JPH05340656A - Natural circulation type thermosiphon - Google Patents

Natural circulation type thermosiphon

Info

Publication number
JPH05340656A
JPH05340656A JP14945792A JP14945792A JPH05340656A JP H05340656 A JPH05340656 A JP H05340656A JP 14945792 A JP14945792 A JP 14945792A JP 14945792 A JP14945792 A JP 14945792A JP H05340656 A JPH05340656 A JP H05340656A
Authority
JP
Japan
Prior art keywords
heat
boiling
refrigerant
heat transfer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14945792A
Other languages
Japanese (ja)
Inventor
Koji Kashima
弘次 鹿島
Keiichi Shiromoto
恵一 城本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP14945792A priority Critical patent/JPH05340656A/en
Publication of JPH05340656A publication Critical patent/JPH05340656A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

PURPOSE:To improve heat transfer characteristics at a boiling portion in a thermosiphon to be used for a heat radiator and the like of an electronically cooling refrigerator by providing a heat radiating block contacting with a heating source on the periphery of the boiling portion so as to be in contact with the boiling portion and providing the boiling portion in the heat radiating block in such a manner as to be inclined. CONSTITUTION:An electronically cooling refrigerator has an electronically cooling element 53 provided in a through-hole 51 for setting up communication between a cooling chamber 47 and a heat radiating chamber 49 disposed on the outside thereof, and a cooling block 55 and a heat radiating block 57 are provided so as to hold the element 53 therebetween. Further, a thermosiphon type heat radiator 61 is provided on the side of the heat radiating block 57 wherein a pipe insertion hole 57a is formed which is inclined at about 30 degrees with respect to a vertical line, and a loop-like refrigerant pipe 63 with a refrigerant packed therein is inserted into the insertion hole 57a. A part of the refrigerant pipe 63, which is inserted into the pipe insertion hole 57a to be in contact with the heat radiating block, is formed into a boiling portion where the refrigerant receives heat from the heat radiating block 57 to boil, and a heat exchanger 65 for condensation is mounted at an other part of the refrigerant pipe 63.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷媒が吸熱して沸騰
する沸騰部と、冷媒が放熱して凝縮する凝縮部とが、閉
じた管路で接続されて構成される自然循環型サーモサイ
フォンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a natural circulation type thermosiphon, in which a boiling part in which a refrigerant absorbs heat and boils, and a condensing part in which the refrigerant radiates heat and condenses are connected by a closed pipe line. Regarding

【0002】[0002]

【従来の技術】自然循環型サーモサイフォンは、例えば
電子冷却冷蔵庫における放熱器として使用される。電子
冷却冷蔵庫は、電力が供給されることで一方の端部に低
温領域が、他方の端部に高温領域がそれぞれ形成される
電子冷却素子が使用される。電子冷却素子の低温領域側
に発生する冷却能力に相当する熱が、冷却用熱交換器を
介して被冷却室内から移動することにより冷却作用を発
揮し、高温領域に発生する熱は放熱用熱交換器を介して
外部に放出される。
2. Description of the Related Art Natural circulation thermosiphons are used, for example, as radiators in electronic cooling refrigerators. The electronic cooling refrigerator uses an electronic cooling element in which a low temperature region is formed at one end and a high temperature region is formed at the other end when power is supplied. The heat equivalent to the cooling capacity generated in the low temperature area of the electronic cooling element exerts a cooling effect by moving from the room to be cooled through the cooling heat exchanger, and the heat generated in the high temperature area is the heat dissipation heat. It is discharged to the outside through the exchanger.

【0003】このような電子冷却素子の特性例として
は、例えば図9に示すようなものがある。この素子の特
性から推定すると、素子の高温領域と低温領域との温度
差が50deg 、低温領域側での吸熱量QC を約20Wと
想定すると、高温領域側での放熱量QH が約90Wとな
り、高温領域側に設けられる放熱用熱交換器は、低温領
域側の冷却用熱交換器より、約5倍の熱交換能力が必要
になる。このことから、電子冷却冷蔵庫としては容量的
に大きな30リットルクラスになると、被冷却室内の冷
却用熱交換器は押し出し成形によるフィン型のものでよ
いが、放熱用熱交換器はフィン型では放熱量が充分得ら
れず、自然循環型サーモサイフォンの放熱器を用いるこ
とが多い。
An example of characteristics of such an electronic cooling element is shown in FIG. Assuming that the temperature difference between the high temperature region and the low temperature region of the device is 50 deg and the heat absorption amount Q C on the low temperature region side is about 20 W, the heat radiation amount Q H on the high temperature region side is about 90 W. Therefore, the heat radiating heat exchanger provided on the high temperature region side needs to have a heat exchange capacity about 5 times that of the cooling heat exchanger on the low temperature region side. For this reason, when the capacity of a 30-liter class is large for an electronic cooling refrigerator, the cooling heat exchanger in the room to be cooled may be a fin type by extrusion molding, but the heat radiating heat exchanger is not a fin type. Since a sufficient amount of heat cannot be obtained, a natural circulation type thermosiphon radiator is often used.

【0004】自然循環型サーモサイフォンの放熱器を用
いた電子冷却冷蔵庫の従来例を、図10及び図11に示
す。この電子冷却冷蔵庫は、キャビネット1の断熱壁3
の背面の部分に、キャビネット1内の被冷却室5とその
外部の放熱室6とを連通する貫通孔7が形成され、この
貫通孔7内に、被冷却室5内側の冷却用ブロック9と外
部の放熱用ブロック11とに挟持された状態で電子冷却
素子13が設けられている。
A conventional example of an electronic cooling refrigerator using a radiator of a natural circulation type thermosiphon is shown in FIGS. 10 and 11. This electronic cooling refrigerator has a heat insulating wall 3 of a cabinet 1.
A through hole 7 that communicates the cooled chamber 5 inside the cabinet 1 and the heat radiation chamber 6 outside the cabinet 1 is formed in the back surface of the cooling block 9 inside the cooled chamber 5 and the through hole 7. The electronic cooling element 13 is provided so as to be sandwiched between the heat radiation block 11 and the external heat radiation block 11.

【0005】冷却用ブロック9には、押し出し成形によ
るフィン型の冷却用熱交換器15が装着されて、被冷却
室5内からの熱負荷が吸収される。一方、放熱用ブロッ
ク11側には、自然循環型サーモサイフォンからなる放
熱器16が設けられている。放熱用ブロック11には、
図中で上下方向に貫通する配管挿入孔11aが形成さ
れ、この配管挿入孔11aには内部に冷媒が封入される
ループ状の冷媒管路17が挿入されている。冷媒管路1
7は、配管挿入孔11aへ挿入される部位が、放熱用ブ
ロック11からの熱を吸収して冷媒が沸騰する沸騰部と
なり、沸騰した冷媒が熱を放出して凝縮する凝縮部とな
る凝縮用熱交換器19が冷媒管路17の他の部位に装着
されている。凝縮用熱交換器19の下方には、凝縮用熱
交換器19での凝縮を促進するために、送風機21が設
置されている。また、放熱室6の下方には、電子冷却素
子13に直流電流を供給する電源23が設けられてい
る。
A fin type cooling heat exchanger 15 formed by extrusion molding is mounted on the cooling block 9 to absorb the heat load from the inside of the cooled chamber 5. On the other hand, a radiator 16 including a natural circulation type thermosiphon is provided on the heat radiation block 11 side. In the heat dissipation block 11,
In the drawing, a pipe insertion hole 11a penetrating in the vertical direction is formed, and a loop-shaped refrigerant pipe line 17 in which a refrigerant is enclosed is inserted into the pipe insertion hole 11a. Refrigerant pipeline 1
7, a portion to be inserted into the pipe insertion hole 11a serves as a boiling portion for absorbing heat from the heat dissipation block 11 to boil the refrigerant, and serves as a condensing portion for the boiling refrigerant to release heat and condense. The heat exchanger 19 is attached to another part of the refrigerant line 17. A blower 21 is installed below the condensing heat exchanger 19 in order to promote condensation in the condensing heat exchanger 19. A power supply 23 that supplies a direct current to the electronic cooling element 13 is provided below the heat dissipation chamber 6.

【0006】自然循環型サーモサイフォンからなる放熱
器16の動作を、冷媒管路17の概略を示す図12を用
いて説明する。この冷媒管路17内には熱を運ぶ媒体で
ある冷媒が封入されている。一般には、高いところの液
冷媒を低いところに運ぶことをサイフォン効果と呼ぶ
が、沸騰部25を冷媒管路17の低い部分に、凝縮部2
7を高い部分に位置させ、さらに凝縮部27で凝縮した
液(冷媒RL )が連続して沸騰部25につながっている
ことから、凝縮部27及び沸騰部25それぞれの液相互
のヘッド差Hにより、凝縮部27から沸騰部25へ液冷
媒RL が流れ、これによりサイフォン効果が得られる。
このヘッド差Hを保つために管路を閉ループの循環型と
する。
The operation of the radiator 16 composed of a natural circulation type thermosiphon will be described with reference to FIG. A refrigerant, which is a medium that carries heat, is enclosed in the refrigerant conduit 17. Generally, it is called a siphon effect to carry the liquid refrigerant in a high place to a low place.
7 is located at a higher portion, and the liquid (refrigerant RL ) condensed in the condensing part 27 is continuously connected to the boiling part 25. Therefore, the head difference H between the liquids in the condensing part 27 and the boiling part 25 is H. As a result, the liquid refrigerant R L flows from the condensing section 27 to the boiling section 25, and thereby the siphon effect is obtained.
In order to maintain this head difference H, the pipe line is a closed loop circulation type.

【0007】液冷媒RL は、沸騰部25で加熱源となる
電子冷却素子13の高温領域から熱を吸収して沸騰し、
ガス冷媒RG となって冷媒管路17内を上昇し、凝縮部
27に達する。ここでガス冷媒RG は、吸熱源となる凝
縮用熱交換器19から冷却され、熱を捨てることにより
凝縮する。このガス冷媒RG が、沸騰部25から凝縮部
27に移動するときに冷媒管路17から受ける圧力損失
が、前記液ヘッド差Hとバランスするように冷媒は移動
する。
The liquid refrigerant R L absorbs heat from the high temperature region of the electronic cooling element 13 serving as a heating source in the boiling section 25 and boils.
The gas refrigerant R G rises in the refrigerant pipeline 17 and reaches the condenser 27. Here, the gas refrigerant R G is cooled from the condensing heat exchanger 19 serving as a heat absorption source and is condensed by discarding heat. When the gas refrigerant R G moves from the boiling section 25 to the condensing section 27, the refrigerant moves so that the pressure loss received from the refrigerant conduit 17 is balanced with the liquid head difference H.

【0008】沸騰部25及び凝縮部27の位置、冷媒管
路17の内径寸法、冷媒の種類や量を選定することで、
前記ヘッド差Hを保ち、自然に冷媒が循環できるととも
に、その結果として沸騰部25の加熱源の熱を凝縮部2
7に運搬して吸熱源により放熱することができる。これ
が自然循環型サーモサイフォンの基本である。
By selecting the positions of the boiling part 25 and the condensing part 27, the inner diameter of the refrigerant conduit 17, and the kind and amount of the refrigerant,
While maintaining the head difference H, the refrigerant can circulate naturally, and as a result, the heat of the heating source of the boiling section 25 is condensed into the condensing section 2.
It can be transported to the unit 7 and radiated by an endothermic source. This is the basis of the natural circulation type thermosiphon.

【0009】ところで、自然循環型サーモサイフォンを
用いた熱交換器の沸騰伝熱特性については、従来理論解
明がほとんどされてなく、静止した液の沸騰を取扱うプ
ール沸騰の経験式を用いることが一般的であり、この関
係式を基にサーモサイフォンの沸騰伝熱の特性を考えて
みる。フロン系の冷媒についてプール沸騰伝熱式は次式
で与えられる。ここで、冷媒管路は内面が平滑状のいわ
ゆる平滑管である。
By the way, regarding the boiling heat transfer characteristics of the heat exchanger using the natural circulation type thermosiphon, the theoretical elucidation has been hardly conducted in the past, and it is common to use the empirical formula of pool boiling which handles boiling of a stationary liquid. Consider the characteristic of boiling heat transfer of thermosiphon based on this relational expression. The pool boiling heat transfer equation for a chlorofluorocarbon refrigerant is given by the following equation. Here, the refrigerant pipe line is a so-called smooth pipe whose inner surface is smooth.

【0010】 αP =C1 ・q0.745 (1) ここで、αP はプール沸騰の熱伝達率(W/m2
℃)、C1 は冷媒の種類と圧力で決まる定数である。q
は熱流速(W/m2 )で、電子冷却素子の放熱量と沸騰
部の管路面積とで求められる。
Α P = C 1 · q 0.745 (1) where α P is the heat transfer coefficient of pool boiling (W / m 2 h
C) and C 1 are constants determined by the type and pressure of the refrigerant. q
Is a heat flow rate (W / m 2 ), and is calculated by the heat radiation amount of the electronic cooling element and the pipeline area of the boiling portion.

【0011】式(1)における、熱流速qと熱伝達率α
P との関係を図3の破線で示す。これによれば、熱流速
qが大きい程熱伝達率αP が大きくなることがわかる。
In equation (1), the heat flow rate q and the heat transfer coefficient α
The relationship with P is shown by the broken line in FIG. According to this, it is understood that the heat transfer coefficient α P increases as the heat flow rate q increases.

【0012】次に、沸騰伝熱の改善案を考える。式
(1)の両辺に、冷媒管路の沸騰部が接触する伝熱面積
P を掛けて熱伝達係数αP P を考えると、伝熱面積
P を仮に2倍にした場合、伝熱量Qが一定条件では、
約20%の増加にしかならないことが、次式でわかる。
Next, a plan for improving boiling heat transfer will be considered. Considering the heat transfer coefficient α P A P by multiplying both sides of the equation (1) by the heat transfer area A P with which the boiling portion of the refrigerant pipe comes into contact, if the heat transfer area A P is doubled, When the heat quantity Q is constant,
It can be seen from the following equation that the increase is only about 20%.

【0013】 αP ・AP =C1 ・Q0.745 ・AP 0.255 (2) (αP2・AP2)/(αP1・AP1)=(AP2/AP10.255 (3) ここで、AP2/AP1=2とすると、 (αP2・AP2)/(αP1・AP1)=1.19 (4) つまり、伝熱面積を2倍にしても、沸騰伝熱量の増加は
僅か約20%であり、面積増加は放熱側の熱交換器の改
善の有力な方法とはならない。
Α P · A P = C 1 · Q 0.745 · A P 0.255 (2) (α P2 · A P2 ) / (α P1 · A P1 ) = (A P2 / A P1 ) 0.255 (3) where , A P2 / A P1 = 2, (α P2 · A P2 ) / (α P1 · A P1 ) = 1.19 (4) That is, even if the heat transfer area is doubled, the boiling heat transfer amount increases. Is only about 20%, and increasing the area is not an effective method for improving the heat exchanger on the heat radiation side.

【0014】また、凝縮用熱交換器19での凝縮を促進
するために、送風機21の風量を増加させることも考え
られるが、この場合には騒音増加という不具合が発生す
る。このため、従来では、放熱側の熱交換器における沸
騰伝熱特性の改善は、冷媒管路を、沸騰核を形成しやす
く、核成長しやすい構造とすることが考えられている。
It is also conceivable to increase the air volume of the blower 21 in order to accelerate the condensation in the condensing heat exchanger 19, but in this case, the problem of increased noise occurs. For this reason, conventionally, in order to improve the boiling heat transfer characteristics in the heat exchanger on the heat radiation side, it has been considered that the refrigerant pipe line has a structure in which boiling nuclei are easily formed and nuclei are easily grown.

【0015】ここで、沸騰の促進に注目してみると、従
来の技術としては、図13(a)に示すようなトンネル
構造がよいとされている。これは、平板伝熱面29にフ
ィン31を設けた構造であり、液冷媒RL がフィン31
に囲まれた部分で加熱されることにより、平板に比べて
沸騰が促進され、沸騰核33が多数発生する。しかし、
フィン31に囲まれた部分は、フィン31の周囲で対流
移動している液冷媒RL に影響を受けやすく、このため
軽いガス相の沸騰核33は充分に大きな気泡に成長する
前に、対流により液冷媒RL と置換するように、フィン
31から移動し、フィン31には新たな液冷媒RL が移
動してくる。そして、フィン31からの受熱により沸騰
核33が再び発生する。このような形状のフィン31で
の沸騰は、沸騰核33から気泡への成長が充分でないた
め、気泡の成長過程で大きな熱伝達の向上が得られると
いう沸騰現象の特徴を生かせず、伝熱促進に限界があ
る。
Here, paying attention to the promotion of boiling, it is said that a tunnel structure as shown in FIG. 13A is preferable as a conventional technique. This is a structure in which fins 31 are provided on the flat plate heat transfer surface 29, and the liquid refrigerant R L is the fins 31.
By being heated in the portion surrounded by, boiling is promoted as compared with a flat plate, and a large number of boiling nuclei 33 are generated. But,
The portion surrounded by the fins 31 is easily affected by the liquid refrigerant R L moving convectively around the fins 31, so that the light-gas phase boiling nuclei 33 are convected before they grow into sufficiently large bubbles. As a result, the liquid refrigerant R L is moved from the fins 31 so as to be replaced with the liquid refrigerant R L, and new liquid refrigerant R L is moved to the fins 31. Then, the boiling nuclei 33 are generated again due to the heat received from the fins 31. Boiling with the fins 31 having such a shape does not take advantage of the feature of the boiling phenomenon that a large heat transfer is obtained during the growth process of bubbles because the growth from the boiling nuclei 33 to bubbles is not sufficient, and heat transfer is promoted. Is limited.

【0016】そこで考えられるのが、図13(b)に示
すように、フィン35の頂部を平坦化した構造であり、
この構造により、フィン35に囲まれた部分に発生する
沸騰核33は、周囲の液冷媒RL に影響される移動が妨
げられ、液冷媒RL に抵抗可能な内圧を得る大きな気泡
37にまで成長することができ、それに伴い沸騰熱伝達
の向上が達成される。
A possible solution is a structure in which the tops of the fins 35 are flattened as shown in FIG. 13 (b).
With this structure, the boiling nuclei 33 generated in the portion surrounded by the fins 35 are prevented from moving affected by the surrounding liquid refrigerant R L, and even into large bubbles 37 that obtain an internal pressure capable of resisting the liquid refrigerant R L. It is possible to grow, with which an improved boiling heat transfer is achieved.

【0017】上記したようなトンネル構造は、平板や管
の外側には比較的容易に設けられるが、前記冷媒管路1
7のように、管内にはついては、押し潰されて完全に塞
がってしまう虞があり製造が難しく、コストも高いもの
となることから、ほとんど実施されていない。
Although the tunnel structure as described above is relatively easily provided on the outside of the flat plate or the pipe, the refrigerant pipe line 1
As described in No. 7, the pipe is almost never used because it may be crushed and completely closed, which makes the manufacturing difficult and the cost is high.

【0018】管内の沸騰促進を図った従来例としては、
図14(a),(5)に示すように、管の内壁に複数の
溝39が形成された溝付き管がある。図14(a)は、
沸騰部の上流側での沸騰状態を示しており、図13のフ
ィン31と同様に液冷媒RLが、溝39内で充分加熱さ
れて、沸騰核33が発生しやすく、内面が平滑な管に比
べて沸騰熱伝達が促進される。
As a conventional example for promoting boiling in the tube,
As shown in FIGS. 14 (a) and (5), there is a grooved pipe in which a plurality of grooves 39 are formed on the inner wall of the pipe. FIG. 14A shows
FIG. 13 shows a boiling state on the upstream side of the boiling portion, and like the fins 31 of FIG. 13, the liquid refrigerant R L is sufficiently heated in the groove 39, the boiling nuclei 33 are likely to be generated, and a tube having a smooth inner surface is shown. Boiling heat transfer is promoted compared to.

【0019】しかし、このような溝付き管でも、図13
で説明したのと同様に、液冷媒RLの対流を受けやす
く、溝39から容易に沸騰核33が移動し、沸騰核33
の気泡成長による充分な伝熱の向上が得られないという
問題がある。図14(b)は、沸騰部の下流側での沸騰
状態を示しているが、沸騰により成長した気泡37は、
液冷媒RL の流れ方向で合体して徐々に大きくなり、溝
39を覆うようになる。このような場合、溝39では気
泡37の圧力を受けるため、液冷媒RL が充分に存在し
ないとともに、沸騰核33の発生も妨げられる非沸騰領
域が形成されて、伝熱特性の低下が生じるという問題も
ある。
However, even with such a grooved tube, as shown in FIG.
In the same manner as described above, the boiling nuclei 33 are easily moved by the convection of the liquid refrigerant R L and easily move from the grooves 39.
There is a problem that sufficient heat transfer cannot be obtained due to the bubble growth. FIG. 14B shows the boiling state on the downstream side of the boiling portion, but the bubbles 37 grown by boiling are
The liquid refrigerant R L merges in the flow direction to gradually increase in size to cover the groove 39. In such a case, since the pressure of the bubble 37 is received in the groove 39, a sufficient amount of the liquid refrigerant RL does not exist, and a non-boiling region in which the generation of the boiling nuclei 33 is also prevented is formed, resulting in deterioration of heat transfer characteristics. There is also a problem.

【0020】[0020]

【発明が解決しようとする課題】このように、従来の自
然循環型サーモサイフォンでは、プール沸騰の経験式を
用いることにより、沸騰部の伝熱面積を拡大しても、沸
騰伝熱量の増加は僅かであって多くは望めないと考えら
れている。また、従来の沸騰部における管路内壁の構造
例では、液冷媒の対流の影響を受けて沸騰時の気泡の成
長が充分ではなく、また伝熱面の非沸騰領域が形成され
やすいなど、伝熱特性促進には限界があるという問題が
あった。
As described above, in the conventional natural circulation type thermosiphon, even if the heat transfer area of the boiling part is expanded by using the empirical formula of pool boiling, the boiling heat transfer amount is not increased. It is believed that there are few and not many. Further, in the structure example of the inner wall of the pipe in the conventional boiling part, the growth of bubbles during boiling is not sufficient due to the influence of convection of the liquid refrigerant, and the non-boiling region of the heat transfer surface is easily formed. There is a problem that there is a limit to the promotion of thermal characteristics.

【0021】そこで、この発明は、沸騰部での伝熱特性
を改善することを目的としている。
Therefore, the object of the present invention is to improve the heat transfer characteristics in the boiling portion.

【0022】[0022]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、内部に封入された冷媒が加熱源から吸
熱して沸騰する沸騰部と、冷媒が周囲に放熱して凝縮す
る凝縮部とが、閉じた管路で接続されて構成される自然
循環型サーモサイフォンにおいて、前記加熱源に接触す
る放熱用ブロックを前記沸騰部の周囲に接触して設け、
前記放熱用ブロック内の沸騰部を鉛直線に対し傾斜して
設けた構成としてある。
In order to achieve the above object, the present invention is directed to a boiling portion in which a refrigerant enclosed therein boils by absorbing heat from a heating source, and a condenser in which the refrigerant radiates heat to the surroundings and condenses. In the natural circulation type thermosiphon, which is configured to be connected by a closed pipe, a heat dissipation block in contact with the heating source is provided in contact with the periphery of the boiling part,
The boiling portion in the heat dissipation block is provided so as to be inclined with respect to the vertical line.

【0023】また、この発明は、内部に封入された冷媒
が加熱源から吸熱して沸騰する沸騰部と、冷媒が周囲に
放熱して凝縮する凝縮部とが、閉じた管路で接続されて
構成される自然循環型サーモサイフォンにおいて、前記
沸騰部における管路内に、周囲に複数の開口を備えた円
筒部材を設ける構成としてもよい。
Further, according to the present invention, the boiling portion in which the refrigerant enclosed therein boils by absorbing heat from the heating source and the boiling portion and the condenser portion in which the refrigerant radiates heat to the surroundings and condenses are connected by a closed pipe line. In the constituted natural circulation type thermosiphon, a cylindrical member having a plurality of openings in the periphery may be provided in the conduit in the boiling section.

【0024】[0024]

【作用】このような構成の自然循環型サーモサイフォン
においては、沸騰部が放熱ブロックに対し傾斜している
ので、沸騰部と放熱ブロックとが接触する伝熱面積が拡
大する。従来ではプール沸騰の経験式を用いることによ
り、沸騰部の伝熱面積の拡大は、伝熱特性を効果的に改
善できないと考えられていたが、沸騰部の伝熱特性を実
測することで、大きく向上させることが可能であること
が判明した。
In the natural circulation type thermosiphon having such a structure, since the boiling portion is inclined with respect to the heat radiating block, the heat transfer area where the boiling portion and the heat radiating block contact each other is increased. Conventionally, by using the empirical formula of pool boiling, it was thought that the expansion of the heat transfer area of the boiling part could not effectively improve the heat transfer characteristics, but by actually measuring the heat transfer characteristics of the boiling part, It turned out that it can be greatly improved.

【0025】また、請求項2の自然循環型サーモサイフ
ォンにおいては、沸騰部における管路の内部に円筒部材
を設けてあるので、管内壁で発生する沸騰核が液冷媒の
影響を受けることなく気泡として成長し、沸騰熱伝達効
率が向上する。また、成長した気泡が管内壁から円筒部
材の複数の開口を通って円筒部材内に入り込み、下流側
に移動しても、大きな気泡のガス圧の大部分は、複数の
開口を有する円筒部材が受けることになり、管内壁に気
泡が直接接触することがなく、下流側におにおける管内
壁での非沸騰部発生が抑制され、沸騰部の熱伝達効率が
向上する。
Further, in the natural circulation type thermosiphon according to claim 2, since the cylindrical member is provided inside the pipe line in the boiling portion, the boiling nuclei generated on the inner wall of the pipe are not affected by the liquid refrigerant. As it grows, the boiling heat transfer efficiency is improved. Even if the grown bubbles enter the cylindrical member from the inner wall of the pipe through the plurality of openings of the cylindrical member and move to the downstream side, most of the gas pressure of the large bubbles is generated by the cylindrical member having the plurality of openings. As a result, the bubbles do not come into direct contact with the inner wall of the tube, the generation of non-boiling portions on the inner wall of the tube on the downstream side is suppressed, and the heat transfer efficiency of the boiling section is improved.

【0026】[0026]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】図1は、この発明の一実施例を示す電子冷
却冷蔵庫の側面断面図であり、図2は図1のB−B断面
図である。この電子冷却冷蔵庫は、ドア41及び断熱壁
43により構成されるキャビネット45内に被冷却室4
7が形成されている。断熱壁43の背面部分のほぼ中央
には、冷却室47とその外部の放熱室49とを連通する
貫通孔51が形成され、この貫通孔51内のほぼ中央に
電子冷却素子53が設けられている。貫通孔51の図中
で左右両側は、電子冷却素子53が設けられる中央部よ
り大きく拡げられており、それぞれの拡大部位に、被冷
却室47側の冷却用ブロック55と外部の放熱用ブロッ
ク57とが嵌め込まれ、これら各ブロック55,57間
に前記電子冷却素子53が挟持されている。
FIG. 1 is a side sectional view of an electronic cooling refrigerator showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along line BB of FIG. In this electronic cooling refrigerator, the room to be cooled 4 is housed in a cabinet 45 constituted by a door 41 and a heat insulating wall 43.
7 are formed. A through hole 51 that communicates the cooling chamber 47 with a heat radiation chamber 49 outside the cooling chamber 47 is formed in substantially the center of the back surface of the heat insulating wall 43, and an electronic cooling element 53 is provided in the through hole 51 at substantially the center. There is. The left and right sides of the through hole 51 in the figure are expanded to a greater extent than the central portion where the electronic cooling element 53 is provided, and the cooling block 55 on the cooled chamber 47 side and the external heat radiation block 57 are provided at the respective enlarged portions. And the electronic cooling element 53 is sandwiched between the blocks 55 and 57.

【0028】冷却用ブロック55には、押し出し成形に
よるフィン型の冷却用熱交換器59が装着されて、被冷
却室47内からの熱負荷が吸収される。一方、放熱用ブ
ロック57側には、サーモサイフォン型の放熱器61が
設けられている。放熱用ブロック57には、図2中で鉛
直線に対して30度傾斜した状態で、左上端と右下端と
結ぶように貫通する配管挿入孔57aが形成され、この
傾斜した配管挿入孔57aにループ状の内部に冷媒が封
入される冷媒管路63が挿入されている。
A fin-type cooling heat exchanger 59 formed by extrusion molding is mounted on the cooling block 55 to absorb the heat load from the inside of the cooled chamber 47. On the other hand, a thermosiphon type radiator 61 is provided on the side of the heat radiation block 57. In the heat dissipation block 57, a pipe insertion hole 57a is formed so as to connect to the upper left end and the lower right end in a state inclined at 30 degrees with respect to the vertical line in FIG. 2, and the inclined pipe insertion hole 57a is formed. A refrigerant pipe 63 in which the refrigerant is sealed is inserted inside the loop.

【0029】冷媒管路63は、配管挿入孔57aに挿入
されて接触する部位が、放熱用ブロック57からの熱を
吸収して冷媒が沸騰する沸騰部となり、沸騰した冷媒が
熱を放出して凝縮する凝縮部となる凝縮用熱交換器65
が冷媒管路63の他の部位に装着されている。凝縮用熱
交換器65の下方には、凝縮用熱交換器65の伝熱効率
向上のために、送風機67が設置されている。また、放
熱室49の下部には、電子冷却素子53に直流電流を供
給し、電子冷却素子53の冷却用ブロック55側の一方
の端部に低温領域を発生させるとともに、放熱用ブロッ
ク57側の他方の端部に高温領域を発生させる電源69
が設けられている。
The portion of the refrigerant pipe 63 that is inserted into and in contact with the pipe insertion hole 57a serves as a boiling portion for absorbing heat from the heat dissipation block 57 to boil the refrigerant, and the boiling refrigerant releases heat. Condensing heat exchanger 65 that serves as a condensing unit for condensing
Is attached to the other part of the refrigerant pipe line 63. A blower 67 is installed below the condensing heat exchanger 65 in order to improve the heat transfer efficiency of the condensing heat exchanger 65. Further, in the lower part of the heat dissipation chamber 49, a direct current is supplied to the electronic cooling element 53 to generate a low temperature region at one end of the electronic cooling element 53 on the cooling block 55 side, and at the same time, on the heat dissipation block 57 side. Power supply 69 for generating a high temperature region at the other end
Is provided.

【0030】冷媒管路63は、図4に概略図として示す
ように、その管路の高さ方向で低い部位に沸騰部63a
が、高い部位に凝縮部63bがそれぞれ設けられ、凝縮
部63bで凝縮した液冷媒RL は逆流することなく、下
流側の沸騰部63aに連続して存在し、凝縮部63bと
沸騰部63aとにおける液冷媒の高さの差すなわちヘッ
ド差Hと、沸騰した蒸気が凝縮部63bへ移動するとき
の圧力損失とがバランスするように、冷媒は沸騰部63
aの加熱源つまり放熱用ブロック57の加熱量及び、凝
縮部63bの吸熱源つまり凝縮用熱交換器65による放
熱量により移動する。
As shown in the schematic view of FIG. 4, the refrigerant pipe 63 has a boiling portion 63a at a lower portion in the height direction of the pipe.
However, the condensing part 63b is provided in each of the high parts, and the liquid refrigerant R L condensed in the condensing part 63b does not flow backward and continuously exists in the downstream boiling part 63a, and the condensing part 63b and the boiling part 63a In order to balance the difference in height of the liquid refrigerant, that is, the head difference H, with the pressure loss when the boiled vapor moves to the condensing section 63b, the refrigerant is boiled in the boil section 63.
It moves depending on the heating amount of the heating source of a, that is, the heat radiation block 57, and the heat radiation amount of the heat absorption source of the condensing unit 63b, that is, the condensation heat exchanger 65.

【0031】上記沸騰部63aにおける冷媒管路63に
は、図5に斜視図として示すような円筒部材としての金
網75が内壁に接触または近接した状態で挿入されてい
る。図6は、金網75が挿入された状態での冷媒管路6
3の縦断面図で、図7は同横断面図である。この例で
は、冷媒管路63は、内壁に多数の溝77が形成され
た、いわゆる溝付き管としてある。
A wire mesh 75 as a cylindrical member as shown in a perspective view in FIG. 5 is inserted into the refrigerant pipe 63 in the boiling portion 63a in a state of being in contact with or close to the inner wall. FIG. 6 shows the refrigerant pipe 6 with the wire net 75 inserted.
3 is a vertical sectional view, and FIG. 7 is a horizontal sectional view thereof. In this example, the refrigerant pipe 63 is a so-called grooved pipe in which a large number of grooves 77 are formed on the inner wall.

【0032】このように構成された電子冷却冷蔵庫にお
いては、放熱用ブロック57に対し配管挿入孔57aを
鉛直線から30度傾斜させることにより、ここに挿入さ
れる冷媒管路63と放熱用ブロック57との接触面積、
つまり両者相互の伝熱面積が、放熱用ブロックを同一の
ものを使用するとして従来の約2倍とすることができ
る。
In the electronic cooling refrigerator thus constructed, the pipe insertion hole 57a is inclined 30 degrees from the vertical line with respect to the heat radiation block 57, so that the refrigerant pipe 63 and the heat radiation block 57 inserted therein are inserted. Contact area with
That is, the heat transfer area between the two can be about twice as large as that of the conventional case by using the same heat dissipation block.

【0033】従来では、伝熱面積拡大は、プール沸騰の
推定として伝熱特性向上には余り効果がないと考えられ
ていたが、自然循環型サーモサイフォンのプール沸騰実
験結果を、平滑管と溝付き管とについて示す図3及び、
前記式(2)〜(4)により、伝熱面積拡大が、伝熱特
性向上に充分効果があることがわかった。
Conventionally, it was considered that the expansion of the heat transfer area had little effect on the improvement of heat transfer characteristics as an estimate of pool boiling, but the pool boiling test result of the natural circulation type thermosiphon was used as the smooth tube and groove. FIG. 3 showing the attached tube and
From the formulas (2) to (4), it was found that the expansion of the heat transfer area was sufficiently effective in improving the heat transfer characteristics.

【0034】図3において、実線が平滑管のものであ
り、αP =C1 ・q0.43で表され、その傾きは0.43
である。一点鎖線は溝付き管のものであり、αP =C1
・q0. 26で表され、その傾きは0.26である。この関
係から、前記式(2)〜(4)での伝熱面積を2倍にし
た場合の熱伝達係数αP ・AP の改善効果を見ると、平
滑管では、 (αP2・AP2)/(αP1・AP1)=(AP2/AP1(1-0.43) (αP2・AP2)/(αP1・AP1)=20.57 =1.48 一方溝付き管では、同様にして (αP2・AP2)/(αP1・AP1)=20.74 =1.67 となり、平滑管で48%、溝付き管で67%向上するこ
とがわかる。
In FIG. 3, the solid line is that of a smooth tube and is represented by α P = C 1 · q 0.43 , and its slope is 0.43.
Is. The alternate long and short dash line is for a grooved tube, and α P = C 1
- represented by q 0. 26, the slope is 0.26. From this relationship, when the effect of improving the heat transfer coefficient α P · A P when the heat transfer area in the above equations (2) to (4) is doubled is seen, in the smooth tube, (α P2 · A P2 ) / (Α P1・ A P1 ) = (A P2 / A P1 ) (1-0.43)P2・ A P2 ) / (α P1・ A P1 ) = 2 0.57 = 1.48 On the other hand, Similarly, (α P2 · A P2 ) / (α P1 · A P1 ) = 2 0.74 = 1.67, which shows that the smooth tube improves by 48% and the grooved tube by 67%.

【0035】このような伝熱特性の向上は、沸騰部管路
内壁を複雑な構造とすることによるコスト増加や、製造
性の困難さを伴うことなく、また送風機67の送風量も
増加させることなく達成でき、容易に電子冷却冷蔵庫の
冷却性能の向上に寄与できる。
Such improvement of the heat transfer characteristics does not increase the cost due to the complicated structure of the inner wall of the boiling section pipe line, does not cause difficulty in the manufacturability, and increases the amount of air blown by the blower 67. This can be achieved without any difficulty and can easily contribute to the improvement of the cooling performance of the electronic cooling refrigerator.

【0036】また、沸騰部63aを傾斜して設けること
で、沸騰部63aの管路の放熱用ブロック57に対する
入口部及び出口部での角度が鈍角となり、冷媒の流れの
抵抗が小さくなることによる性能向上や、冷媒管路63
の長さが短くなることによるコスト低下が可能となる。
Further, since the boiling portion 63a is provided so as to be inclined, the angle at the inlet portion and the outlet portion of the conduit of the boiling portion 63a with respect to the heat radiation block 57 becomes an obtuse angle, and the resistance of the refrigerant flow becomes small. Performance improvement and refrigerant line 63
The cost can be reduced by shortening the length of the.

【0037】冷媒管路63の沸騰部63aに金網75が
挿入された自然循環型サーモサイフォンにおける動作
は、図6に示すように、まず溝77内に存在する液冷媒
が放熱用ブロック57から加熱され、沸騰核79が発生
する。この沸騰核79は、金網75が管内の中央に存在
する液冷媒の対流の影響を防ぐので、気泡となって成長
し、沸騰熱伝達が促進される。成長した気泡はガス圧が
高まり、金網75の抵抗に打ち勝ち、金網75を通過し
て管中央に移動し、大きな気泡81となってガス圧を下
げる。
In the operation of the natural circulation type thermosiphon in which the wire net 75 is inserted in the boiling portion 63a of the refrigerant pipe 63, the liquid refrigerant existing in the groove 77 is first heated from the heat radiation block 57 as shown in FIG. Then, the boiling nucleus 79 is generated. The boiling nuclei 79 prevent the influence of the convection of the liquid refrigerant existing in the center of the tube with the wire net 75, so that they grow as bubbles and promote the boiling heat transfer. The gas pressure of the grown bubbles rises, overcomes the resistance of the wire net 75, passes through the wire net 75 and moves to the center of the tube, and becomes large air bubbles 81 to lower the gas pressure.

【0038】大きく成長した気泡81は、上方に移動し
ながら、気泡81同志が相互に合体してさらに大きくな
る。大きな気泡81が上方に移動しても、気泡81はガ
ス圧が小さいことにより、金網75を通過せず管内壁に
接することはない。このため、上方の下流側の溝77で
は液冷媒が常に存在することになり、沸騰核79の発生
や気泡81の成長が、下方の上流側と同様に認められて
伝熱の促進が妨げられず、伝熱効率が向上する。
The bubble 81 that has grown greatly grows further as it moves upward and the bubbles 81 coalesce with each other. Even if the large bubble 81 moves upward, since the gas pressure of the bubble 81 is small, the bubble 81 does not pass through the wire net 75 and does not come into contact with the inner wall of the pipe. For this reason, the liquid refrigerant is always present in the groove 77 on the upper downstream side, and the generation of the boiling nuclei 79 and the growth of the bubbles 81 are recognized as in the lower upstream side, and the promotion of heat transfer is hindered. The heat transfer efficiency is improved.

【0039】図8は、内壁に溝を備えた沸騰部における
ヒータ(加熱源)入力に対する熱伝達率の関係を示した
もので、破線が上記実施例による金網75を挿入したと
きのもので、実線が金網75を挿入しないときのもので
ある。これによれば、沸騰部平均の熱伝達率は、本実施
例のものが金網無しに比べて向上していることがわか
り、約10%程度となっていると思われる。
FIG. 8 shows the relationship of the heat transfer coefficient with respect to the heater (heating source) input in the boiling portion having the groove on the inner wall, and the broken line shows the case where the wire net 75 according to the above embodiment is inserted. The solid line is the one when the wire net 75 is not inserted. According to this, it can be seen that the average heat transfer coefficient in the boiling portion is improved in the example of this embodiment as compared with the case without the wire mesh, and it is considered to be about 10%.

【0040】[0040]

【発明の効果】以上説明してきたように、この発明によ
れば、冷媒管路を放熱用ブロックに対し傾斜して設ける
ことで、冷媒管路と放熱用ブロックとが接触する伝熱面
積が大きくなり、この面積拡大は、冷媒管路内壁を複雑
化することによるコストアップや製造性の困難さが伴う
ことなく、自然循環型サーモサイフォンの沸騰実験結果
により、伝熱効果を充分達成させることができる。
As described above, according to the present invention, since the refrigerant pipeline is inclined with respect to the heat dissipation block, the heat transfer area where the refrigerant pipeline and the heat dissipation block come into contact with each other is large. This area expansion can achieve sufficient heat transfer effect by the boiling experiment result of the natural circulation type thermosiphon without the cost increase and the difficulty of manufacturability due to the complicated inner wall of the refrigerant pipe. it can.

【0041】また、沸騰部における管路の内部に、周囲
に複数の開口を備えた円筒部材を設けたため、沸騰核の
発生や気泡の成長が、液冷媒の影響を受けることなく促
進され、沸騰部での伝熱効率を、冷媒管路内壁を複雑化
することによるコストアップや製造性の困難さが伴うこ
となく、向上させることができる。
Further, since the cylindrical member provided with a plurality of openings in the periphery is provided inside the pipe in the boiling portion, the generation of boiling nuclei and the growth of bubbles are promoted without being affected by the liquid refrigerant, and the boiling occurs. It is possible to improve the heat transfer efficiency in the section without increasing the cost and making the manufacturability difficult by complicating the inner wall of the refrigerant pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す電子冷却冷蔵庫の側
面断面図である。
FIG. 1 is a side sectional view of an electronic cooling refrigerator showing an embodiment of the present invention.

【図2】図1のB−B断面図である。FIG. 2 is a sectional view taken along line BB of FIG.

【図3】従来のプール沸騰伝熱特性及び、本発明で行っ
たサーモサイフォン沸騰の実験データを示す特性図であ
る。
FIG. 3 is a characteristic diagram showing conventional pool boiling heat transfer characteristics and experimental data of thermosiphon boiling performed in the present invention.

【図4】冷媒管路の概略的な全体構成図である。FIG. 4 is a schematic overall configuration diagram of a refrigerant pipe line.

【図5】図4の冷媒管路の沸騰部に挿入される金網の斜
視図である。
5 is a perspective view of a wire mesh inserted into a boiling portion of the refrigerant pipe line of FIG. 4. FIG.

【図6】図4の冷媒管路の沸騰部における縦断面図であ
る。
6 is a vertical cross-sectional view of a boiling portion of the refrigerant pipe line of FIG.

【図7】図4の冷媒管路の沸騰部における横断面図であ
る。
7 is a cross-sectional view of the boiling portion of the refrigerant pipe line of FIG.

【図8】溝付きの冷媒管路の沸騰部における加熱源入力
と熱伝達率との関係を、金網を挿入した場合と、挿入し
ない場合とで比較して示した熱伝達率特性図である。
FIG. 8 is a heat transfer coefficient characteristic diagram showing a relationship between a heat source input and a heat transfer coefficient in a boiling portion of a grooved refrigerant pipe, comparing the case where a wire net is inserted and the case where the wire net is not inserted. ..

【図9】電子冷却素子の特性図である。FIG. 9 is a characteristic diagram of an electronic cooling element.

【図10】従来例を示す電子冷却冷蔵庫の側面断面図で
ある。
FIG. 10 is a side sectional view of an electronic cooling refrigerator showing a conventional example.

【図11】図10のA−A断面図である。11 is a cross-sectional view taken along the line AA of FIG.

【図12】従来の冷媒配管の概略的な全体構成図であ
る。
FIG. 12 is a schematic overall configuration diagram of a conventional refrigerant pipe.

【図13】従来のトンネル構造をもつ沸騰伝熱面の説明
図である。
FIG. 13 is an explanatory diagram of a boiling heat transfer surface having a conventional tunnel structure.

【図14】従来の溝付き管での沸騰現象を示す説明図で
ある。
FIG. 14 is an explanatory diagram showing a boiling phenomenon in a conventional grooved tube.

【符号の説明】[Explanation of symbols]

53 電子冷却素子(加熱源) 57 放熱用ブロック 63 冷媒管路 63a 沸騰部 63b 凝縮部 75 金網(円筒部材) 53 Electronic Cooling Element (Heating Source) 57 Heat Dissipation Block 63 Refrigerant Pipeline 63a Boiling Section 63b Condensing Section 75 Wire Mesh (Cylindrical Member)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部に封入された冷媒が加熱源から吸熱
して沸騰する沸騰部と、冷媒が周囲に放熱して凝縮する
凝縮部とが、閉じた管路で接続されて構成される自然循
環型サーモサイフォンにおいて、前記加熱源に接触する
放熱用ブロックを前記沸騰部の周囲に接触して設け、前
記放熱用ブロック内の沸騰部を鉛直線に対し傾斜して設
けたことを特徴とする自然循環型サーモサイフォン。
1. A natural structure constructed by connecting a boiling portion in which a refrigerant enclosed therein boils by absorbing heat from a heat source and a condensing portion in which the refrigerant radiates heat to the surroundings and condenses in a closed pipeline. In the circulation type thermosiphon, a heat radiation block in contact with the heating source is provided in contact with the periphery of the boiling portion, and the boiling portion in the heat radiation block is inclined with respect to a vertical line. Natural circulation type thermosiphon.
【請求項2】 内部に封入された冷媒が加熱源から吸熱
して沸騰する沸騰部と、冷媒が周囲に放熱して凝縮する
凝縮部とが、閉じた管路で接続されて構成される自然循
環型サーモサイフォンにおいて、前記沸騰部における管
路内に、周囲に複数の開口を備えた円筒部材を設けたこ
とを特徴とする自然循環型サーモサイフォン。
2. A natural structure constituted by connecting a boiling portion in which a refrigerant enclosed therein boils by absorbing heat from a heat source and a condensing portion in which the refrigerant radiates heat to the surroundings and condenses in a closed pipeline. In the circulation type thermosiphon, a natural circulation type thermosiphon is characterized in that a cylindrical member having a plurality of openings in the periphery is provided in the pipe line in the boiling portion.
JP14945792A 1992-06-09 1992-06-09 Natural circulation type thermosiphon Pending JPH05340656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14945792A JPH05340656A (en) 1992-06-09 1992-06-09 Natural circulation type thermosiphon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14945792A JPH05340656A (en) 1992-06-09 1992-06-09 Natural circulation type thermosiphon

Publications (1)

Publication Number Publication Date
JPH05340656A true JPH05340656A (en) 1993-12-21

Family

ID=15475542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14945792A Pending JPH05340656A (en) 1992-06-09 1992-06-09 Natural circulation type thermosiphon

Country Status (1)

Country Link
JP (1) JPH05340656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419318B1 (en) * 2000-12-07 2004-02-19 한국전력공사 Decay heat removal apparatus using the thermosyphon in the liquid metal reactor
JP2008249314A (en) * 2007-03-30 2008-10-16 Nec Corp Thermosiphon type boiling cooler
JP2013002877A (en) * 2011-06-14 2013-01-07 Toshiba Corp Cooling system for reactor container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419318B1 (en) * 2000-12-07 2004-02-19 한국전력공사 Decay heat removal apparatus using the thermosyphon in the liquid metal reactor
JP2008249314A (en) * 2007-03-30 2008-10-16 Nec Corp Thermosiphon type boiling cooler
JP2013002877A (en) * 2011-06-14 2013-01-07 Toshiba Corp Cooling system for reactor container

Similar Documents

Publication Publication Date Title
KR100606283B1 (en) Heat pipe unit and heat pipe type heat exchanger
KR100746795B1 (en) Cooling appartus
TW556328B (en) Cooling device boiling and condensing refrigerant
CN207395544U (en) Phase change formula evaporator and phase change formula radiator with radiating fin
US20050224217A1 (en) Multiple evaporator heat pipe assisted heat sink
US7093647B2 (en) Ebullition cooling device for heat generating component
JP2002013885A (en) Thermo-siphon for refrigerator
JPH05340656A (en) Natural circulation type thermosiphon
JPH08204075A (en) Plate-fin type element cooler
JP3887857B2 (en) Boiling cooling device and casing cooling device using the same
JPH06120382A (en) Semiconductor cooling equipment
JP2663775B2 (en) Liquid-filled evaporator
CN207118203U (en) Phase change evaporator and phase-change heat sink
JP3893651B2 (en) Boiling cooling device and casing cooling device using the same
CN209299636U (en) Condenser and radiator
JPH0653376A (en) Unit for cooling semiconductor device
JPH08186208A (en) Boiling cooling device
JP3810119B2 (en) Boiling cooler
CN218993562U (en) Portable air conditioner
CN117084910B (en) Air wave therapeutic apparatus with adjustable cold and hot compress temperature
JP4001607B2 (en) Stirling refrigerator
JP2003139417A (en) Cooling system
WO2000062302A1 (en) Computer cooling device
JP3975252B2 (en) Boiling cooler for electric vehicles
JP2000022377A (en) Boiling cooler