JPH05340640A - Liquid helium cooling magnetic refrigerator - Google Patents

Liquid helium cooling magnetic refrigerator

Info

Publication number
JPH05340640A
JPH05340640A JP4174675A JP17467592A JPH05340640A JP H05340640 A JPH05340640 A JP H05340640A JP 4174675 A JP4174675 A JP 4174675A JP 17467592 A JP17467592 A JP 17467592A JP H05340640 A JPH05340640 A JP H05340640A
Authority
JP
Japan
Prior art keywords
magnetic
helium
tank
temperature side
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4174675A
Other languages
Japanese (ja)
Other versions
JP3046457B2 (en
Inventor
Yoshiro Saji
吉郎 佐治
Hiroaki Toda
博章 戸田
Tetsuo Takagi
鉄雄 高木
Takao Sugioka
孝雄 杉岡
Masaru Inoue
勝 井上
Kohei Otani
光平 大谷
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Gas Kogyo Co Ltd
Original Assignee
Koatsu Gas Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatsu Gas Kogyo Co Ltd filed Critical Koatsu Gas Kogyo Co Ltd
Priority to JP4174675A priority Critical patent/JP3046457B2/en
Publication of JPH05340640A publication Critical patent/JPH05340640A/en
Application granted granted Critical
Publication of JP3046457B2 publication Critical patent/JP3046457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To improve heat transfer between a magnetic actuator and liquid helium by so composing the actuator reciprocating between a hollow part of a superconducting coil and a hollow part of a cylindrical superconducting magnetic shield as to be brought into surface contact with a heat transfer member connected to a low temperature side helium tank. CONSTITUTION:A hollow superconducting magnetic shield 3 is so disposed near at hand coaxially with an axial center direction of a superconducting coil 1 for generating a strong magnetic field, and a vacuum chamber 6 is formed to communicate the hollow part of the shield 3 with that of the coil 1. A columnar magnetic actuator 2 attached to an end of an elevation rod 71 in an elevation unit 7 of an upper part of a vacuum heat insulation tank 8 is vertically movably disposed in the chamber 6, a high temperature side helium liquid tank 4 is provided at an end of the chamber 6 at the side of the coil 1, and a low temperature side helium liquid tank 5 is provided at an end of the tank 4 at the side of the shield 3. A smooth flat surfacelike end face is provided at the actuator 2, brought into surface contact with a flat surface of a heat transfer member 52 formed on the tank 5 to satisfactorily transfer heat between the actuator and the helium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導コイルの中空部
の強磁界中とその近傍に配置された筒状超電導磁気遮蔽
体の中空部の零磁界との間を往復移動する磁性作動体の
発生する寒冷を利用して液体ヘリウムの超低温域で使用
される磁気冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic actuator which reciprocates between a strong magnetic field in the hollow portion of a superconducting coil and a zero magnetic field in the hollow portion of a cylindrical superconducting magnetic shield arranged in the vicinity thereof. The present invention relates to a magnetic refrigerator used in the extremely low temperature range of liquid helium by utilizing the cold generated.

【0002】[0002]

【従来の技術】液体ヘリウム温度以下の超低温を連続的
プロセスで達成維持するのに、断熱消磁過程を利用した
磁気冷凍機が使用されている。磁気冷凍機は、超電導マ
グネット等の形成する強磁界中と、その近傍の零磁界中
とを、磁界強度変化に対するエントロピー変化の大きい
物質、例えばガドリニウム−カリウム−ガーネットなど
の磁性作動体を往復移動又は回転移動させて、強磁界中
で磁性作動体が発する発熱を高温側熱源に伝達し、零磁
界中の断熱消磁により磁性作動体が発生する寒冷を低温
側熱源に伝達する過程を繰り返すことにより低温側熱源
を定常的に冷却するものである。
2. Description of the Related Art A magnetic refrigerator utilizing an adiabatic degaussing process is used to achieve and maintain an ultralow temperature below liquid helium temperature in a continuous process. The magnetic refrigerator is a strong magnetic field formed by a superconducting magnet or the like, and a zero magnetic field in the vicinity thereof, a substance having a large entropy change with respect to a change in the magnetic field strength, such as a magnetic working body such as gadolinium-potassium-garnet. By rotating and moving, the heat generated by the magnetic actuator in a strong magnetic field is transferred to the high temperature side heat source, and the cold generated by the magnetic actuator due to adiabatic demagnetization in the zero magnetic field is transferred to the low temperature side heat source. The side heat source is constantly cooled.

【0003】このような非静止型磁気冷凍機は、超電導
マグネットを永久電流モードで使用して、コイル励磁電
流断続によるジュール熱損を回避できる利点があるが、
他方、消磁過程で利用される零磁界域が強磁界用マグネ
ットから相当の遠方にならざるを得ず、磁性作動体の移
動工程を大きくする必要がある。これに関して、従来技
術は、対抗する一対の超電導コイルの中間位置を零磁界
に利用する方法や、反対磁界を発生させる補助的コイル
を主コイル近傍に配置して、零磁界と強磁界との離間距
離を短縮する方法が採用された。
Such a non-stationary magnetic refrigerator has an advantage that the superconducting magnet can be used in the permanent current mode to avoid Joule heat loss due to interruption of the coil exciting current.
On the other hand, the zero magnetic field region used in the degaussing process is inevitably far away from the strong magnetic field magnet, and it is necessary to increase the moving process of the magnetic actuator. In this regard, the conventional technique uses a method in which the intermediate position of a pair of superconducting coils that oppose each other is used for a zero magnetic field, or arranges an auxiliary coil that generates an opposite magnetic field in the vicinity of the main coil to separate the zero magnetic field from the strong magnetic field. The method of shortening the distance was adopted.

【0004】本発明者らは、既に、超電導コイルと共軸
状に円筒状の超電導体を配置して、超伝導体の磁気遮蔽
効果を利用して超電導体の中空部に形成される完全零磁
界を消磁空間とすることにより、磁性作動体の平行移動
行程を短縮した磁気冷凍機を提案した(特願平2−32
5586)。
The present inventors have already arranged a cylindrical superconductor coaxially with the superconducting coil and utilized the magnetic shielding effect of the superconductor to form a perfect zero in the hollow portion of the superconductor. We proposed a magnetic refrigerator in which the parallel movement stroke of the magnetic actuator was shortened by making the magnetic field a degaussing space (Japanese Patent Application No. 2-32).
5586).

【0005】また、非静止型冷凍機では、往復移動する
磁性作動体が励磁過程で発する発熱を高温側熱源に伝達
し、次の消磁過程で発する寒冷を低温側熱源に有効に伝
達するための熱スイッチ機構を必要とするが、従来技術
においては、高温側熱スイッチは、補助冷却器からの伝
熱部材と磁性作動体を機械的に熱接触させ、他方、低温
側熱スイッチは、例えば、気体ヘリウムを磁性作動体の
表面で接触させて液化した低温のヘリウムを容器中に滴
下貯留する方式が採用されていた。
Further, in the non-stationary refrigerator, the reciprocating magnetic actuating body transmits heat generated in the exciting process to the high temperature side heat source, and effectively transmits cold generated in the next demagnetizing process to the low temperature side heat source. Although a thermal switch mechanism is required, in the prior art, the high temperature side thermal switch mechanically makes thermal contact between the heat transfer member from the auxiliary cooler and the magnetic actuator, while the low temperature side thermal switch, for example, A method has been adopted in which gaseous helium is brought into contact with the surface of the magnetic actuator to liquefy and liquefy low temperature helium in a container.

【0006】[0006]

【発明が解決しようとする課題】非静止型磁気冷凍機で
は、磁性作動体が繰り返し移動するので、低温側の熱源
と熱交換するには、静止型磁気冷凍機のような巧妙な熱
スイッチ機構は採用できず、液槽上部のガス相と接触さ
せて、ガスを冷却液化する方法に限られていた。
In the non-static type magnetic refrigerator, the magnetic actuator repeatedly moves, so in order to exchange heat with the heat source on the low temperature side, a clever heat switch mechanism like a static magnetic refrigerator is used. However, the method was limited to the method of cooling and liquefying the gas by bringing it into contact with the gas phase in the upper part of the liquid tank.

【0007】低温側熱源を液体ヘリウム浴として超流動
ヘリウムを定常的に得る冷凍機では、超低温のためヘリ
ウムの平衡蒸気圧が低いので、磁性作動体とヘリウムガ
スの熱伝達率が小さくて、ヘリウムガスの冷却液化速度
が小さくなり、磁性作動体の往復周期を速くし得ず、冷
凍機の効率が低下するものであった。そこで、液体ヘリ
ウムを蒸気相を介在させずに、超流動ヘリウム温度以下
に効率良く冷却させる必要がある。特に、宇宙空間で使
用される磁気冷凍機では、密閉容器中の超流動ヘリウム
を冷却する必要がある。
In a refrigerator that constantly obtains superfluid helium by using a liquid helium bath as a heat source on the low temperature side, the equilibrium vapor pressure of helium is low because of the ultralow temperature, so the heat transfer coefficient between the magnetic actuator and helium gas is small, and helium is small. The cooling liquefaction rate of the gas is reduced, the reciprocating cycle of the magnetic actuator cannot be increased, and the efficiency of the refrigerator is reduced. Therefore, it is necessary to efficiently cool liquid helium to a temperature below the superfluid helium temperature without interposing a vapor phase. Particularly, in a magnetic refrigerator used in outer space, it is necessary to cool superfluid helium in a closed container.

【0008】本発明は、筒状の超伝導磁気遮蔽体の中空
部内で磁性作動体を消磁させて発生する寒冷を利用しよ
うとするものであるが、当該中空部内と冷却目的の低温
側熱源とを熱伝達可能に接続する必要があった。
The present invention is intended to utilize the cold generated by demagnetizing the magnetic actuator in the hollow portion of the cylindrical superconducting magnetic shield, and to use the inside of the hollow portion and the low temperature side heat source for cooling. Had to be connected in a heat transferable manner.

【0009】また、超伝導コイルや超伝導磁気遮蔽体の
超電導体には、液体ヘリウム温度以下では、Nb−Ti
合金などが利用できるが、フラックスジャンプその他の
不安定要素により、超伝導コイルの最大発生磁界や磁気
遮蔽体の最大遮蔽磁界の限界があり、磁気冷凍機の能力
を決める重要な要素になっていた。励磁過程の磁界強度
が一定であるとき、温度低下に伴って磁性作動体のエン
トロピー変化も低下するので消磁過程での寒冷量も低下
することになり、従って、特に、超流動ヘリウム温度以
下に冷却する際には、超伝導コイルの最大発生磁界や磁
気遮蔽体の最大遮蔽磁界を高くして、低温側の液体ヘリ
ウムを効率的に冷却する必要があった。超伝導コイルや
超伝導磁気遮蔽体を冷却するにはそれぞれの冷却槽中の
液体ヘリウムを強制的に蒸発させて液温を下げる方法が
あるが、液面の低下した都度液体ヘリウムを補充する必
要があり、補充によって液温が上昇するなど液温変動に
よる超電導体の上記不安定化は免れなかった。
Further, in a superconductor of a superconducting coil or a superconducting magnetic shield, Nb-Ti is used at a temperature below liquid helium.
Alloys can be used, but due to flux jump and other unstable factors, there was a limit to the maximum magnetic field generated by the superconducting coil and the maximum magnetic field shielded by the magnetic shield, which was an important factor in determining the capacity of the magnetic refrigerator. .. When the magnetic field strength in the excitation process is constant, the entropy change of the magnetic actuator also decreases with the temperature decrease, so the amount of cold in the demagnetization process also decreases, and therefore, in particular, cooling below the superfluid helium temperature. In doing so, it was necessary to increase the maximum generated magnetic field of the superconducting coil and the maximum shielded magnetic field of the magnetic shield to efficiently cool the liquid helium on the low temperature side. In order to cool the superconducting coil and the magnetic shield, there is a method to forcibly evaporate the liquid helium in each cooling tank to lower the liquid temperature, but it is necessary to replenish the liquid helium each time the liquid level drops. Therefore, the above instability of the superconductor due to the change in the liquid temperature such as the increase in the liquid temperature due to the replenishment is unavoidable.

【0010】本発明は、以上の諸問題に鑑み、第一に、
低温側液槽の密閉容器中に充填された常圧の沸点温度程
度にある液体ヘリウムを超流動温度以下に効率的に冷却
できる磁気冷凍機を提供することであり、第二に、液体
ヘリウムの温度低下による磁性作動体の出力低下を補償
するように超伝導コイルの最大発生磁界や磁気遮蔽体の
最大遮蔽磁界を高くするような冷凍プロセスを提供する
ことを目的とするものである。
In view of the above problems, the present invention is, first of all,
It is to provide a magnetic refrigerator capable of efficiently cooling liquid helium at a boiling temperature of normal pressure filled in a closed container of a low temperature side liquid tank to a superfluid temperature or lower. It is an object of the present invention to provide a refrigeration process in which the maximum generated magnetic field of a superconducting coil or the maximum shielded magnetic field of a magnetic shield is increased so as to compensate for a decrease in output of a magnetic actuator due to a decrease in temperature.

【0011】[0011]

【課題を解決するための手段】本発明の磁気冷凍機は、
強磁界を発生させる超電導コイルと、当該超電コイルの
軸心方向に共軸状に近接列設された中空状超電導磁気遮
蔽体と、当該超電導コイルの中空部と当該磁気遮蔽体の
中空部とに挿通して形成された真空室と、当該真空室内
に、当該超電導コイル中空部と当該磁気遮蔽体中空部と
の間で往復機構により往復移動可能に配置された磁性作
動体と、当該真空室の超電導コイル側端部に当該磁性作
動体と接触伝熱可能に配置させた高温側液槽と、当該真
空室の磁気遮蔽体側端部に当該磁性作動体と接触伝熱可
能に配置された低温側液槽とから成るものであって、超
電導コイル中空部で励磁された磁性作動体の発熱を高温
側液槽に伝熱冷却する過程と磁気遮蔽体中空部内で消磁
させた磁性作動体の寒冷により低温側液槽の液体を冷却
する過程と繰り返すようにした磁気冷凍機である。
The magnetic refrigerator of the present invention comprises:
A superconducting coil that generates a strong magnetic field, a hollow superconducting magnetic shield that is coaxially arranged in a row in the axial direction of the superconducting coil, a hollow portion of the superconducting coil, and a hollow portion of the magnetic shield. A vacuum chamber formed by being inserted into the vacuum chamber, a magnetic actuator disposed in the vacuum chamber so as to be capable of reciprocating by a reciprocating mechanism between the superconducting coil hollow portion and the magnetic shield hollow portion, and the vacuum chamber. At the end of the superconducting coil on the high temperature side, which is arranged so as to be able to transfer heat to and from the magnetic actuator, and at the end of the vacuum chamber on the side of the magnetic shield, which is so arranged as to be in contact with the magnetic actuator and at low temperature. Which consists of a side liquid tank, the process of heat transfer cooling of the heat of the magnetic actuator excited in the hollow portion of the superconducting coil to the high temperature side liquid tank and the cooling of the magnetic actuator demagnetized in the hollow portion of the magnetic shield. Repeat the process of cooling the liquid in the low temperature side liquid tank by As is the magnetic refrigerator.

【0012】本発明の磁気冷凍機においては、超電導コ
イルと超電導磁気遮蔽体とは、同一又は別個の冷却槽中
の液体に浸漬されて、臨界温度以下に冷却され、超電導
状態が維持される。冷却槽中の液体にヘリウムを利用す
る場合には、当該超電導コイルのコイル冷却槽と当該磁
気遮蔽体の冷却槽とは、実施例に示すように、高温側液
体ヘリウム槽に連通して又は一体に兼用されてもよい。
In the magnetic refrigerator of the present invention, the superconducting coil and the superconducting magnetic shield are immersed in the liquid in the same or different cooling tank and cooled to the critical temperature or lower to maintain the superconducting state. When helium is used as the liquid in the cooling tank, the coil cooling tank of the superconducting coil and the cooling tank of the magnetic shield are connected to or integrated with the high temperature side liquid helium tank as shown in the embodiment. May be combined with.

【0013】低温側液体ヘリウム槽は、真空室の磁気遮
蔽体側端部に、伝熱部材を介して、磁性作動体と接触伝
熱可能に固定されて配置され、他方、磁気遮蔽体とは断
熱部材を介装して熱的に孤立して配置される。低温側液
体ヘリウム槽には、概ね1気圧程度の加圧状態の液体ヘ
リウムが充填されており、当該ヘリウム槽には気体が存
在しない状態である。
The low temperature side liquid helium tank is arranged at the end of the vacuum chamber on the side of the magnetic shield so as to be in contact with the magnetic actuating member via the heat transfer member so as to be able to transfer heat. On the other hand, it is insulated from the magnetic shield. The members are disposed so as to be thermally isolated from each other. The low temperature side liquid helium tank is filled with liquid helium in a pressurized state of about 1 atm, and no gas is present in the helium tank.

【0014】磁性作動体と低温側液体ヘリウム槽との間
の最も簡便な接触伝熱手段は、磁性作動体の消磁位置
で、即ち、磁気遮蔽体の中空部に向けて突設された伝熱
部材を当該液体ヘリウム槽に液体の流動接触可能に接続
して、当該端面を磁性作動体の端面と接触させるもので
ある。この場合に、伝熱部材の端面と磁性作動の端面を
鏡面仕上げされた平滑な平面とされる。
The simplest contact heat transfer means between the magnetic actuator and the low temperature side liquid helium tank is the heat transfer projecting at the demagnetizing position of the magnetic actuator, that is, toward the hollow portion of the magnetic shield. A member is connected to the liquid helium tank so that the liquid can flow and come in contact with the end surface of the magnetic actuator. In this case, the end surface of the heat transfer member and the end surface of the magnetic actuation are mirror-finished smooth flat surfaces.

【0015】本発明には、特に低温側液体ヘリウム槽
が、超伝導磁気遮蔽体を液体ヘリウム中で冷却する冷却
槽と連通して、又は一体に形成されて兼用され、上記の
超電導コイルの冷却槽とは真空槽又は断熱部材を介在さ
せて熱的に隔離された磁気冷凍機が含まれる。
In the present invention, in particular, the low temperature side liquid helium tank is also used in communication with or integrally formed with a cooling tank for cooling the superconducting magnetic shield in the liquid helium. The tank includes a vacuum tank or a magnetic refrigerator that is thermally isolated by interposing a heat insulating member.

【0016】又、低温側液体ヘリウム槽が、超伝導磁気
遮蔽体を冷却する遮蔽体冷却槽と共に、超電導コイルを
液体ヘリウム中で冷却するコイル冷却槽と連通して、又
は一体に形成されて兼用され、上記の高温側液体ヘリウ
ム槽とは真空槽又は断熱部材を介在させて熱的に隔離さ
れた磁気冷凍機が好ましく利用される。
Further, the low temperature side liquid helium tank is connected to the coil cooling tank for cooling the superconducting coil in the liquid helium together with the shield cooling tank for cooling the superconducting magnetic shield, or formed integrally. A magnetic refrigerator that is thermally isolated from the above-mentioned high temperature side liquid helium tank by a vacuum tank or a heat insulating member is preferably used.

【0017】[0017]

【作用】超電導コイルと筒状の超電導磁気遮蔽体とが共
軸状に列設固定されており、超電導コイルの中空部が強
磁界空間を形成し、他方、超電導磁気遮蔽体の中空部に
は超電導コイルの形成する磁場が浸透しないので零磁界
空間を形成する。
[Operation] The superconducting coil and the cylindrical superconducting magnetic shield are coaxially arranged and fixed, and the hollow portion of the superconducting coil forms a strong magnetic field space, while the superconducting magnetic shield has a hollow portion. Since the magnetic field formed by the superconducting coil does not penetrate, a zero magnetic field space is formed.

【0018】超電導コイルと上記磁気遮蔽体との中空部
には、真空室が形成されて、往復機構に連結された磁性
作動体が当該真空室内を往復移動可能に配置されている
から、磁性作動体は、上記超電導コイルの強磁界空間で
励磁されて発熱し、超電導磁気遮蔽体の零磁界空間では
消磁されて寒冷を発生する。磁性作動体は、真空室内に
あるから、高真空中で熱的に隔離されている。
A vacuum chamber is formed in the hollow portion between the superconducting coil and the magnetic shield, and the magnetic actuator connected to the reciprocating mechanism is reciprocally movable in the vacuum chamber. The body is excited in the strong magnetic field space of the superconducting coil to generate heat, and is demagnetized in the zero magnetic field space of the superconducting magnetic shield to generate cold. Since the magnetic actuator is in the vacuum chamber, it is thermally isolated in a high vacuum.

【0019】真空室の超電導コイル側端部には、高温側
液槽である高温側液体ヘリウム槽により冷却された伝熱
部材が、上記磁性作動体と接触可能に配置されているか
ら、励磁過程での磁性作動体の発熱を液体ヘリウム浴に
伝熱して、冷却される。
At the end of the vacuum chamber on the side of the superconducting coil, the heat transfer member cooled by the high temperature side liquid helium tank, which is the high temperature side liquid tank, is arranged so as to be able to come into contact with the magnetic actuator, so that the exciting process is performed. The heat generated by the magnetic actuator in (1) is transferred to the liquid helium bath to be cooled.

【0020】真空室の他方の端部、即ち磁気遮蔽体側端
部に固定された低温側ヘリウム液槽の低温側伝熱部材が
上記磁性作動体と面接触するので、磁性作動体の消磁空
間で発生する寒冷が当該液槽の液体ヘリウムを冷却す
る。低温側伝熱部材の端面と、この端面に接する磁性作
動体の接触面とが、共に鏡面仕上げされたような平滑な
平面であるので、磁性作動体と低温側液槽中のヘリウム
浴との間の熱伝達率を高める。
Since the low temperature side heat transfer member of the low temperature side helium liquid tank fixed to the other end of the vacuum chamber, that is, the end portion on the magnetic shield side, comes into surface contact with the magnetic actuation body, so that the demagnetization space of the magnetic actuation body is maintained. The generated cold cools the liquid helium in the liquid tank. Since the end surface of the low temperature side heat transfer member and the contact surface of the magnetic actuating body that is in contact with this end surface are both smooth flat surfaces that are mirror-finished, the magnetic actuating body and the helium bath in the low temperature side liquid tank are Increase the heat transfer coefficient between.

【0021】液体ヘリウムは通常大気圧程度の加圧状態
におくと、槽内にはヘリウム気相は生じないので、液体
ヘリウムを気相を介在させることなく低温側伝熱部材に
直接接触するので、液体ヘリウム浴と低温側伝熱部材の
熱伝達率が良好に維持できる。従って、低温側液体ヘリ
ウムを超流動ヘリウム温度以下にすることが容易とな
る。
When liquid helium is usually kept under a pressure of about atmospheric pressure, a helium gas phase does not occur in the tank, and therefore liquid helium directly contacts the low temperature side heat transfer member without interposing the gas phase. The heat transfer coefficients of the liquid helium bath and the low temperature side heat transfer member can be maintained well. Therefore, it becomes easy to bring the low temperature side liquid helium to the superfluid helium temperature or lower.

【0022】低温側液体ヘリウム槽が超電導磁気遮蔽体
を収容して、同時に低温側液体ヘリウム浴で冷却する場
合は、当該磁気遮蔽体の超電導体の温度低下に伴い、超
電導体のフラックスジャンプによる超電導焼失現象は生
じ難くなり、磁気遮蔽体の最大磁気遮蔽量が増加する。
そこで、磁気冷凍機の運転初期は比較的低い磁界強度で
励磁して運転し、低温になるに伴い、超電導コイルの励
磁電流を増加して磁界強度を高めることができ、磁性作
動体の励磁・消磁間のエントロピー変化の低下の補償な
いしは増大を実現し得て、超流動ヘリウム用の磁気冷凍
機としての効率の維持を図る。
When the low temperature side liquid helium tank contains the superconducting magnetic shield and is cooled at the same time by the low temperature side liquid helium bath, the superconducting flux jumps the superconductor as the temperature of the superconductor of the magnetic shield decreases. The burning phenomenon is less likely to occur, and the maximum magnetic shield amount of the magnetic shield increases.
Therefore, in the initial stage of operation of the magnetic refrigerator, the magnetic refrigerator is excited and operated with a relatively low magnetic field strength, and as the temperature becomes lower, the exciting current of the superconducting coil can be increased to increase the magnetic field strength. Compensation for or increase in the decrease in entropy change during demagnetization can be realized to maintain the efficiency as a magnetic refrigerator for superfluid helium.

【0023】特に、低温側液体ヘリウム槽が超電導磁気
遮蔽体と超電導コイルの両方を収容して、同時に低温側
液体ヘリウム浴で冷却する場合は、超電導コイルの低温
冷却により、安定して運転できる最大発生磁界を高くす
ることができるので、運転中の低温側液体ヘリウムの温
度低下に従って最大発生磁界を増加制御し、超低温ヘリ
ウムの温度においても磁気冷凍機としての効率の維持が
可能となる。。
In particular, when the low temperature side liquid helium tank accommodates both the superconducting magnetic shield and the superconducting coil and is cooled by the low temperature side liquid helium bath at the same time, the superconducting coil is cooled at a low temperature to ensure stable operation. Since the generated magnetic field can be increased, the maximum generated magnetic field can be controlled to increase according to the temperature decrease of the low temperature side liquid helium during operation, and the efficiency as a magnetic refrigerator can be maintained even at the temperature of ultralow temperature helium. .

【0024】[0024]

【実施例】本発明の磁気冷凍機の実施例を、図面に基づ
いて以下に説明する。
Embodiments of the magnetic refrigerator of the present invention will be described below with reference to the drawings.

【0025】図1は、液体ヘリウム冷却用の磁気冷凍機
の概要断面図であるが、真空断熱容器8の内側に、二重
筒式の液体窒素を満たした筒状容器81が配置固定さ
れ、その内側には、コイル冷却と遮蔽体冷却とを兼ねた
円筒状の高温側液体ヘリウム槽4が固定されており、高
温側ヘリウム槽4の下側には、環状層厚の断熱板9を介
して、低温側液体ヘリウム槽5が固定されている。
FIG. 1 is a schematic cross-sectional view of a magnetic refrigerator for cooling liquid helium. A double cylindrical tubular container 81 filled with liquid nitrogen is arranged and fixed inside the vacuum heat insulating container 8. A cylindrical high-temperature-side liquid helium tank 4 serving both for coil cooling and shield cooling is fixed inside thereof, and below the high-temperature-side helium tank 4, a heat insulating plate 9 having an annular layer thickness is interposed. The low temperature side liquid helium tank 5 is fixed.

【0026】高温側ヘリウム槽4の内側には、超電導コ
イル1とその下方には、円筒状の超電導磁気遮蔽体3が
同軸状に配置され、超電導コイル1の中空部のコイル捲
回用の円筒体11と、磁気遮蔽体3の中空部の磁気遮蔽
体保持用の円筒体31とは、気密的に接続されて、円筒
体31の下端の鍔輪32が高温側ヘリウム槽4の底部3
2に一体にかつ気密的接合されている。
Inside the high temperature side helium tank 4, the superconducting coil 1 and a cylindrical superconducting magnetic shield 3 below the superconducting coil 1 are coaxially arranged, and the hollow portion of the superconducting coil 1 has a cylinder for coil winding. The body 11 and the cylindrical body 31 for holding the magnetic shield in the hollow portion of the magnetic shield 3 are air-tightly connected, and the collar ring 32 at the lower end of the cylindrical body 31 forms the bottom portion 3 of the high temperature side helium tank 4.
The two are integrally and airtightly joined.

【0027】超電導コイル1の中空部円筒体11の上部
には、上面が高温側ヘリウム槽4の液体ヘリウム41中
に露出し且つ下端が円筒体11内に挿入された高温側伝
熱部材42が気密的に配置固定されている。
A high temperature side heat transfer member 42 having an upper surface exposed in the liquid helium 41 of the high temperature side helium tank 4 and a lower end inserted into the cylindrical body 11 is provided above the hollow cylindrical body 11 of the superconducting coil 1. Placed and fixed in an airtight manner.

【0028】高温側液体ヘリウム槽4の上面は断熱性の
フランジ83により閉止され、フランジ83には圧力調
整弁45を介して排気ポンプ46(不図示)に接続され
ている。
The upper surface of the high temperature side liquid helium tank 4 is closed by a heat insulating flange 83, and the flange 83 is connected to an exhaust pump 46 (not shown) via a pressure adjusting valve 45.

【0029】高温側ヘリウム槽4の内側には、1気圧程
度の圧力で液体ヘリウムが充填され、圧力調整弁45に
より760〜400mmhg程度に減圧可能とされ、高
温側伝熱部材42と超電導コイル1と円筒状の超電導磁
気遮蔽体3とが浸漬されて4.2〜3.6K程度に冷却
されている。
The high temperature side helium tank 4 is filled with liquid helium at a pressure of about 1 atm, and can be depressurized to about 760 to 400 mmhg by the pressure control valve 45. The high temperature side heat transfer member 42 and the superconducting coil 1 And the cylindrical superconducting magnetic shield 3 are immersed and cooled to about 4.2 to 3.6K.

【0030】また、超電導磁気遮蔽体3の中空部円筒体
31の下端には、断熱部材9を介して、気密的に低温側
ヘリウム槽5が固定され、当該低温側へリウム槽5から
上方に突設された低温側伝熱部材52が、上記円筒体3
1内に挿入された状態で配置されている。
A low temperature side helium tank 5 is hermetically fixed to the lower end of the hollow cylindrical body 31 of the superconducting magnetic shield 3 via a heat insulating member 9, and the low temperature side helium tank 5 is moved upward from the low temperature side helium tank 5. The protruding low temperature side heat transfer member 52 is the cylindrical body 3
It is arranged in a state that it is inserted in 1.

【0031】以上のように、超電導コイル1及び磁気遮
蔽体3の中空部円筒体11、31の内側は、気密的に密
閉されて、高真空に保持されて、真空室6と成してい
る。
As described above, the insides of the hollow cylinders 11 and 31 of the superconducting coil 1 and the magnetic shield 3 are hermetically sealed and kept at a high vacuum to form the vacuum chamber 6. ..

【0032】真空室6内には、真空断熱槽8の上方面に
固定させた昇降装置7に連結された昇降ロッド71の先
側に取着された円柱状の磁性作動体2が昇降可能に配置
されている。磁性作動体2は、超電導コイル1の中空部
にあるときは、磁性作動体2の上端面21が、上述の高
温側伝熱部材42の下端面43と面着し、他方、降下し
た磁性作動体2が、超電導磁気遮蔽体3の中空部にある
ときは、低温側伝熱部材52の伝熱板54の上端面53
に面着するように調整されている。
In the vacuum chamber 6, a cylindrical magnetic actuator 2 attached to the front side of an elevating rod 71 connected to an elevating device 7 fixed to the upper surface of the vacuum heat insulating tank 8 can be moved up and down. It is arranged. When the magnetic actuator 2 is in the hollow portion of the superconducting coil 1, the upper end surface 21 of the magnetic actuator 2 is in surface contact with the lower end surface 43 of the above-mentioned high temperature side heat transfer member 42, while the magnetic actuator 2 is lowered. When the body 2 is in the hollow portion of the superconducting magnetic shield 3, the upper end surface 53 of the heat transfer plate 54 of the low temperature side heat transfer member 52.
It has been adjusted to fit in.

【0033】真空断熱容器8外上方には、別体の真空筒
78が真空室6の上端と、高温側伝熱部材42及び真空
配管62により連通されて固定されている。上記昇降装
置7は、真空配管62内を挿通された昇降ロッド71
に、当該真空筒78内で、固定されたラック72が、外
部モータ(不図示)の回転軸に接続されたピニオン73
と噛合するように配置されている。外部モータの回動に
より、昇降ロッド71に取着された磁性作動体2を繰り
返し昇降移動する。そして、真空筒78を真空ポンプ6
4(不図示)によって減圧することにより、真空室6内
を高真空に維持することができる。
Above the outside of the vacuum insulation container 8, a separate vacuum cylinder 78 is fixed in communication with the upper end of the vacuum chamber 6 by the high temperature side heat transfer member 42 and the vacuum pipe 62. The lifting device 7 includes a lifting rod 71 inserted through the vacuum pipe 62.
In the vacuum cylinder 78, the fixed rack 72 is connected to the pinion 73 connected to the rotating shaft of an external motor (not shown).
It is arranged so as to mesh with. The magnetic actuator 2 attached to the elevating rod 71 is repeatedly moved up and down by the rotation of the external motor. Then, the vacuum cylinder 78 is attached to the vacuum pump 6
By reducing the pressure by 4 (not shown), the inside of the vacuum chamber 6 can be maintained at a high vacuum.

【0034】また、低温側ヘリウム槽5には、ヘリウム
供給管56を通じて大気圧近傍に加圧された液体ヘリウ
ム51が充填されて、伝熱板54の内面と接触してい
る。また、伝熱板54の下面から当該ヘリウム槽5内に
向けて同心筒状薄層体の伝熱体56が多数突設されてい
る。
The low temperature side helium tank 5 is filled with liquid helium 51 pressurized to near atmospheric pressure through a helium supply pipe 56 and is in contact with the inner surface of the heat transfer plate 54. Further, a large number of concentric cylindrical thin-layer heat transfer bodies 56 project from the lower surface of the heat transfer plate 54 toward the inside of the helium tank 5.

【0035】以上のような磁気冷凍機の構造において、
超電導コイル1は、Nb−Ti合金の細線が多数回巻回
されたもので、液体ヘリウム41に浸漬冷却されてお
り、永久電流によりコイル中空部では定常的に3〜5T
の強磁界にある。
In the structure of the magnetic refrigerator as described above,
The superconducting coil 1 is a Nb-Ti alloy thin wire wound many times, is immersed and cooled in liquid helium 41, and has a constant current of 3 to 5T in the coil hollow portion due to a permanent current.
In a strong magnetic field.

【0036】超電導磁気遮蔽体3は、超電導体のNb−
Ti合金の円環状薄層を常電導性金属例えばAl,C
u,又はAgの円環状薄層と交互に多数層積層して形成
された円筒状を成し、両端は、中空部内筒体31の両端
に固定された一対の鍔輪32,32との間に挟持されて
いる。磁気遮蔽体3の中空部には上方の超電導コイルか
らの強磁場を完全に遮蔽して、完全零磁場が形成されて
いる。磁気遮蔽体3を超電導体の単体とせずに、Al等
の電導度及び熱伝導の高い金属の薄層を介装することに
より、超電導体層に発生する磁束流動を極限に、かつ、
磁束流動に伴う発熱を液体ヘリウムに伝熱放散して、冷
却を容易にすることができ、フラックスジャンプに至る
不安定現象を防止することができて、3〜5Tの強磁界
を安定して遮蔽することができるのである。
The superconducting magnetic shield 3 is made of Nb- of the superconductor.
An annular thin layer of Ti alloy is formed of a normal conductive metal such as Al or C.
It has a cylindrical shape formed by alternately laminating a plurality of annular thin layers of u or Ag, and both ends thereof are between a pair of collar rings 32, 32 fixed to both ends of the hollow portion inner tubular body 31. Is sandwiched between. In the hollow portion of the magnetic shield 3, the strong magnetic field from the upper superconducting coil is completely shielded and a completely zero magnetic field is formed. The magnetic shield 3 is not a single superconductor, but a thin layer of a metal having high electrical conductivity and high thermal conductivity such as Al is interposed to limit the magnetic flux flow generated in the superconductor layer, and
The heat generated by the flow of magnetic flux can be dissipated and dissipated to liquid helium to facilitate cooling, prevent an unstable phenomenon leading to a flux jump, and stably shield a strong magnetic field of 3 to 5T. You can do it.

【0037】磁性作動体2は、主にガドリニウム−ガリ
ウム−ガーネットの好ましくは単結晶体が使用され円柱
状となし上端面21及び下端面22は鏡面研摩されて平
滑な平面とされている。また、伝熱部材42、54は、
共に熱伝導度の大きいAl、Cu又はAgが使用され
る。他方、断熱部材には、ガラス繊維強化合成樹脂体
が、低温強度と熱伝導度の観点から好ましく使用され
る。
The magnetic actuator 2 is preferably made of gadolinium-gallium-garnet, preferably a single crystal, and has no cylindrical shape. The upper end surface 21 and the lower end surface 22 are mirror-polished to be a smooth flat surface. Further, the heat transfer members 42 and 54 are
Both are made of Al, Cu, or Ag having high thermal conductivity. On the other hand, a glass fiber reinforced synthetic resin body is preferably used for the heat insulating member from the viewpoint of low temperature strength and thermal conductivity.

【0038】図1は、励磁過程を示すが、超電導コイル
1の中空部の強磁界中で、磁性作動体2は断熱励磁され
て発熱するが、その熱は、磁性作動体2の端面21が接
触する伝熱部材42の端面43を伝達して伝熱部材42
から液体ヘリウム41に吸熱されるので、磁性作動体2
は液体ヘリウム温度近くまで冷却される。液体ヘリウム
41は、伝熱部材42に突設された多数のフィンにより
加熱されるが、液面44で蒸発して蒸発潜熱により一定
温度に保持されている。
FIG. 1 shows the excitation process. In the strong magnetic field in the hollow portion of the superconducting coil 1, the magnetic actuator 2 is adiabatically excited and generates heat. The heat is generated by the end face 21 of the magnetic actuator 2. The heat transfer member 42 is transmitted by transmitting the contacting end surface 43 of the heat transfer member 42.
Is absorbed by the liquid helium 41 from the magnetic activating element 2
Is cooled to near liquid helium temperature. The liquid helium 41 is heated by a large number of fins projecting from the heat transfer member 42, but is evaporated at the liquid surface 44 and kept at a constant temperature by the latent heat of evaporation.

【0039】図2は、消磁過程を示すが、昇降ロッド7
1を下降させると、磁性作動体2は、磁気遮蔽体3の中
空部に収容して冷却されて寒冷を発するが、磁性作動体
2の下面22と接触する伝熱板54を伝導して、低温側
液体ヘリウム51の熱を奪って冷却する。磁性作動体2
の下面22と、低温側伝熱部材52の伝熱板54上面5
3とは鏡面とされ、磁性作動体2の下降の際に、磁性作
動体の下面が伝熱板54を押圧するので、両面53、2
2は完全に面着して熱伝達を良好に高め、磁性作動体2
と低温側ヘリウム浴41との間の熱伝導を高めることが
できる。
FIG. 2 shows the demagnetization process, but the lifting rod 7
When 1 is lowered, the magnetic actuator 2 is housed in the hollow portion of the magnetic shield 3 to be cooled and emits cold, but conducts the heat transfer plate 54 which is in contact with the lower surface 22 of the magnetic actuator 2, The heat of the low-temperature-side liquid helium 51 is taken and cooled. Magnetic actuator 2
Lower surface 22 and the heat transfer plate 54 upper surface 5 of the low temperature side heat transfer member 52
3 is a mirror surface, and the lower surface of the magnetic actuator presses the heat transfer plate 54 when the magnetic actuator 2 descends.
No. 2 completely faces the surface to enhance heat transfer, and magnetic actuator 2
The heat conduction between the low temperature side helium bath 41 and the low temperature side helium bath 41 can be enhanced.

【0040】低温側液体ヘリウム51は、操作当初は、
高温側液体ヘリウム41と同じ温度(1気圧下で4.2
K)にあるが、上記の励磁過程と消磁過程と繰り返すこ
とにより1.9K以下の超流動ヘリウム温度にまで低下
する。
The low temperature liquid helium 51 is
Same temperature as high temperature liquid helium 41 (4.2 at 1 atm)
However, by repeating the above-mentioned excitation process and demagnetization process, the temperature falls to a superfluid helium temperature of 1.9 K or less.

【0041】図3は、超電導コイル1と超電導磁気遮蔽
体3との間を断熱部材9により熱的に隔離して、高温側
液体ヘリウム槽4の液体ヘリウム41によって、超電導
コイル1を冷却し、磁気遮蔽体3は、低温側液槽5に一
体に収容されて、連続運転時には低温側伝熱部材52に
より冷却された液体ヘリウム51により冷却される方式
の磁気冷凍機をしめしている。この例では、磁気遮蔽体
3を常用の液体ヘリウムより低い例えば1.9K程度に
まで低温に維持するものである。
In FIG. 3, the superconducting coil 1 and the superconducting magnetic shield 3 are thermally isolated by the heat insulating member 9, and the superconducting coil 1 is cooled by the liquid helium 41 in the high temperature side liquid helium tank 4. The magnetic shield 3 is integrally housed in the low temperature side liquid tank 5 and represents a magnetic refrigerator of a type that is cooled by liquid helium 51 cooled by the low temperature side heat transfer member 52 during continuous operation. In this example, the magnetic shield 3 is kept at a low temperature, for example, about 1.9K, which is lower than that of liquid helium which is commonly used.

【0042】磁気冷凍機の運転当初は、磁性作動体3の
励磁磁界を例えば3Tとして、低温側ヘリウム51の温
度が低下するに従い超電導コイルの磁界を高めるように
制御する。低温では、特に超流動ヘリウム中では、磁気
遮蔽体の最大磁界遮蔽量が上昇するので、超電導コイル
1の励磁を5T程度に高めても、フラックスジャンプに
よる遮蔽磁界の低下の危険性は少ないので、磁気遮蔽体
中空部は完全零磁界が得られるので、以降の運転によっ
て冷凍出力は上昇して、超低温への達成速度が大きくな
る。
At the beginning of the operation of the magnetic refrigerator, the exciting magnetic field of the magnetic actuator 3 is set to, for example, 3T, and the magnetic field of the superconducting coil is controlled to increase as the temperature of the low temperature side helium 51 decreases. At low temperatures, especially in superfluid helium, the maximum magnetic field shield amount of the magnetic shield increases, so even if the excitation of the superconducting coil 1 is increased to about 5T, the risk of the shield magnetic field decreasing due to the flux jump is small. Since a complete zero magnetic field is obtained in the hollow portion of the magnetic shield, the refrigerating output is increased by the subsequent operation, and the achievement rate to the ultra-low temperature is increased.

【0043】図4は、低温側液体ヘリウム槽5のヘリウ
ム浴51により超伝導磁気遮蔽体3とともに超電導コイ
ル1をも冷却する他の実施例で、低温側液体ヘリウム槽
5が、コイル冷却槽を兼ねて、超電導コイル1の鍔輪1
2に気密的に固定されたリング状の絶縁部材9が、高温
側液体ヘリウム槽4と低温側液体ヘリウム槽5を隔離遮
断している。
FIG. 4 shows another embodiment in which the superconducting magnetic shield 3 as well as the superconducting coil 1 is cooled by the helium bath 51 of the low temperature side liquid helium tank 5. The low temperature side liquid helium tank 5 serves as a coil cooling tank. Also, the collar ring 1 of the superconducting coil 1
A ring-shaped insulating member 9 hermetically fixed to 2 isolates and separates the high temperature side liquid helium tank 4 and the low temperature side liquid helium tank 5.

【0044】本例では、磁性作動体2が発する寒冷によ
る直接冷却により、超伝導磁気遮蔽体3と超電導コイル
1とが低温になるに従って超電導体を安定化させること
ができ、従って、冷凍運転当初は比較的低い磁界強度で
磁性作動体が励磁されるが、低温側ヘリウム浴51が超
低温になると、電導コイル1の励磁電流を順次増加させ
て磁界強度を8T程度に増加させて、低温による磁気冷
凍能力の低下を補償し、安定した運転を続け、低温側ヘ
リウム浴51の冷却速度を高め、超流動ヘリウム温度以
下の低温に保持することが可能となる。
In this example, the superconducting magnetic shield 3 and the superconducting coil 1 can be stabilized as the temperature of the superconducting magnetic shield 3 and the superconducting coil 1 is lowered by direct cooling by the cold generated by the magnetic actuator 2. , The magnetic actuator is excited with a relatively low magnetic field strength, but when the low temperature side helium bath 51 becomes extremely low in temperature, the exciting current of the conductive coil 1 is sequentially increased to increase the magnetic field strength to about 8T and the magnetic field due to the low temperature is increased. It becomes possible to compensate for the reduction of the refrigerating capacity, continue stable operation, increase the cooling rate of the low temperature side helium bath 51, and maintain it at a low temperature below the superfluid helium temperature.

【0045】以上に述べた磁気冷凍機の連続運転によっ
て、低温側液槽5の中の液体ヘリウムは、常圧近傍で
1.9Kの超流動ヘリウム平衡温度若しくはそれ以下の
温度が得られるので、図示していないが、本装置の低温
側液体ヘリウム槽5の外面に例えば赤外線撮像素子57
を添着して、熱雑音を低減した赤外線撮影に利用され
る。
By the continuous operation of the magnetic refrigerator described above, the liquid helium in the low temperature side liquid tank 5 can obtain a superfluid helium equilibrium temperature of 1.9 K or a temperature lower than it at near normal pressure. Although not shown, for example, an infrared imaging device 57 is provided on the outer surface of the low temperature side liquid helium tank 5 of the present apparatus.
Is used for infrared imaging with reduced thermal noise.

【0046】[0046]

【発明の効果】本発明の磁気冷凍機は、超電導コイルの
中空部及び筒状の超電導磁気遮蔽体の中空部を連通する
真空室内を磁性作動体が往復移動し、磁気遮蔽体の中空
部で消磁された磁性作動体の端面が、低温側液槽の加圧
された液体ヘリウムと接触伝熱する伝熱部材の平面に正
確に面接触するように配置されるから、磁性作動体の発
する寒冷でもって液体ヘリウムを超流動ヘリウム温度以
下に冷却することができ、熱効率の良好な磁気冷凍機に
構成できる。
According to the magnetic refrigerator of the present invention, the magnetic actuator reciprocates in the vacuum chamber that communicates the hollow portion of the superconducting coil and the hollow portion of the cylindrical superconducting magnetic shield so that the magnetic shield can move in the hollow portion of the magnetic shield. Since the end surface of the demagnetized magnetic actuator is arranged so as to be exactly in surface contact with the plane of the heat transfer member that transfers heat by contact with the pressurized liquid helium in the low temperature side liquid tank, the cold generated by the magnetic actuator is generated. Thus, liquid helium can be cooled to a temperature of superfluid helium or lower, and a magnetic refrigerator with good thermal efficiency can be configured.

【0047】超電導コイルと、磁気遮蔽体が、共軸状に
列設され、かつ、その中空部筒体内を真空室にするの
で、励磁空間及び消磁空間を最大限に磁性作動が利用で
きるように配置でき、励磁−消磁の磁性作動体の移動ス
トロークを小さくでき、かつ低温側の液体ヘリウム浴の
配置が容易であるから、冷凍機能力に比して小型でコン
パクトな冷凍機とすることができる。
The superconducting coil and the magnetic shield are coaxially arranged in a row, and the hollow cylindrical body is used as a vacuum chamber, so that the magnetic actuation can be utilized to the maximum in the exciting space and the degaussing space. Since it can be arranged, the movement stroke of the magnetic actuation body for excitation / demagnetization can be reduced, and the arrangement of the liquid helium bath on the low temperature side is easy, the refrigerator can be made smaller and more compact than the refrigeration functional force. ..

【0048】また、低温側ヘリウム浴と同時に超電導磁
気遮蔽体及び超電導コイルの冷却ヘリウムも超低温に冷
却するようにすれば、超電導体の不安定現象を回避で
き、最大磁気遮蔽能力を高めることができるので励磁用
強磁界を高めて、冷凍能率を向上させることができる。
If the cooling helium of the superconducting magnetic shield and the superconducting coil is cooled to a super low temperature at the same time as the low temperature helium bath, the instability phenomenon of the superconductor can be avoided and the maximum magnetic shielding ability can be enhanced. Therefore, the strong magnetic field for excitation can be increased to improve the refrigerating efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気冷凍機の実施例に係る概要断面図で、励磁
過程を示す。
FIG. 1 is a schematic sectional view according to an embodiment of a magnetic refrigerator, showing an exciting process.

【図2】磁気冷凍機の消磁過程にある部分断面図を示
す。
FIG. 2 shows a partial cross-sectional view of a magnetic refrigerator in the process of demagnetization.

【図3】磁気遮蔽体をも低温側液体ヘリウムにより同時
に冷却するようにした磁気冷凍機の部分断面図である。
FIG. 3 is a partial cross-sectional view of a magnetic refrigerator in which the magnetic shield is also cooled at the same time by low temperature liquid helium.

【図4】磁気遮蔽体と超電導コイルをも低温側液体ヘリ
ウム同時に冷却するようにした他の実施例に係る磁気冷
凍機の部分断面図である。
FIG. 4 is a partial cross-sectional view of a magnetic refrigerator according to another embodiment in which the magnetic shield and the superconducting coil are cooled simultaneously with low temperature liquid helium.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 磁性作動体 3 超電導磁気遮蔽体 4 高温側液体ヘリウム槽 41 高温側液体ヘリウム浴 5 低温側液体ヘリウム槽 51 低温側液体ヘリウム浴 52 低温側伝熱部材 54 伝熱板 6 真空室 7 昇降装置 71 昇降用ロッド 8 真空断熱槽 9 断熱板 1 superconducting coil 2 magnetic actuator 3 superconducting magnetic shield 4 high temperature side liquid helium tank 41 high temperature side liquid helium bath 5 low temperature side liquid helium tank 51 low temperature side liquid helium bath 52 low temperature side heat transfer member 54 heat transfer plate 6 vacuum chamber 7 Lifting device 71 Lifting rod 8 Vacuum heat insulation tank 9 Heat insulation plate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月5日[Submission date] March 5, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉岡 孝雄 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 井上 勝 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 大谷 光平 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 佐藤 学 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takao Sugioka 1-5 Doyamacho, Kita-ku, Osaka City High Pressure Gas Industry Co., Ltd. (72) Inventor Masaru Inoue 1-5 Doyamacho, Kita-ku, Osaka City High-pressure gas industry Co., Ltd. (72) Inventor Kohei Otani 1-5 Doyamacho, Kita-ku, Osaka City High-pressure gas industry Co., Ltd. (72) Inventor Manabu Sato 1-5 Doyama-cho, Kita-ku, Osaka City High-pressure gas industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁界を発生させる超電導コイルと、当
該超電コイルの軸心方向に共軸状に近接列設された中空
状超電導磁気遮蔽体と、当該超電導コイルの中空部と当
該磁気遮蔽体の中空部とに連通して形成された真空室
と、当該超電導コイル中空部と当該磁気遮蔽体中空部と
の間で往復機構により往復移動可能に当該真空室内に配
置された磁性作動体と、当該真空室の超電導コイル側端
部に当該磁性作動体と接触伝熱可能に配置された高温側
ヘリウム液槽と、当該真空室の磁気遮蔽体側端部に当該
磁性作動体と接触伝熱可能に配置された低温側ヘリウム
液槽と、から成り、 上記磁性作動体には平滑な平面状端面を有し、上記低温
側ヘリウム液槽には当該磁性作動体の当該端面に面接す
る平滑な平面を有する伝熱部材が備えられて、 上記往復機構により、上記超電導コイル中空部で励磁さ
れた当該磁性作動体の発熱を当該高温側ヘリウム液槽に
伝熱冷却する過程と当該磁気遮蔽体中空部内で消磁され
た当該磁性作動体の寒冷により当該低温側ヘリウム液槽
に充填された液体ヘリウムを冷却する過程とを繰り返す
ようにした液体ヘリウム冷却用磁気冷凍機。
1. A superconducting coil that generates a strong magnetic field, a hollow superconducting magnetic shield that is coaxially arranged in the axial direction of the superconducting coil, a hollow portion of the superconducting coil, and the magnetic shield. A vacuum chamber formed in communication with the hollow portion of the body, and a magnetic actuator disposed in the vacuum chamber so as to be capable of reciprocating by a reciprocating mechanism between the superconducting coil hollow portion and the magnetic shield hollow portion. , A high temperature side helium liquid tank arranged at the end portion of the vacuum chamber on the side of the superconducting coil so as to be able to transfer heat to the magnetic actuator, and at the end portion of the vacuum chamber on the side of the magnetic shield to be capable of contact heat transfer to the magnetic actuator And a low-temperature helium liquid tank disposed on the magnetic actuator, the magnetic actuator having a smooth flat end surface, and the low-temperature helium liquid tank has a smooth flat surface that is in contact with the end surface of the magnetic actuator. A heat transfer member having According to the structure, the process of heat transfer cooling of the heat generated by the magnetic actuator excited in the hollow portion of the superconducting coil to the high temperature side helium liquid tank and the cooling of the magnetic actuator demagnetized in the magnetic shield hollow portion A magnetic refrigerator for cooling liquid helium, wherein the process of cooling liquid helium filled in a low temperature helium liquid tank is repeated.
【請求項2】 上記低温側ヘリウム液槽が、当該磁気遮
蔽体を冷却する磁気遮蔽体冷却槽と連通し若しくは兼用
する請求項1記載の磁気冷凍機。
2. The magnetic refrigerator according to claim 1, wherein the low temperature side helium liquid tank communicates with or serves as a magnetic shield cooling tank for cooling the magnetic shield.
【請求項3】 上記低温側ヘリウム液槽が、上記超電導
磁気遮蔽体を冷却する磁気遮蔽体冷却槽とと共に、上記
超伝導コイルを冷却するコイル冷却槽と連通し若しくは
兼用する請求項1記載の磁気冷凍機。
3. The low-temperature side helium liquid tank communicates with or serves as a coil cooling tank for cooling the superconducting coil together with a magnetic shield cooling tank for cooling the superconducting magnetic shield. Magnetic refrigerator.
【請求項4】 上記高温側ヘリウム液槽が上記超電導コ
イルを冷却するコイル冷却槽と兼用され、上記高温側ヘ
リウム液槽には、高温側液体ヘリウムと接触する伝熱部
材が上記磁性作動体の平滑な平端面と面接可能な平滑な
平面を有して、設けられている請求項1又は2記載の磁
気冷凍機。
4. The high temperature side helium liquid tank is also used as a coil cooling tank for cooling the superconducting coil, and the high temperature side helium liquid tank has a heat transfer member in contact with the high temperature side liquid helium of the magnetic actuator. The magnetic refrigerator according to claim 1, wherein the magnetic refrigerator has a smooth flat surface that can be brought into contact with a smooth flat end surface.
JP4174675A 1992-06-08 1992-06-08 Magnetic chiller for cooling liquid helium Expired - Fee Related JP3046457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174675A JP3046457B2 (en) 1992-06-08 1992-06-08 Magnetic chiller for cooling liquid helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174675A JP3046457B2 (en) 1992-06-08 1992-06-08 Magnetic chiller for cooling liquid helium

Publications (2)

Publication Number Publication Date
JPH05340640A true JPH05340640A (en) 1993-12-21
JP3046457B2 JP3046457B2 (en) 2000-05-29

Family

ID=15982733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174675A Expired - Fee Related JP3046457B2 (en) 1992-06-08 1992-06-08 Magnetic chiller for cooling liquid helium

Country Status (1)

Country Link
JP (1) JP3046457B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105954A (en) * 2013-11-29 2015-06-08 オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド Cryogenic cooling apparatus and system
EP2420762A3 (en) * 2010-07-28 2015-08-12 General Electric Company Cooling system of an electromagnet assembly
CN113740789A (en) * 2018-01-19 2021-12-03 北京绪水互联科技有限公司 Cold head efficiency calculation index, method for quantitatively describing cold head efficiency and cold head efficiency monitoring method
CN114279167A (en) * 2020-09-28 2022-04-05 中国科学院理化技术研究所 Precooling device of superfluid helium system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420762A3 (en) * 2010-07-28 2015-08-12 General Electric Company Cooling system of an electromagnet assembly
JP2015105954A (en) * 2013-11-29 2015-06-08 オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド Cryogenic cooling apparatus and system
CN113740789A (en) * 2018-01-19 2021-12-03 北京绪水互联科技有限公司 Cold head efficiency calculation index, method for quantitatively describing cold head efficiency and cold head efficiency monitoring method
CN113740789B (en) * 2018-01-19 2023-09-19 北京绪水互联科技有限公司 Method for quantitatively describing cold head efficiency
CN114279167A (en) * 2020-09-28 2022-04-05 中国科学院理化技术研究所 Precooling device of superfluid helium system
CN114279167B (en) * 2020-09-28 2023-06-27 中国科学院理化技术研究所 Precooling device of superfluid helium system

Also Published As

Publication number Publication date
JP3046457B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP2933731B2 (en) Stationary magnetic refrigerator
JP3347870B2 (en) Superconducting magnet and regenerative refrigerator for the magnet
JP2006046897A (en) Cryostat configuration
JP3629725B2 (en) Superconducting magnet
JP3046457B2 (en) Magnetic chiller for cooling liquid helium
US4680936A (en) Cryogenic magnet systems
JPH09232640A (en) Permanent magnet system
JP3285751B2 (en) Magnetic refrigerator
JP3233811B2 (en) Magnetic refrigerator
JP2836175B2 (en) refrigerator
JP3572087B2 (en) Magnetic refrigerator for cooling pressurized liquid helium
JP2877495B2 (en) Magnetic refrigerator
JP2004235653A (en) Superconductive magnet
JP2945153B2 (en) Stationary magnetic refrigerator
JP3281740B2 (en) Refrigeration equipment
JPH0663675B2 (en) Magnetic refrigerator
JP3310863B2 (en) Magnetic refrigeration equipment
JP3122539B2 (en) Superconducting magnet
JPH084652A (en) Cryopump
JP2004233047A (en) Superconductive magnet
JPH05315129A (en) Cryostat
JP2003059713A (en) Superconductive magnet
JPH10205913A (en) Magnetic refrigerating machine
JP3310847B2 (en) Magnetic refrigeration equipment
JPH0918062A (en) Superconducting magnet device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees