
かかわらず、流量計の出力値も変動し、誤差を生じる。
実用に耐える空気流量計は、この出力誤差が規定された
許容値より小さく、出力値は配管内を通過する平均流量
に比例し、安定している必要がある。以降簡単のため
に、出力誤差ということばを上記の偏流によってもたら
される出力値の偏差という意味で使うことにする。
Next, let us consider the measurement conditions in the intake pipe in which such a flow meter is installed. Focusing on the state of the flow in the intake pipe, it can be seen that there is a problem that the flow deviation occurring on the upstream side of the flow meter causes fluctuations in the measured value of the flow meter. Since the upstream intake pipe system of the flow meter is arranged in a narrow engine room, it is inevitable that many bends,
Has a right angle corner. Therefore, the air flow in the intake pipe is also deflected and disturbed by the centrifugal force at the bends and corners.
Vortices are generated, and the flow velocity distribution in the cross section of the pipe also becomes nonuniform and uneven flow. The shape of the uneven flow differs depending on the layout of the upstream piping system and the rotational mounting position of the flowmeter. If the shape of the uneven flow is different, the flow velocity near the heating resistor of the flow meter also fluctuates, and the output value of the flow meter fluctuates even though the average air flow rate passing through the pipe is constant, causing an error.
For an air flow meter that can be used practically, this output error must be smaller than the specified allowable value, and the output value must be stable in proportion to the average flow rate passing through the pipe. Hereinafter, for the sake of simplicity, the term output error will be used to mean the deviation of the output value caused by the above drift.

【0008】出力誤差を低減できる空気流量計として、
実開平1−102724号,実開昭61− 195418号公報などに
記載されているように、複数の発熱抵抗体を吸気配管の
一部をなす主流路内または、主流路に分岐合流する副流
路内に設置したものがある。これらは吸気管路断面内に
複数の発熱抵抗体を設け、その検出値、すなわち、流速
情報を平均化することにより上記の出力誤差を低減しよ
うとするものである。ところで、複数の発熱抵抗体を持
つ空気流量計の場合、上述のような利点を持つ一方、製
造コストが高くなる、耐久性などの信頼性が低くなると
いう欠点を持っており、このことは流量計の量産を考え
た場合、特に問題である。
As an air flow meter capable of reducing the output error,
As described in Japanese Utility Model Laid-Open No. 1-102724 and Japanese Utility Model Laid-Open No. 61-195418, a plurality of heat-generating resistors are formed in a main flow path forming a part of the intake pipe or in a main flow path. Some are installed in the street. These are intended to reduce the above output error by providing a plurality of heating resistors in the cross section of the intake pipe line and averaging the detected values, that is, the flow velocity information. By the way, in the case of an air flow meter having a plurality of heating resistors, while having the advantages as described above, there are drawbacks that the manufacturing cost is high and the reliability such as durability is low. This is a particular problem when considering mass production of meters.

【0009】これは発熱抵抗体の個数が増えることによ
り組立て工数が増える、また各発熱抵抗体の故障率が増
える。さらに、複数の発熱抵抗体に加熱電流を供給する
必要があるため、電流供給回路の電気的耐久性を向上し
なければならないなどの問題があるからである。したが
って、量産化を考えた場合、発熱抵抗体を必要以上に多
くすることは得策ではない。したがって、量産向きの流
量計は、図4,図5に示すような二つの発熱抵抗体11
c1,11c2を持ったものが現実的である。この例の
ように二つの発熱抵抗体を持つ空気流量計の公知例は、
実開昭62−140324号の図7,図8に記載されている。
This increases the number of assembling steps due to the increase in the number of heating resistors, and also increases the failure rate of each heating resistor. Further, since it is necessary to supply the heating current to the plurality of heating resistors, there is a problem that the electrical durability of the current supply circuit must be improved. Therefore, considering mass production, it is not a good idea to increase the number of heating resistors more than necessary. Therefore, the flowmeter suitable for mass production has two heating resistors 11 as shown in FIGS.
The one with c1 and 11c2 is realistic. A known example of an air flow meter having two heating resistors like this example is:
It is described in FIGS. 7 and 8 of Japanese Utility Model Publication No. 62-140324.

【0010】ところで、二つの発熱抵抗体を使った流量
計の場合、実開平1−102724 号,実開昭61−195418号公
報のような三つの発熱抵抗体を使った流量計にはない問
題がある。これは偏流が発生している配管断面の特定の
回転取付け位置で計測値の変動量が大きくなるという問
題である。特定の回転取付け位置に計測値の変動量が大
きい場所があると、出力値は上流偏流の形状変化に容易
に影響され、変動するおそれがある。前述のように、偏
流の形状は上流側吸気配管系のレイアウトに大きく依存
しているので、これは通常的に起こる問題であり、以下
のような原因による。
By the way, in the case of a flowmeter using two heating resistors, there is a problem that does not exist in a flowmeter using three heating resistors as disclosed in Japanese Utility Model Laid-Open Nos. 1-102724 and 61-195418. There is. This is a problem that the amount of fluctuation of the measured value becomes large at a specific rotational mounting position on the section of the pipe where uneven flow occurs. If there is a place where the amount of fluctuation of the measured value is large at a specific rotary mounting position, the output value may be easily affected by the shape change of the upstream drift and may fluctuate. As described above, the shape of the non-uniform flow greatly depends on the layout of the upstream side intake piping system, so this is a problem that usually occurs, and is due to the following causes.

【0011】図4,図5、あるいは実開昭62−140324号
公報の図7,図8のように二つの発熱抵抗体を使った流
量計の場合、あるいは実開平2−71226号公報のように複
数の発熱抵抗体を直線上に配置した流量計の場合には、
実開平1−102724 号,実開昭61−195418号公報のように
三つの発熱抵抗体を平面上に配置した流量計とは異な
り、図5のように発熱抵抗体11c1,11c2は必然
的にこれらを結んだ線分EE′上のような直線上に配置
されることになる。この結果、線分EE′に垂直なF
F′方向の流速を計測できない。このとき、FF′方向
に、その流速が配管断面内の平均流速とは大きく異なる
流速域があるとすると、流量計はこの領域の流速情報を
拾うことができないので、他の回転取付け位置に比べ、
出力値が大きく変動してしまう。これは流量計に特定の
出力誤差の大きい位置があることを意味する。そして、
出力誤差の最も大きい回転取付け位置、出力誤差の大き
さ等は偏流の分布により異なり、これは配管系のレイア
ウトに依存する。
In the case of a flow meter using two heating resistors as shown in FIGS. 4 and 5 or FIGS. 7 and 8 of Japanese Utility Model Laid-Open No. 62-140324, or in Japanese Utility Model Laid-Open No. 2-71226. In the case of a flow meter in which multiple heating resistors are arranged on a straight line,
Unlike the flowmeter in which three heating resistors are arranged on a plane as in Japanese Utility Model Laid-Open No. 1-102724 and Japanese Utility Model Publication No. 61-195418, the heating resistors 11c1 and 11c2 inevitably have the heating resistors 11c1 and 11c2 as shown in FIG. They are arranged on a straight line such as the line segment EE 'that connects them. As a result, F perpendicular to the line segment EE '
The flow velocity in the F'direction cannot be measured. At this time, if there is a flow velocity region in the FF 'direction whose flow velocity is significantly different from the average flow velocity in the cross section of the pipe, the flow meter cannot pick up the flow velocity information in this region, so compared to other rotary mounting positions. ,
The output value fluctuates greatly. This means that the flowmeter has a specific position with a large output error. And
The rotational mounting position with the largest output error, the magnitude of the output error, etc. differ depending on the distribution of the drift, which depends on the layout of the piping system.

【0012】このような、出力誤差を低減する構造とし
て、図6,図7のように、発熱抵抗体50c1,50c
2の設置されている流路壁面付近に、絞り部50を設け
ることにより、断面付近の偏流を整流するものが考えら
れる。例えば、二つの発熱抵抗体を用いたものではない
が、実開平1−102724 号公報では三つの発熱抵抗体の設
置断面は最狭部となっており、実質的に絞り構造となっ
ている。
As a structure for reducing the output error, the heating resistors 50c1 and 50c are provided as shown in FIGS.
It is conceivable that the throttle portion 50 is provided in the vicinity of the wall surface of the flow path in which No. 2 is installed to rectify the drift near the cross section. For example, although the two heating resistors are not used, the installation cross section of the three heating resistors is the narrowest portion in the Japanese Utility Model Laid-Open No. 1-102724, which is substantially a diaphragm structure.

【0013】しかし、このような円形絞りは二つの発熱
抵抗体を持つ流量計のように複数の発熱抵抗体が直線上
に配置された流量計の場合に最適であるとはいえない。
すなわち、図6,図7の円形絞り部50では、空気はす
べての直径方向に均一に絞られるため、発熱抵抗体50
c1,50c2を結んだ線分GG′方向には整流が十分
行われても、これに垂直なHH′方向の整流は不十分で
あり、上流の流速分布の偏りが大きいと、流量計の出力
誤差が十分低減されないことが起こる。もちろん、絞り
比(絞りの入口断面積の出口断面積に対する比)を十分
大きくとれば整流は行えるが、絞り比を大きくすると圧
損も大きくなり、これは機関出力を下げる原因になり実
用的でない。
However, such a circular diaphragm is not optimal in the case of a flowmeter in which a plurality of heating resistors are arranged in a straight line, such as a flowmeter having two heating resistors.
That is, in the circular throttle portion 50 of FIGS. 6 and 7, since the air is uniformly throttled in all diametrical directions, the heating resistor 50
Even if rectification is sufficiently performed in the direction of the line segment GG 'connecting c1 and 50c2, rectification in the HH' direction perpendicular to this is insufficient, and if the deviation of the upstream flow velocity distribution is large, the output of the flow meter It happens that the error is not reduced enough. Of course, if the throttle ratio (ratio of the inlet cross-sectional area of the throttle to the outlet cross-sectional area) is made sufficiently large, rectification can be performed, but if the throttle ratio is increased, the pressure loss also increases, which causes a reduction in engine output and is not practical.

【0014】したがって、圧損が円形絞り以下であり、
かつ、複数の発熱抵抗体を直線上に配置した流量計に適
した絞り構造が必要である。
Therefore, the pressure loss is equal to or less than the circular diaphragm,
Moreover, a throttle structure suitable for a flow meter in which a plurality of heating resistors are arranged in a straight line is required.

【0015】[0015]

【発明が解決しようとする課題】上記のように従来、複
数の発熱抵抗体をもつ流量計では、発熱抵抗体が直線上
に配置されている場合を考慮していなかった。このた
め、発熱抵抗体付近の通路形状が、流れを整流するのに
適した形状になっていなかった。これにより、整流効果
が十分でなく、流量計の出力誤差が大きいという問題が
あった。
As described above, in the conventional flowmeter having a plurality of heating resistors, the case where the heating resistors are arranged in a straight line has not been taken into consideration. Therefore, the shape of the passage in the vicinity of the heating resistor has not been a shape suitable for rectifying the flow. As a result, there is a problem that the rectification effect is not sufficient and the output error of the flowmeter is large.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、吸気通路を構成する主流路と、吸入空気
を計測し、直線上に配置された複数の発熱抵抗体よりな
る空気流量計において、複数の発熱抵抗体設置断面を含
む区間に絞りを設け、その絞りの最大幅の方向に複数の
発熱抵抗体を結んだ線分が並行するようにする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an air comprising a main flow path forming an intake passage and a plurality of heating resistors arranged in a straight line for measuring intake air. In the flowmeter, a throttle is provided in a section including a plurality of heating resistor installation sections, and line segments connecting the plurality of heating resistors are arranged in parallel in the direction of the maximum width of the throttle.

【0017】[0017]

【作用】直線上に配置された複数の発熱抵抗体を含む区
間に絞りを設け、その最大幅の方向に複数の発熱抵抗体
を結んだ線分が並行するようにすることにより、複数の
発熱抵抗体を結んだ線分に垂直な方向の縮流を選択的に
行える。
With the provision of a diaphragm in a section including a plurality of heating resistors arranged on a straight line, and the line segments connecting the plurality of heating resistors are arranged in parallel in the direction of the maximum width, a plurality of heat generating elements are generated. A contraction flow in a direction perpendicular to the line segment connecting the resistors can be selectively performed.

【0018】すなわち、線分に垂直な、発熱抵抗体の設
置されていない領域を高い縮流比で縮流することができ
る。これにより、発熱抵抗体の設置されていない部分の
低流速域,高流速域を効果的に整流できる。この結果、
上流側流速の分布状況にかかわらず、出力誤差が小さい
空気流量計を実現できる。
That is, the region perpendicular to the line segment where the heating resistor is not installed can be contracted with a high contraction ratio. As a result, it is possible to effectively rectify the low flow velocity region and the high flow velocity region in the portion where the heating resistor is not installed. As a result,
An air flow meter with a small output error can be realized regardless of the upstream flow velocity distribution.

【0019】[0019]

【実施例】以下、本発明の第一の実施例を図1ないし図
3を使って説明する。図1は空気流量計の絞りを含む主
流軸線での断面図、図2は空気流量計のI−I矢視図、
図3は空気流量計の発熱抵抗体を含む主流軸線での断面
図である。図1,図3に示すように以降各図で白抜きの
矢印は空気流を表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view taken along the mainstream axis including the throttle of the air flow meter, FIG.
FIG. 3 is a sectional view taken along the mainstream axis including the heating resistor of the air flow meter. As shown in FIGS. 1 and 3, in each of the following drawings, a white arrow represents an air flow.

【0020】空気は流量計入口1dより流入し、整流格
子3,絞り部1c,抵抗体ホルダ2a内外付近を通過し、
流量計出口1eへ流出する。流量計入口1dにはめこま
れている整流格子3は上流側で発生した旋回流を低減す
るためのものである。
Air flows in from the flow meter inlet 1d, passes through the rectifying grid 3, the throttle portion 1c, the inside and outside of the resistor holder 2a,
It flows out to the flow meter outlet 1e. The rectifying grid 3 fitted in the flow meter inlet 1d is for reducing the swirling flow generated on the upstream side.

【0021】ダイキャスト一体成型により形成した流量
計ボディ1には、回路モジュール2が、空気漏れを防ぐ
ためのオーリング4を介して挿入され、ねじ止めにより
固定されている。回路モジュール2は計測回路を納めた
回路ケース2fと、計測部を成す、発熱抵抗体2c1,
2c2,温度補償用抵抗体2d1を流量計の主流路1f
中に突出させて設置するための抵抗体ホルダ2aより成
っているが、このように2fと2aを一体化することに
より、流量計全体を組立てやすくできる。抵抗体ホルダ
2aは抵抗体を主流路中に支持するだけでなく、回路モ
ジュール2を運搬する際や、回路モジュール2を流量計
ボディ1に挿入する際、発熱抵抗体2c1,2c2と温
度補償用抵抗体2d1が衝撃を受けて破損しないように
保護する機能も持っている。
A circuit module 2 is inserted into a flowmeter body 1 formed by die-cast integral molding via an O-ring 4 for preventing air leakage, and is fixed by screwing. The circuit module 2 includes a circuit case 2f accommodating a measuring circuit, and a heating resistor 2c1, which constitutes a measuring unit.
2c2, temperature compensating resistor 2d1 to the main flow path 1f of the flow meter
Although the resistor holder 2a is provided so as to project inside, the resistor holder 2a is integrated. By thus integrating 2f and 2a, the entire flow meter can be easily assembled. The resistor holder 2a not only supports the resistor in the main flow path, but also when the circuit module 2 is transported or when the circuit module 2 is inserted into the flowmeter body 1, the resistor holders 2c1 and 2c2 and the temperature compensator are used for temperature compensation. It also has a function of protecting the resistor 2d1 from being damaged by an impact.

【0022】抵抗体ホルダ2aには、スリット状入口2
eが形成してあり、その内部には、発熱抵抗体2c1,
2c2に発熱電流を供給するための、電気極性の異なる
ピン2b1,2b2が架橋されている。さらに発熱抵抗
体2c1,2c2はピン2b1,2b2にスポット溶接
により、はしごの横木状に接続,固定してあり、ピン2
b1,2b2は抵抗体の支持体を兼ねている。また、抵
抗体ホルダ2a内にはピン2b3,2b4が突出させて
あり、これには温度補償用抵抗体2d1がスポット溶接
により固定してある。
The slit-shaped inlet 2 is provided in the resistor holder 2a.
e is formed, and the heating resistor 2c1,
Pins 2b1 and 2b2 having different electric polarities for supplying a heating current to 2c2 are bridged. Furthermore, the heating resistors 2c1 and 2c2 are connected and fixed to the pins 2b1 and 2b2 by spot welding in the shape of a ladder of the ladder.
b1 and b2 also serve as supports for the resistors. Further, pins 2b3 and 2b4 are projected in the resistor holder 2a, and the temperature compensating resistor 2d1 is fixed thereto by spot welding.

【0023】本実施例では、発熱抵抗体2c1,2c2
の設置位置は、互いに他方の発熱抵抗体の影響を避ける
ことができ、かつ、各々が独立した流速情報が得られる
ように、絞りの最大幅の中心から、最大幅の二分の一の
距離だけ離してある。
In this embodiment, the heating resistors 2c1 and 2c2 are provided.
The installation position of is only one half of the maximum width from the center of the maximum width of the throttle so that the influence of the other heating resistor can be avoided and each can obtain independent flow velocity information. Separated.

【0024】流量計ボディ1の主流路1fには、ボディ
内壁面からの突出部1a,1bが形成してあり、これら
により主流路に絞り部1cを構成してある。絞りは偏流
を整流するための流体要素として、一般的に使われてい
るが、本実施例の場合には二つの発熱抵抗体が直線上に
配置されていることを考慮して、図2に示すように、絞
り部1cと二つの発熱抵抗体2c1,2c2を結んだ線
分AA′の方向が、絞り部1cの横長断面の最大幅B
B′の方向に並行するように構成してある。
The main flow path 1f of the flowmeter body 1 is formed with protrusions 1a and 1b from the inner wall surface of the body, and these form a throttle portion 1c in the main flow path. The throttle is generally used as a fluid element for rectifying the non-uniform flow, but in the case of the present embodiment, in consideration of the fact that the two heating resistors are arranged on a straight line, FIG. As shown, the direction of the line segment AA 'connecting the narrowed portion 1c and the two heating resistors 2c1 and 2c2 is such that the maximum width B of the laterally long cross section of the narrowed portion 1c.
It is constructed so as to be parallel to the direction of B '.

【0025】本実施例の場合の絞りの整流効果を考え
る。主流路は図1に示した断面内で、通路幅が減少して
いくため、空気は絞り部を通過するにしたがい、壁から
の抗力を受けて、主としてこの断面内でAA′方向に垂
直なCC′方向を主流路の中心向きに移動する。これに
より主流軸方向の流速が増加し、主にCC′に平行な方
向の流速の偏りを整流できる。この絞り構造では線分A
A′方向の偏流分布を効果的に整流することはできない
が、AA′方向には、二つの発熱抵抗体が設置してあ
り、計測値の平均化ができるので、流量計全体の偏流に
よる計測誤差は小さくできる。
Consider the rectification effect of the diaphragm in this embodiment. In the cross section shown in FIG. 1, the width of the main flow passage decreases, so as the air passes through the constriction, the air receives the drag force from the wall and is mainly perpendicular to the AA 'direction in this cross section. The CC ′ direction is moved toward the center of the main flow path. As a result, the flow velocity in the mainstream axis direction increases, and the flow velocity deviation mainly in the direction parallel to CC 'can be rectified. Line segment A in this diaphragm structure
Although it is not possible to effectively rectify the drift distribution in the A'direction, two heating resistors are installed in the AA 'direction, and the measured values can be averaged. The error can be reduced.

【0026】本実施例の場合、縮流を一方向に選択的に
行うだけで良く、円形絞りの場合のように、すべての直
径方向に縮流を行う必要がない。このため、絞りの最小
断面積を円形絞りの場合よりも大きくすることができる
が、絞りの最小断面積は大きいほど圧損は小さい。この
ため結果的に、流量計の出力誤差を所要なレベルに抑え
るのに必要な圧力損失を、円形絞りを使う場合に比べて
小さくすることができる。
In the case of the present embodiment, it is only necessary to selectively perform the contraction in one direction, and it is not necessary to perform the contraction in all the diametrical directions as in the case of the circular throttle. Therefore, the minimum sectional area of the diaphragm can be made larger than that of the circular diaphragm, but the larger the minimum sectional area of the diaphragm, the smaller the pressure loss. As a result, the pressure loss required for suppressing the output error of the flowmeter to a required level can be reduced as compared with the case where the circular throttle is used.

【0027】本発明の第二の実施例を図8ないし図10
に示す。本実施例の場合、第一の実施例とは異なり、流
量計ボディは流入管5,回路モジュール6,流出管7の
三つの流路要素をねじ止めして組み合わせる。流入管5
と回路モジュール6の間には、旋回流除去のための整流
格子3が組み込んであり、流入管5は整流格子3を回路
モジュール6との間にはさみこんで固定する役目を兼ね
る。回路モジュール6には、主流路に突出する、突出部
6a1,突出部6a2が形成してあり、これと流入管
5,流出管7を組み合わせることにより、全体として絞
り部6aを構成している。絞り部6aは第一の実施例と
同様の整流効果を持つ。本実施例のように、絞り部6a
を主流路とは別体に構成し、交換可能とすることによ
り、上流側偏流の流速分布状態に応じて、それを整流す
る最適な絞り形状を選べるようにできる。
The second embodiment of the present invention is shown in FIGS.
Shown in. In the case of the present embodiment, unlike the first embodiment, the flowmeter body is assembled by screwing the three flow path elements of the inflow pipe 5, the circuit module 6, and the outflow pipe 7. Inflow pipe 5
A rectifying grid 3 for removing the swirling flow is incorporated between the circuit module 6 and the circuit module 6, and the inflow pipe 5 also serves to sandwich and fix the rectifying grid 3 with the circuit module 6. The circuit module 6 is formed with projecting portions 6a1 and 6a2 projecting into the main flow path, and by combining this with the inflow pipe 5 and the outflow pipe 7, the throttle portion 6a is configured as a whole. The throttle portion 6a has the same rectifying effect as in the first embodiment. As in the present embodiment, the narrowed portion 6a
By making the main flow path separate from the main flow path and making it replaceable, it is possible to select an optimum throttle shape that rectifies the flow path depending on the flow velocity distribution state of the upstream side uneven flow.

【0028】本実施例の場合、発熱抵抗体6c1がピン
6b1,6b2に、発熱抵抗体6c2がピン6b3,6b
4に、温度補償用抵抗体6d1がピン6b5,6b6に
スポット溶接されていることなど、発熱抵抗体の固定は
第一の実施例と同様であるが、発熱抵抗体6c1,6c
2、温度補償用抵抗体6d1の設置方向が第一の実施例
とは異なる。すなわち、本実施例では発熱抵抗体6c
1,6c2、温度補償用抵抗体6d1の長手方向が、絞
りの最大幅に並行するDD′方向に設置してある。発熱
抵抗体をこのような方向に設置すると、抵抗体のDD′
方向の投影長さが大きくなり、第一の実施例に比べて広
い範囲でDD′方向の流速分布の平均化を行うことがで
きるようになるため、結果として、出力誤差が小さくな
る。
In the case of this embodiment, the heating resistor 6c1 is connected to the pins 6b1 and 6b2, and the heating resistor 6c2 is connected to the pins 6b3 and 6b.
4, the temperature compensating resistor 6d1 is spot-welded to the pins 6b5, 6b6. The fixing of the heating resistor is the same as in the first embodiment, but the heating resistors 6c1 and 6c are used.
2. The installation direction of the temperature compensating resistor 6d1 is different from that of the first embodiment. That is, in this embodiment, the heating resistor 6c
1, 6c2 and the temperature compensating resistor 6d1 are arranged in the DD 'direction parallel to the maximum width of the diaphragm. If the heating resistor is installed in such a direction, DD ′ of the resistor is
Since the projection length in the direction becomes large and the flow velocity distribution in the DD ′ direction can be averaged over a wider range than in the first embodiment, as a result, the output error becomes smaller.

【0029】本発明の第三の実施例を図11ないし図1
3に示す。本実施例では、流量計ボディ8,突出部8
a,8b,絞り部8cの構造,回路モジュール9,抵抗
体ホルダ9aの外形,温度補償用抵抗体9d1の設置方
法などは第一の実施例と同様であるが発熱抵抗体が異な
っている。
A third embodiment of the present invention is shown in FIGS.
3 shows. In this embodiment, the flowmeter body 8 and the protruding portion 8
The structure of a, 8b, the narrowed portion 8c, the circuit module 9, the outer shape of the resistor holder 9a, the method of installing the temperature compensating resistor 9d1 and the like are the same as those in the first embodiment, but the heating resistors are different.

【0030】本実施例の場合、発熱抵抗体は板状発熱抵
抗体9c1,9c2を抵抗体基板9c上に接続し、さら
にこの抵抗体基板9cを抵抗体ホルダ9a内に架橋して
保持している。抵抗体基板9cの材質には、耐熱性の良
いセラミックス,ガラス,ポリイミド樹脂等を使う。抵
抗体ホルダ9aは第一の実施例の場合と同様に、発熱抵
抗体9c1,9c2および温度補償用抵抗体9d1を保
護する機能を持っている。
In the case of the present embodiment, the heating resistors are formed by connecting the plate-shaped heating resistors 9c1 and 9c2 on the resistor substrate 9c, and further by bridging and holding the resistor substrate 9c in the resistor holder 9a. There is. As the material of the resistor substrate 9c, ceramics, glass, polyimide resin or the like having good heat resistance is used. The resistor holder 9a has a function of protecting the heating resistors 9c1 and 9c2 and the temperature compensating resistor 9d1 as in the case of the first embodiment.

【0031】本実施例の場合にも板状発熱抵抗体の接続
の方向は、第二の実施例と同様に9c1,9c2の長手
方向が、絞りの最大幅の方向に並行するように取り付け
てある。このため、第二の実施例と同様に流速の平均化
の効果を高めることにより、流量計の出力誤差を小さく
することができる。
Also in the case of this embodiment, the plate-shaped heating resistors are connected so that the longitudinal directions of 9c1 and 9c2 are parallel to the direction of the maximum width of the diaphragm, as in the second embodiment. is there. Therefore, the output error of the flowmeter can be reduced by enhancing the effect of averaging the flow velocity as in the second embodiment.

【0032】本発明の第四の実施例を図14ないし図1
6に示す。本実施例では、流量計ボディの絞り部8cの
構造,整流効果などは、第一および第三の実施例と同様
であるが、本実施例の場合、計測部すなわち、抵抗体ホ
ルダ90aの構造と構成が異なっている。
The fourth embodiment of the present invention is shown in FIGS.
6 shows. In this embodiment, the structure of the throttle portion 8c of the flow meter body, the rectification effect, and the like are the same as those in the first and third embodiments, but in the case of this embodiment, the structure of the measuring unit, that is, the resistor holder 90a. And the composition is different.

【0033】抵抗体ホルダ90a内には、長方形状の発
熱抵抗体90c1と、温度補償用抵抗体90d1が突出
させてあるが、抵抗体ホルダ90aは発熱抵抗体90c
1、温度補償用抵抗体90d1の支持と保護だけでな
く、発熱抵抗体90c1付近を流れる空気の整流管路の
働きもする。抵抗体ホルダ90aのスリット状入口90e
は、円弧状に形成され、全体としてベルマウス14aと
なっているので、ホルダ内通路14を通過する流れは縮
流され整流できる。
Although a rectangular heating resistor 90c1 and a temperature compensating resistor 90d1 are projected in the resistor holder 90a, the resistor holder 90a has a heating resistor 90c.
1. In addition to supporting and protecting the temperature compensating resistor 90d1, it also functions as a rectifying conduit for the air flowing near the heating resistor 90c1. Slit-shaped entrance 90e of resistor holder 90a
Is formed in an arc shape and is a bell mouth 14a as a whole, so that the flow passing through the holder internal passage 14 can be contracted and rectified.

【0034】本実施例の場合、複数の発熱抵抗体を使わ
ず、単一の発熱抵抗体90c1を使っているが、90c
1は長方形状をしているので、複数の発熱抵抗体が直線
上に設置された場合と同様の欠点を持つ。本実施例で
も、これを対策するため、発熱抵抗体90c1は、その
長手方向が絞り部8cの最大幅の方向に並行するように
設置してある。
In this embodiment, a single heating resistor 90c1 is used instead of a plurality of heating resistors.
Since 1 has a rectangular shape, it has the same drawback as when a plurality of heating resistors are installed on a straight line. Also in this embodiment, in order to prevent this, the heating resistor 90c1 is installed so that its longitudinal direction is parallel to the direction of the maximum width of the narrowed portion 8c.

【0035】本発明の第五の実施例を図17ないし図1
9に示す。本実施例は、通路内壁に絞り構造を形成する
ことなく、より簡単な構造で整流効果を行おうとするも
のである。本実施例の場合には、整流を行うために、絞
りを使う代わりに、円形板に楕円形の孔をあけて製作し
たオリフィス板13を使っており、オリフィス板13
は、流入管10と回路モジュール11の間の整流格子3
の上流側に重ねて設置してある。
The fifth embodiment of the present invention is shown in FIGS.
9 shows. The present embodiment is intended to achieve a rectifying effect with a simpler structure without forming a throttle structure on the inner wall of the passage. In the case of this embodiment, in order to perform rectification, instead of using a diaphragm, an orifice plate 13 made by making an elliptical hole in a circular plate is used.
Is a rectifying grid 3 between the inlet pipe 10 and the circuit module 11.
It is installed on the upstream side of.

【0036】このように整流格子3をオリフィス板13
に密着させて設置するのは、V1 ,V2 の付近に渦が発
生するのを防ぐことにより、圧損を小さくするためであ
る。
In this way, the rectifying grid 3 is attached to the orifice plate 13
The reason why it is installed in close contact with is to prevent the generation of vortices in the vicinity of V 1 and V 2 to reduce the pressure loss.

【0037】本実施例の場合にも第一ないし第三の実施
例と同じように、絞りの整流効果を有効に利用して、二
つの発熱抵抗体11c1,11c2の平均化効果を高め
るために、発熱抵抗体11c1,11c2を結んだ線分
が、楕円形オリフィス孔13aの長軸方向、すなわち、最
大幅の方向に並行するように設置してある。
In the case of the present embodiment as well, as in the first to third embodiments, in order to effectively utilize the rectification effect of the diaphragm, to enhance the averaging effect of the two heating resistors 11c1 and 11c2. The line segment connecting the heating resistors 11c1 and 11c2 is installed so as to be parallel to the major axis direction of the elliptical orifice hole 13a, that is, the direction of the maximum width.

【0038】本実施例の場合、オリフィス構造を用いて
いるので、第一ないし第三の実施例に比べて圧損が、大
きくなるという欠点があるが、オリフィス板13は比較
的容易に製作でき、交換も簡単なので、上流側の偏流の
分布に応じて整流効果の最適な孔形状または孔寸法のオ
リフィス板を使用できるという利点を持つ。
In the case of this embodiment, since the orifice structure is used, there is a drawback that the pressure loss becomes large as compared with the first to third embodiments, but the orifice plate 13 can be manufactured relatively easily. Since the replacement is easy, there is an advantage that an orifice plate having a hole shape or hole size with an optimum rectifying effect can be used according to the distribution of the non-uniform flow on the upstream side.

【0039】図20は、本発明の内燃機関用空気流量計
を適用した吸気制御系のシステム構成図である。白抜き
の矢印で示される空気はエアクリーナ103内のエアフ
ィルタ103aを通過した後、吸気ベンド管104,空
気流量計ボディ1,スロットルボディ112,吸気マニ
ホールド101を通ってエンジンピストン内に吸入され
る。回路モジュール2は吸気流量に対応した出力をす
る。
FIG. 20 is a system configuration diagram of an intake control system to which the air flow meter for an internal combustion engine of the present invention is applied. The air indicated by the white arrow passes through the air filter 103a in the air cleaner 103, and then is sucked into the engine piston through the intake bend pipe 104, the air flow meter body 1, the throttle body 112, and the intake manifold 101. The circuit module 2 produces an output corresponding to the intake flow rate.

【0040】空気流量計ボディ1の下流側に設置された
スロットルバルブ113は、アクセルペダルに連動し、
吸入空気量の制御を行う。スロットルバルブ113に取
り付けられたアイドルスピードコントロール(ISC)
バルブ114は、スロットルバルブ113全閉時におけ
る空気流量の制御を行う。黒い矢印は燃料の流れを示
す。燃料タンク105より、燃料噴射ポンプ106によ
り吸入された燃料はインジェクタ107により吸気マニ
ホールド101内に噴射され、空気流量計1を通過して
きた空気に混合し、エンジン100内に吸入される。
The throttle valve 113 installed on the downstream side of the air flow meter body 1 is interlocked with the accelerator pedal,
Controls the intake air amount. Idle speed control (ISC) attached to the throttle valve 113
The valve 114 controls the air flow rate when the throttle valve 113 is fully closed. Black arrows show the flow of fuel. The fuel sucked from the fuel injection pump 106 from the fuel tank 105 is injected into the intake manifold 101 by the injector 107, mixed with the air passing through the air flow meter 1, and sucked into the engine 100.

【0041】コントロールユニット110は回路モジュ
ール2の出力、スロットルバルブ113の回転角を示す
信号出力、排気マニホールド111内に設置された酸素
濃度センサ108の出力、機関の回転速度センサ109
の信号出力をもとに燃料噴射量、ISCバルブ開度を演
算する装置であり、この結果をもとにしてインジェクタ
107、ISCバルブ114が制御される。
The control unit 110 outputs the output of the circuit module 2, the signal output indicating the rotation angle of the throttle valve 113, the output of the oxygen concentration sensor 108 installed in the exhaust manifold 111, and the engine speed sensor 109.
Is a device for calculating the fuel injection amount and the ISC valve opening degree based on the signal output of 1. The injector 107 and the ISC valve 114 are controlled based on these results.

【0042】[0042]

【発明の効果】発熱抵抗体が直線上に配置されているた
めに計測できない、その直線に垂直な方向の偏流が整流
できる。これにより、発熱抵抗体で計測できる領域の流
速も安定化し、流量計出力の変動も低減する。
As described above, since the heating resistors are arranged on a straight line, it is possible to rectify a drift in a direction perpendicular to the straight line, which cannot be measured. As a result, the flow velocity in the region that can be measured by the heating resistor is also stabilized, and fluctuations in the flowmeter output are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の空気流量計を絞りを含
む主流軸線で切った断面図。
FIG. 1 is a sectional view of an air flow meter according to a first embodiment of the present invention taken along the mainstream axis including a throttle.

【図2】本発明の第一の実施例の空気流量計のI−I矢
視図。
FIG. 2 is an I-I arrow view of the air flow meter according to the first embodiment of the present invention.

【図3】本発明の第一の実施例の空気流量計を発熱抵抗
体を含む主流軸線で切った断面図。
FIG. 3 is a cross-sectional view of the air flow meter according to the first embodiment of the present invention, taken along the mainstream axis including the heating resistor.

【図4】二つの発熱抵抗体を使った、空気流量計の従来
例を発熱抵抗体を含む主流軸線で切った断面図。
FIG. 4 is a cross-sectional view of a conventional example of an air flow meter using two heating resistors, taken along the mainstream axis including the heating resistors.

【図5】図4のII−II矢視図。5 is a view taken along the line II-II in FIG.

【図6】二つの発熱抵抗体をもち円形絞りを備えた、空
気流量計の従来例を発熱抵抗体を含む主流軸線で切った
断面図。
FIG. 6 is a cross-sectional view of a conventional example of an air flow meter having two heating resistors and a circular diaphragm, taken along the mainstream axis including the heating resistors.

【図7】図6のIII−III矢視図。7 is a view taken along the line III-III in FIG.

【図8】本発明の第二の実施例の空気流量計の絞りを含
む主流軸線で切った断面図。
FIG. 8 is a sectional view taken along the mainstream axis including a throttle of an air flow meter according to a second embodiment of the present invention.

【図9】本発明の第二の実施例の空気流量計のIV−IV矢
視図。
FIG. 9 is an IV-IV arrow view of the air flow meter according to the second embodiment of the present invention.

【図10】図6と垂直な方向の主流軸線で切った断面
図。
FIG. 10 is a cross-sectional view taken along a mainstream axis line in a direction perpendicular to FIG.

【図11】本発明の第三の実施例の空気流量計を絞りを
含む主流軸線で切った断面図。
FIG. 11 is a cross-sectional view of the air flow meter of the third embodiment of the present invention taken along the mainstream axis including the throttle.

【図12】本発明の第三の実施例の空気流量計のV−V
矢視図。
FIG. 12 is a view showing the VV of the air flow meter according to the third embodiment of the present invention.
View from the arrow.

【図13】本発明の第三の実施例の空気流量計を発熱抵
抗体を含む主流軸線で切った断面図。
FIG. 13 is a cross-sectional view of the air flow meter according to the third embodiment of the present invention taken along the mainstream axis including the heating resistor.

【図14】本発明の第四の実施例の空気流量計を絞りを
含む主流軸線で切った断面図。
FIG. 14 is a sectional view of the air flow meter according to the fourth embodiment of the present invention, taken along the mainstream axis including the throttle.

【図15】本発明の第四の実施例の空気流量計のVI−VI
矢視図。
FIG. 15 is a VI-VI of the air flow meter according to the fourth embodiment of the present invention.
View from the arrow.

【図16】本発明の第四の実施例の空気流量計を発熱抵
抗体を含む主流軸線で切った断面図。
FIG. 16 is a cross-sectional view of the air flow meter according to the fourth embodiment of the present invention taken along the mainstream axis including the heating resistor.

【図17】本発明の第五の実施例の空気流量計の絞りを
含む主流軸線で切った断面図。
FIG. 17 is a sectional view taken along the mainstream axis including a throttle of an air flow meter according to a fifth embodiment of the present invention.

【図18】本発明の第五の実施例の空気流量計のVII−V
II矢視図。
FIG. 18 is a VII-V of the air flow meter of the fifth embodiment of the present invention.
II arrow view.

【図19】本発明の第五の実施例の空気流量計を発熱抵
抗体を含む主流軸線で切った断面図。
FIG. 19 is a cross-sectional view of the air flow meter of the fifth embodiment of the present invention taken along the mainstream axis including the heating resistor.

【図20】本発明の流量測定装置を搭載した内燃機関の
吸気系の系統図。
FIG. 20 is a system diagram of an intake system of an internal combustion engine equipped with the flow rate measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1…流量計ボディ、1a,1b…突出部、1d…流量計
入口、1c…絞り部、1e…流量計出口、1f…主流
路、2…回路モジュール、2a…抵抗体ホルダ、2e…
スリット状入口、2b1,2b2,2b3,2b4…ピ
ン…ピン、2c1,2c2…発熱抵抗体、2d1…温度
補償用抵抗体、2f…回路ケース、3…整流格子。
DESCRIPTION OF SYMBOLS 1 ... Flowmeter body, 1a, 1b ... Projection part, 1d ... Flowmeter inlet, 1c ... Throttling part, 1e ... Flowmeter outlet, 1f ... Main channel, 2 ... Circuit module, 2a ... Resistor holder, 2e ...
Slit-shaped inlets, 2b1, 2b2, 2b3, 2b4 ... Pins ... Pins, 2c1, 2c2 ... Heating resistors, 2d1 ... Temperature compensation resistors, 2f ... Circuit case, 3 ... Rectifying grid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸入空気の流路を構成する主流路と、前記
吸入空気を計測する複数の発熱抵抗体と、前記発熱抵抗
体の設置位置を含む区間の主流路の内壁に長軸と短軸を
有する絞りを備えた空気流量計において、前記発熱抵抗
体を前記長軸の方向の直線上に配置したことを特徴とす
る空気流量計。
1. A main axis forming a flow path for intake air, a plurality of heat generating resistors for measuring the intake air, and a long axis and a short axis on an inner wall of the main flow path in a section including an installation position of the heat generating resistors. An air flow meter provided with a throttle having an axis, wherein the heating resistor is arranged on a straight line in the direction of the long axis.
JP4149209A 1992-06-09 1992-06-09 Air flowmeter Pending JPH05340778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149209A JPH05340778A (en) 1992-06-09 1992-06-09 Air flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149209A JPH05340778A (en) 1992-06-09 1992-06-09 Air flowmeter

Publications (1)

Publication Number Publication Date
JPH05340778A true JPH05340778A (en) 1993-12-21

Family

ID=15470225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149209A Pending JPH05340778A (en) 1992-06-09 1992-06-09 Air flowmeter

Country Status (1)

Country Link
JP (1) JPH05340778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240775B1 (en) 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
US6776036B2 (en) 2001-10-11 2004-08-17 Vistoen Global Technologies, Inc. Fluid flow meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240775B1 (en) 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
DE19852015B4 (en) * 1998-05-11 2010-09-23 Mitsubishi Denki K.K. Flow rate sensor
US6776036B2 (en) 2001-10-11 2004-08-17 Vistoen Global Technologies, Inc. Fluid flow meter

Similar Documents

Publication Publication Date Title
KR100402728B1 (en) Heating resistance flow measurement device and internal combustion engine control system using the same
EP0023970B1 (en) Air flow meter
JP3783896B2 (en) Air flow measurement device
JPH0330091B2 (en)
JP2002333347A (en) Distributary flow meter
JPH0256611B2 (en)
EP0054887B1 (en) Air flow meter assembly
JPH085430A (en) Thermal type flow meter
JP4752472B2 (en) Air flow measurement device
US6189379B1 (en) Thermal type air flow measuring instrument for internal combustion engine
US6612167B2 (en) Air flow meter having turbulence reduction member
KR100313648B1 (en) Measuring element for flow measuring device of flow medium
JP2857787B2 (en) Thermal air flow meter and internal combustion engine equipped with the flow meter
JPH07103797A (en) Heat ray type measuring instrument for air flow rate
JP7122462B2 (en) physical quantity detector
JP2001004420A (en) Measuring apparatus of flow rate and flow velocity
JPH05340778A (en) Air flowmeter
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
WO2020003808A1 (en) Physical quantity detector
JPH06288805A (en) Air flowmeter
JPH08297039A (en) Heating element type air flow measuring apparatus
JP2004029033A (en) Flow rate and velocity measurement device
JPS58111720A (en) Air intake structure of internal combustion engine
US20210396561A1 (en) Physical quantity measurement device
JP2001033288A (en) Air flow rate measuring device