JPH05338060A - Production of resin-lined pipe - Google Patents
Production of resin-lined pipeInfo
- Publication number
- JPH05338060A JPH05338060A JP15215092A JP15215092A JPH05338060A JP H05338060 A JPH05338060 A JP H05338060A JP 15215092 A JP15215092 A JP 15215092A JP 15215092 A JP15215092 A JP 15215092A JP H05338060 A JPH05338060 A JP H05338060A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- pipe
- tube
- lining
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は給湯配管や蒸気配管等に
用いられる内面樹脂ライニング管の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an inner resin lining pipe used for hot water supply pipes, steam pipes and the like.
【0002】[0002]
【従来の技術】金属管の防蝕性を向上させる目的で、そ
の内周面を結晶性樹脂でライニングした、いわゆる内面
樹脂ライニング管における内面樹脂層用の樹脂として
は、ポリエーテルエーテルケトン、ポリエーテルケト
ン、ナイロン(芳香族ナイロン、ナイロン6、ナイロン
11等)、ポリエチレン、架橋ポリエチレン等の樹脂
が、防蝕性に優れ、かつ、水分の浸透性が低いため、特
に熱湯等が流されるような条件下で使用されるライニン
グ管には適している。2. Description of the Related Art For the purpose of improving the corrosion resistance of a metal tube, a resin for an inner surface resin layer in a so-called inner surface resin lining tube, the inner surface of which is lined with a crystalline resin, is polyetheretherketone or polyether. Resins such as ketone, nylon (aromatic nylon, nylon 6, nylon 11, etc.), polyethylene, cross-linked polyethylene, etc., have excellent corrosion resistance and low water permeability, so that hot water etc. can be poured under such conditions. Suitable for lining tubes used in.
【0003】このような結晶性樹脂により金属管内周面
をライニングする方法としては、結晶性樹脂管を金属管
内に挿入した状態で融点以上に加熱することによって、
樹脂管を金属管に融着させる方法が知られている(特開
昭52−93485号)。As a method of lining the inner peripheral surface of a metal tube with such a crystalline resin, the crystalline resin tube is inserted into the metal tube and heated to a temperature above its melting point.
A method of fusing a resin tube to a metal tube is known (Japanese Patent Laid-Open No. 52-93485).
【0004】また、金属管内面および樹脂管の外面の少
なくともいずれか一方に接着剤を塗布した状態で樹脂管
を金属管内に挿入した後、金属管を縮径することによっ
て両管を相互に接着させる方法もある(例えば特公昭4
8−23551号)。Further, after inserting the resin pipe into the metal pipe in a state where the adhesive is applied to at least one of the inner surface of the metal pipe and the outer surface of the resin pipe, the diameter of the metal pipe is reduced to bond the both pipes to each other. There is also a method of making it (for example, Japanese Patent Publication Sho 4
8-23551).
【0005】[0005]
【発明が解決しようとする課題】ところで、以上のよう
な従来のライニング方法では、ライニングされた後に樹
脂の結晶化がおこり、それに起因して収縮応力が発生
し、接着界面で剥離しやすくなるという欠点がある。ま
た、特に前者の方法では、融着のための加熱によっても
同様な現象が生じる。更に、いずれの方法により得られ
たライニング管においても、加熱/冷却による樹脂の伸
縮が大きく、金属管との相対的な寸法変化により接着界
面に応力が発生して剥離しやすくなるという問題があ
る。By the way, in the conventional lining method as described above, the resin is crystallized after being lined, which causes shrinkage stress and facilitates peeling at the adhesive interface. There are drawbacks. Further, particularly in the former method, a similar phenomenon occurs by heating for fusion. Furthermore, in any of the lining pipes obtained by any of the methods, there is a problem that the resin expands and contracts significantly due to heating / cooling, and stress is generated at the adhesive interface due to relative dimensional change with the metal pipe, causing easy peeling. ..
【0006】本発明の目的は、ライニング管製造後の樹
脂の結晶化により界面に生じる応力や、加熱〜冷却に基
づく樹脂の伸縮により界面に生じる応力を低減して、長
期にわたって使用しても剥離しにくい内面樹脂ライニン
グ管の製造方法を提供することにある。The object of the present invention is to reduce the stress generated at the interface due to the crystallization of the resin after the production of the lining pipe and the stress caused at the interface due to the expansion and contraction of the resin due to heating to cooling, so that it can be peeled off even after long-term use. An object of the present invention is to provide a method of manufacturing an inner resin lining tube that is difficult to do.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
め、本発明の内面樹脂ライニング管の製造方法は、金属
管の内周面および結晶性樹脂管の外周面の少なくともい
ずれか一方に接着剤を塗布した状態で、この樹脂管を金
属管内に挿入した後、金属管を縮径させることにより、
金属管の内周面に樹脂管が接着されてなる内面樹脂ライ
ニング管を製造する方法において、樹脂管として10〜
50重量%の無機充填材を含有した樹脂管を用いるとと
もに、この樹脂管を、上記の縮径を行う前に、当該樹脂
が結晶化し得る温度で結晶化度進行率が80%以上にな
るように熱処理を行うことによって特徴づけられる。In order to achieve the above object, a method for manufacturing an inner surface resin lining pipe of the present invention is to adhere to at least one of an inner peripheral surface of a metal tube and an outer peripheral surface of a crystalline resin tube. With the agent applied, insert this resin tube into the metal tube and then reduce the diameter of the metal tube.
In a method of manufacturing an inner surface resin lining pipe in which a resin pipe is adhered to an inner peripheral surface of a metal pipe, the resin pipe is
A resin tube containing 50% by weight of an inorganic filler is used, and the resin tube has a crystallinity progress rate of 80% or more at a temperature at which the resin can be crystallized before performing the above-mentioned diameter reduction. Is characterized by subjecting it to heat treatment.
【0008】ここで言う結晶化度進行率は、DSC(差
動走査熱量計)の融解ピーク面積より融解熱量を計算
し、それに基づいて得られる値とする。ただし、飽和結
晶度はDSC降温結晶化温度で24時間アニールしたと
きの状態とし、DSC測定条件は2°C/min とする。
この結晶化度進行率を式で表すと、The crystallinity progress rate referred to here is a value obtained by calculating the heat of fusion from the melting peak area of DSC (differential scanning calorimeter). However, the saturation crystallinity is the state when annealed at the DSC temperature falling crystallization temperature for 24 hours, and the DSC measurement condition is 2 ° C./min.
Expressing this crystallinity progress rate with an equation,
【0009】[0009]
【数1】 [Equation 1]
【0010】となる。本発明においては、金属管として
は、鋼管のほか、銅管、アルミニウム管等を用いること
ができる。[0010] In the present invention, as the metal tube, a copper tube, an aluminum tube or the like can be used in addition to the steel tube.
【0011】本発明に用いる結晶性樹脂としては、ポリ
エーテルエーテルケトン(ガラス転移温度143°C,
融点334°C)、ポリエーテルケトン(ガラス転移温
度165°C,融点365°C)、ポリフェニレンサル
ファイド(ガラス転移温度95°C,融点280°
C)、ナイロンMXD6(ガラス転移温度102°C,
融点243°C)、ナイロン6(ガラス転移温度60°
C,融点225°C)、ポリエチレン、架橋ポリエチレ
ン等が好適である。As the crystalline resin used in the present invention, polyether ether ketone (glass transition temperature 143 ° C.,
Melting point 334 ° C), polyetherketone (glass transition temperature 165 ° C, melting point 365 ° C), polyphenylene sulfide (glass transition temperature 95 ° C, melting point 280 °)
C), nylon MXD6 (glass transition temperature 102 ° C,
Melting point 243 ° C, nylon 6 (glass transition temperature 60 °
C, melting point 225 ° C.), polyethylene, cross-linked polyethylene and the like are preferable.
【0012】上記のような結晶性樹脂は耐熱性、耐水
性、耐薬品性に優れており、このような材質からなる樹
脂管で金属管の内周面をライニングすると、耐熱水性、
耐蝕性に優れた内面樹脂ライニング管となる。The crystalline resin as described above is excellent in heat resistance, water resistance and chemical resistance. When the inner peripheral surface of the metal pipe is lined with a resin pipe made of such a material, the water resistance becomes
It becomes an inner resin lining tube with excellent corrosion resistance.
【0013】また、このような結晶性樹脂管の結晶化処
理は、この結晶性樹脂管の製造工程または製造後金属管
に対して接着させる前に、定められた温度で一定時間ア
ニールすることにより行われる。この結晶化処理は、金
属管の縮径後における樹脂管の寸法変化が可及的に少な
くなるように、前もってより完全で安定して結晶化させ
るために行うものである。この結晶化が十分でない場合
には、樹脂管は使用時の温度により結晶化が進み、結晶
化収縮が生じて軸方向、周方向への収縮応力を発生させ
る原因となり、この収縮応力によって樹脂管と金属管と
の接着界面の剥離が生じやすくなる。Further, such a crystallization treatment of the crystalline resin tube is performed by annealing at a predetermined temperature for a certain time before adhering to the metal tube after the manufacturing step of the crystalline resin tube or after the manufacturing. Done. This crystallization treatment is carried out in advance so that the resin tube can be more completely and stably crystallized so that the dimensional change of the resin tube after the diameter reduction of the metal tube is minimized. If this crystallization is not sufficient, the resin tube will be crystallized depending on the temperature during use, causing crystallization shrinkage, which causes contraction stress in the axial and circumferential directions. The adhesive interface between the metal tube and the metal tube is likely to peel off.
【0014】そこで、本発明においてはこの結晶化処理
による結晶化度進行率を80%以上とする。これよりも
少ない場合にはライニング後の収縮を有効に抑制するこ
とができず、できるだけ100%に近いことが好まし
い。Therefore, in the present invention, the rate of progress of crystallinity by this crystallization treatment is set to 80% or more. If it is less than this, the shrinkage after lining cannot be effectively suppressed, and it is preferable that it is as close to 100% as possible.
【0015】なお、結晶化のための熱処理温度は、ガラ
ス転移温度Tg から降温結晶化温度の間の温度とし、D
SCの降温結晶化温度以下のこれに近い温度がよい。こ
れにより、結晶化速度が速く、完全に近い結晶化を達成
することができる。The heat treatment temperature for crystallization is a temperature between the glass transition temperature Tg and the lowered crystallization temperature, and D
A temperature close to or lower than the temperature falling crystallization temperature of SC is preferable. As a result, the crystallization speed is high, and almost complete crystallization can be achieved.
【0016】本発明において結晶性樹脂管内に添加する
無機充填材としては、耐水性、耐薬品性に優れ、高温に
おいても安定性のあるものが用いられ、例えばガラス、
カーボン、セラミックス、金属酸化物等が好適に用いら
れる。As the inorganic filler to be added into the crystalline resin pipe in the present invention, one having excellent water resistance and chemical resistance and stable at high temperature is used, for example, glass,
Carbon, ceramics, metal oxides and the like are preferably used.
【0017】このうち、金属酸化物としては、アルミ
ナ、酸化鉄、酸化チタン、酸化ジルコニウム、酸化クロ
ム、酸化ニッケル等が挙げられる。また、チタン酸カリ
ウムウィスカもこの中に含まれる。また、セラミックス
としては、上記した金属酸化物中に含まれるもの以外
に、チッ化ケイ素、チッ化チタン、炭化ホウ素、炭化ケ
イ素等を挙げることができる。そして、これらの充填材
は、繊維状、粒状、フレーク状の微粉として樹脂内に含
有される。このような無機充填材は、ライニング層(樹
脂管)の強度を増し、樹脂管の線膨張係数を低下させる
とともに、結晶化による収縮に伴ったクラックの発生を
防止する。この無機充填材の樹脂中への含有率は、10
〜50重量%、好ましくは20〜40重量%の範囲とす
る。10%を下回ると線膨張係数低減効果が得られず、
50重量%を上回ると、脆くなってむしろ樹脂管の強度
が低下し、縮径時等にクラック等が発生することがある
とともに、ライニング層としての優れた物理的特性も得
られなくなる。Among these, examples of the metal oxide include alumina, iron oxide, titanium oxide, zirconium oxide, chromium oxide, nickel oxide and the like. Also, potassium titanate whiskers are included in this. Examples of the ceramics include silicon nitride, titanium nitride, boron carbide, silicon carbide and the like, in addition to those contained in the above metal oxides. Then, these fillers are contained in the resin as fine powder of fibrous, granular and flake shape. Such an inorganic filler increases the strength of the lining layer (resin tube), lowers the linear expansion coefficient of the resin tube, and prevents the occurrence of cracks accompanying shrinkage due to crystallization. The content of this inorganic filler in the resin is 10
-50% by weight, preferably 20-40% by weight. If it is less than 10%, the effect of reducing the linear expansion coefficient cannot be obtained,
If it exceeds 50% by weight, the resin pipe becomes brittle and the strength of the resin pipe is rather lowered, cracks may occur when the diameter is reduced, and excellent physical properties as a lining layer cannot be obtained.
【0018】更に、本発明において用いる接着剤として
は、通常に用いられるゴム系接着剤等のほか、ホットメ
ルト系接着剤や反応性接着剤等を用いることもできる。
接着剤は金属管の内周面および樹脂管の外周面の少なく
ともいずれか一方に塗布すればよいが、双方に塗布して
おくことが望ましい。なお、接着剤の架橋等の活性化が
必要なときは、加熱処理を加えることを妨げない。Further, as the adhesive used in the present invention, a hot-melt adhesive, a reactive adhesive or the like can be used in addition to a rubber-based adhesive which is usually used.
The adhesive may be applied to at least one of the inner peripheral surface of the metal tube and the outer peripheral surface of the resin tube, but it is desirable to apply it to both. When activation such as crosslinking of the adhesive is necessary, addition of heat treatment is not hindered.
【0019】また、本発明における金属管の縮径は、縮
径ロール等による公知の方法を採用することができる。The diameter of the metal tube in the present invention can be reduced by a known method using a diameter reducing roll or the like.
【0020】[0020]
【作用】内面樹脂ライニング管の接着界面における剥離
は、ライニング後の樹脂管の結晶化や、金属管と樹脂管
との線膨張係数の差に起因して加熱〜冷却の繰り返し時
等において生じる樹脂管の相対的な寸法変化によって発
生する応力により促進される。[Function] Peeling at the adhesive interface of the inner surface resin-lined pipe is caused by crystallization of the resin pipe after lining and due to the difference in linear expansion coefficient between the metal pipe and the resin pipe, which occurs during repeated heating and cooling. It is facilitated by the stress generated by the relative dimensional changes in the tube.
【0021】本発明においては、結晶性樹脂管中に無機
充填材を適度に添加することによって実質的な線膨張係
数を低下させ、加熱〜冷却時における樹脂管の伸縮量を
少なくし、それに伴う界面での発生応力を低下させる。In the present invention, by adding an inorganic filler to the crystalline resin pipe in an appropriate amount, the substantial linear expansion coefficient is lowered, and the amount of expansion and contraction of the resin pipe during heating to cooling is reduced. Reduces the stress generated at the interface.
【0022】また、ライニング加工法として樹脂管の融
着によらず、金属管の縮径により樹脂管と金属管を接着
剤層を介して密着させる方法を採るとともに、このライ
ニング加工前に樹脂管を殆ど結晶化させておくことで、
ライニング加工後の結晶化に伴う界面での結晶化収縮応
力の発生を抑制している。Further, as the lining processing method, a method of adhering the resin tube and the metal tube with each other through the adhesive layer by the diameter reduction of the metal tube is adopted instead of the fusion bonding of the resin tube. By crystallizing almost
Generation of crystallization shrinkage stress at the interface due to crystallization after lining is suppressed.
【0023】[0023]
【発明の効果】本発明によれば、金属管内周面を接着被
覆する結晶性樹脂管内に無機充填材を添加することによ
り、その線膨張係数を低下させ、加熱〜冷却時における
寸法変化を抑制するとともに、樹脂管を殆ど結晶化させ
た後に金属管内に挿入して、金属管を縮径してその内周
面に接着させることで、ライニング後の結晶化に伴う樹
脂管の収縮を抑制しているので、得られたライニング管
は、製造後における樹脂管の寸法変化が極めて少なくな
り、接着界面に作用する応力が少なくなって、加熱〜冷
却が繰り返される条件下で使用しても、長期にわたって
接着界面での剥離やこれに起因する管閉塞等の生じにく
い耐久性に富んだ内面樹脂ライニング管となる。According to the present invention, by adding an inorganic filler into the crystalline resin pipe for adhesively coating the inner peripheral surface of the metal pipe, the linear expansion coefficient thereof is lowered and the dimensional change during heating to cooling is suppressed. At the same time, the resin tube is almost crystallized and then inserted into the metal tube, and the metal tube is reduced in diameter and adhered to its inner peripheral surface, thereby suppressing the shrinkage of the resin tube due to crystallization after lining. Therefore, the obtained lining pipe has a very small dimensional change of the resin pipe after production, the stress acting on the adhesive interface is small, and even if it is used under the condition that heating-cooling is repeated, Thus, the inner surface resin lining pipe is highly durable and is unlikely to cause peeling at the adhesive interface or blockage of the pipe due to this.
【0024】[0024]
【実施例】以下、本発明を適用して実際に内面樹脂ライ
ニング管を製造した例について、比較例と併せて述べる
とともに、最後にこれらの性能評価(冷熱水促進評価)
結果を述べる。[Examples] An example of actually manufacturing an inner surface resin lining pipe by applying the present invention will be described below together with a comparative example, and finally, the performance evaluation thereof (cooling and hot water accelerated evaluation)
Describe the results.
【0025】(実施例1)30重量%のミルドガラスフ
ァイバーを含有する降温結晶化温度105°C、融点1
30°Cの架橋ポリエチレン樹脂を、金型より溶融押出
した後、直ちに水冷し、厚さ1mmの樹脂管を形成し
た。この樹脂管を長さ5.5mに切断し、100°Cで
30分アニールすることにより結晶化処理した。この樹
脂管の外径は27.6mmで、結晶化度進行率は95%
であった。Example 1 Cooling crystallization temperature 105 ° C., melting point 1 containing 30% by weight of milled glass fiber
A crosslinked polyethylene resin at 30 ° C was melt-extruded from a mold and immediately water-cooled to form a resin tube having a thickness of 1 mm. This resin tube was cut into a length of 5.5 m and annealed at 100 ° C. for 30 minutes for crystallization treatment. The outer diameter of this resin tube is 27.6 mm, and the progress of crystallinity is 95%.
Met.
【0026】この結晶化処理後の樹脂管の外周面に、ゴ
ム/エポキシ成分からなる溶剤系接着剤を塗布し、80
°Cで10分間加熱乾燥し、溶剤を揮散させた。一方、
呼び径25A、長さ5.5mの配管用炭素鋼管(内径2
9.6mm、厚さ3.2mm)をグリッドブラストによ
り内面処理し、そこに同様の接着剤を塗布して乾燥させ
た。A solvent-based adhesive consisting of a rubber / epoxy component is applied to the outer peripheral surface of the resin tube after the crystallization treatment,
It was heated and dried at ° C for 10 minutes to volatilize the solvent. on the other hand,
Carbon steel pipe for piping with nominal diameter 25A and length 5.5m (inner diameter 2
9.6 mm, thickness 3.2 mm) was subjected to inner surface treatment by grid blasting, the same adhesive was applied thereto and dried.
【0027】この鋼管内に、上記した結晶化処理後の常
温の樹脂管を挿入した。なお、このとき、樹脂管の挿入
は何ら抵抗等なく円滑に行うことができた。その後、鋼
管を内径27.6mmとなるまでに縮径機によって縮径
した後、管全体を80°Cで30分間加熱することによ
り接着剤を架橋反応させ、内面架橋ポリエチレンライニ
ング鋼管を得た。A resin pipe at room temperature after the above-mentioned crystallization treatment was inserted into this steel pipe. At this time, the resin tube could be inserted smoothly without any resistance. After that, the diameter of the steel pipe was reduced by a diameter reducer until the inner diameter became 27.6 mm, and the entire pipe was heated at 80 ° C. for 30 minutes to cause a cross-linking reaction of the adhesive to obtain an inner cross-linked polyethylene lined steel pipe.
【0028】この内面ライニング鋼管の樹脂ライニング
層の肉厚精度は1.0mm±0.02mmであり、ピン
ホールおよび気泡等は認められなかった。また、ナイフ
による剥離テストを行ったが、ライニング層は剥離しな
かった。The thickness accuracy of the resin lining layer of this inner surface lining steel pipe was 1.0 mm ± 0.02 mm, and no pinholes or bubbles were observed. Further, a peeling test with a knife was conducted, but the lining layer was not peeled off.
【0029】(実施例2)40重量%のミルドカーボン
ファイバーを含有する降温結晶化温度240°C、融点
280°Cのポリフェニレンサルファイド樹脂を、金型
より溶融押出した後、直ちに水冷し、厚さ1mmの樹脂
管を成形した。この樹脂管を長さ5.5mに切断し、2
00°Cで1時間アニールすることにより、結晶化処理
した。樹脂管の外径は27.6mm、結晶化度進行率は
98%であった。Example 2 A polyphenylene sulfide resin containing 40% by weight of milled carbon fiber and having a crystallization temperature of 240 ° C. and a melting point of 280 ° C. was melt-extruded from a mold and immediately water-cooled to obtain a thickness. A 1 mm resin tube was molded. Cut this resin tube to a length of 5.5 m and cut it into 2
Crystallization was performed by annealing at 00 ° C for 1 hour. The outer diameter of the resin tube was 27.6 mm, and the crystallinity progress rate was 98%.
【0030】この結晶化処理後の樹脂管の外周面に、実
施例1と同様にゴム/エポキシ成分からなる溶剤系接着
剤を塗布し、80°Cで10分間加熱乾燥し、溶剤を揮
散させた。A solvent-based adhesive consisting of a rubber / epoxy component was applied to the outer peripheral surface of the resin tube after the crystallization treatment in the same manner as in Example 1 and dried by heating at 80 ° C. for 10 minutes to evaporate the solvent. It was
【0031】また、実施例1と同様の呼び径25A,長
さ5.5mの配管用炭素鋼管(内径29.6mm、厚さ
3.2mm)をグリッドブラストにより内面処理した
後、その内周面に同様の接着剤層を塗布して乾燥させ
た。A carbon steel pipe for pipes having a nominal diameter of 25 A and a length of 5.5 m (inner diameter 29.6 mm, thickness 3.2 mm) similar to that of the first embodiment was subjected to inner surface treatment by grid blasting, and then the inner peripheral surface thereof. A similar adhesive layer was applied to and dried.
【0032】この鋼管内に、上記した結晶化処理後の常
温の樹脂管を挿入した。この例においても樹脂管の挿入
は円滑に行えた。その後、同様にしてこの鋼管を内径2
7.6mmとなるまでに縮径機によって縮径した後、管
全体を80°Cで30分間加熱することにより接着剤を
架橋反応させ、内面ポリフェニレンサルファイドライニ
ング鋼管を得た。A resin pipe at room temperature after the above-mentioned crystallization treatment was inserted into this steel pipe. Also in this example, the resin tube could be inserted smoothly. Then, in the same way, use this steel pipe to change the inner diameter to 2
After the diameter was reduced by a diameter reducer to 7.6 mm, the entire tube was heated at 80 ° C. for 30 minutes to cause a cross-linking reaction of the adhesive to obtain an inner surface polyphenylene sulfide lined steel tube.
【0033】この内面ライニング鋼管の樹脂ライニング
層の肉厚精度は、実施例1と同じく1.0mm±0.0
2mmであり、ピンホール、気泡等は認められなかっ
た。また、ナイフによる剥離テストを行ったが、ライニ
ング層は剥離しなかった。The wall thickness accuracy of the resin lining layer of this inner surface lining steel pipe is 1.0 mm ± 0.0, which is the same as in Example 1.
It was 2 mm, and no pinholes or bubbles were observed. Further, a peeling test with a knife was conducted, but the lining layer was not peeled off.
【0034】(比較例1)樹脂管にミルドガラスファイ
バーを含まないことを除いて、他は実施例1と全く同様
にして内面架橋ポリエチレンライニング鋼管を得た。Comparative Example 1 An inner surface cross-linked polyethylene lined steel pipe was obtained in exactly the same manner as in Example 1 except that the resin tube did not contain milled glass fiber.
【0035】(比較例2)実施例1と全く同様のミルド
ガラスファイバーを含有した架橋ポリエチレン管を成形
し、この管に対して100°Cアニールによる結晶化処
理を施さず、他は実施例1と全く同様にして内面架橋ポ
リエチレンライニング鋼管を得た。このとき、ライニン
グ直前における架橋ポリエチレン管の結晶化度進行率は
65%であった。Comparative Example 2 A crosslinked polyethylene tube containing milled glass fibers exactly the same as in Example 1 was molded, and this tube was not subjected to crystallization treatment by annealing at 100 ° C. An internal cross-linked polyethylene lined steel pipe was obtained in exactly the same manner as. At this time, the degree of progress of crystallinity of the crosslinked polyethylene pipe immediately before lining was 65%.
【0036】(比較例3)樹脂管にミルドガラスファイ
バーを含まず、また、樹脂管に結晶化処理を施さないこ
とを除いて、他は実施例1と全く同様にして内面架橋ポ
リエチレンライニング鋼管を得た。Comparative Example 3 An inner surface cross-linked polyethylene lined steel pipe was prepared in the same manner as in Example 1 except that the resin tube did not contain milled glass fiber and the resin tube was not crystallized. Obtained.
【0037】(比較例4)樹脂管にミルドカーボンファ
イバーを含まないことを除いて、他は実施例2と全く同
様にして内面ポリフェニレンサルファイドライニング鋼
管を得た。(Comparative Example 4) An inner surface polyphenylene sulfide lined steel pipe was obtained in exactly the same manner as in Example 2 except that the resin tube did not contain milled carbon fiber.
【0038】(比較例5)実施例2と全く同様のミルド
カーボンファイバー含有のポリフェニレンサルファイド
管を成形し、この管に対して200°Cアニールによる
結晶化処理を施さず、他は実施例2と全く同様にして内
面ポリフェニレンサルファイドライニング鋼管を得た。
なお、ライニング直前におけるポリフェニレンサルファ
イド管の結晶化度進行率は55%であった。(Comparative Example 5) A polyphenylene sulfide tube containing milled carbon fiber exactly the same as in Example 2 was molded, and this tube was not subjected to crystallization treatment by annealing at 200 ° C. An inner surface polyphenylene sulfide lining steel pipe was obtained in exactly the same manner.
The crystallinity progress rate of the polyphenylene sulfide tube immediately before lining was 55%.
【0039】(比較例6)樹脂管にミルドカーボンファ
イバーを含まず、また、樹脂管に結晶化処理を施さない
ことを除いて、他は実施例2と全く同様にして内面ポリ
フェニレンサルファイドライニング鋼管を得た。(Comparative Example 6) An inner surface polyphenylene sulfide lined steel pipe was prepared in exactly the same manner as in Example 2 except that the resin tube did not contain milled carbon fiber and the resin tube was not subjected to crystallization treatment. Obtained.
【0040】さて、以上の各本発明実施例および比較例
について、それぞれ管長1mに切断したものを供試体と
し、95°Cの熱水中に5分間、続いて25°Cの冷水
中に5分間浸漬することを繰り返す冷熱水促進評価試験
を行い、その100サイクル後に各供試体を観察した結
果を〔表1〕に示す。With respect to each of the examples of the present invention and the comparative examples described above, a test piece was cut into a tube length of 1 m, and the sample was placed in hot water of 95 ° C. for 5 minutes and then in cold water of 25 ° C. for 5 minutes. Table 1 shows the results of observing each test piece after 100 cycles of the cold and hot water accelerated evaluation test in which the test piece was repeatedly immersed for a minute.
【0041】[0041]
【表1】 [Table 1]
【0042】この〔表1〕から明らかなように、本発明
の製造方法の適用により、加熱〜冷却を繰り返しても剥
離しにくいライニング管が得られることが確認された。As is clear from Table 1 above, it was confirmed that by applying the manufacturing method of the present invention, a lining tube that is difficult to peel off can be obtained even if heating and cooling are repeated.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 9:00 4F 23:22 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display area B29L 9:00 4F 23:22 4F
Claims (1)
周面の少なくともいずれか一方に接着剤を塗布した状態
で、この樹脂管を金属管内に挿入した後、金属管を縮径
させることにより、金属管の内周面に上記樹脂管が接着
されてなるライニング管を製造する方法において、上記
樹脂管として10〜50重量%の無機充填材を含有した
樹脂管を用いるとともに、この樹脂管を、上記縮径を行
う前に、当該樹脂が結晶化し得る温度で結晶化度進行率
が80%以上になるように熱処理を行うことを特徴とす
る内面樹脂ライニング管の製造方法。1. A resin tube is inserted into the metal tube in a state where an adhesive is applied to at least one of the inner surface of the metal tube and the outer surface of the crystalline resin tube, and then the diameter of the metal tube is reduced. Thus, in the method for producing a lining pipe in which the resin pipe is bonded to the inner peripheral surface of the metal pipe, a resin pipe containing 10 to 50% by weight of an inorganic filler is used as the resin pipe, and the resin A method for producing an inner surface resin-lined pipe, characterized in that the pipe is subjected to a heat treatment before performing the above-mentioned diameter reduction so that the progress rate of crystallinity is 80% or more at a temperature at which the resin can be crystallized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15215092A JPH05338060A (en) | 1992-06-11 | 1992-06-11 | Production of resin-lined pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15215092A JPH05338060A (en) | 1992-06-11 | 1992-06-11 | Production of resin-lined pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05338060A true JPH05338060A (en) | 1993-12-21 |
Family
ID=15534128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15215092A Pending JPH05338060A (en) | 1992-06-11 | 1992-06-11 | Production of resin-lined pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05338060A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2421469A (en) * | 2004-12-23 | 2006-06-28 | Uponor Innovation Ab | Method and apparatus for the production of plastic pipes. |
JP2009505858A (en) * | 2005-08-26 | 2009-02-12 | ビクトレックス マニュファクチャリング リミテッド | Polyether and its use in lining |
US8813332B2 (en) | 2005-08-26 | 2014-08-26 | Victrex Manufacturing Limited | Polymeric materials |
-
1992
- 1992-06-11 JP JP15215092A patent/JPH05338060A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2421469A (en) * | 2004-12-23 | 2006-06-28 | Uponor Innovation Ab | Method and apparatus for the production of plastic pipes. |
GB2421469B (en) * | 2004-12-23 | 2010-03-03 | Uponor Innovation Ab | Plastic pipe |
US8398908B2 (en) | 2004-12-23 | 2013-03-19 | Radius Systems Limited | Plastics pipe |
JP2009505858A (en) * | 2005-08-26 | 2009-02-12 | ビクトレックス マニュファクチャリング リミテッド | Polyether and its use in lining |
US8813332B2 (en) | 2005-08-26 | 2014-08-26 | Victrex Manufacturing Limited | Polymeric materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1165242A3 (en) | Anticorrosion coating of pipeline and method of applying same | |
Bascom et al. | Apparent interfacial failure in mixed-mode adhesive fracture | |
EP1031384A2 (en) | Rotolining process | |
JP7555969B2 (en) | Polytetrafluoroethylene film and its manufacturing method | |
JP2009541594A (en) | Method for producing a rotatable sputter target | |
JPH05338060A (en) | Production of resin-lined pipe | |
JP2008038070A (en) | Epoxy adhesive, cast-molded product using the same, and method for producing the cast-molded product using the same | |
JP3168871B2 (en) | Polyolefin coated steel pipe | |
JPWO2014157554A1 (en) | Manufacturing method of wire harness pipe | |
JP3168904B2 (en) | Exterior polyethylene coated steel pipe | |
JPH06117581A (en) | Method of manufacturing metal pipe lined with resin | |
Talia et al. | Surface oxide softening in tungsten and molybdenum single crystals | |
US3534465A (en) | Method for lining vessels | |
McGarry et al. | Research on wire-wound composite materials | |
JPH1077456A (en) | Adhesive composition for polyvinyl chloride-coated steel pipe | |
JPH0493378A (en) | Novel tape coating | |
JP2001047489A (en) | Heat-resistant thermally expansible vinyl chloride resin pipe and lining metal pipe using the same | |
JP2011031460A (en) | Inner surface coated steel pipe for water piping | |
JP2004132437A (en) | Manufacturing method for steel pipe for boiler having superior steam oxidation resistance property | |
JPS5923687B2 (en) | Manufacturing method of heat-shrinkable tube | |
JPH05339546A (en) | Pipe lined with synthetic resin | |
RU2066715C1 (en) | Process of deposition of protective coats on articles | |
KR100796713B1 (en) | Manufacturing method of inner surface resin lining pipe | |
JP3056289B2 (en) | Manufacturing method of synthetic resin lining tube | |
JPH0524435B2 (en) |