JPH05338052A - Manufacture of polyolefin foam body and apparatus for foaming polyolefin - Google Patents

Manufacture of polyolefin foam body and apparatus for foaming polyolefin

Info

Publication number
JPH05338052A
JPH05338052A JP4179152A JP17915292A JPH05338052A JP H05338052 A JPH05338052 A JP H05338052A JP 4179152 A JP4179152 A JP 4179152A JP 17915292 A JP17915292 A JP 17915292A JP H05338052 A JPH05338052 A JP H05338052A
Authority
JP
Japan
Prior art keywords
foaming
mold
foam
cooling
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4179152A
Other languages
Japanese (ja)
Other versions
JPH085085B2 (en
Inventor
Tatsuo Matsubara
達雄 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP4179152A priority Critical patent/JPH085085B2/en
Publication of JPH05338052A publication Critical patent/JPH05338052A/en
Publication of JPH085085B2 publication Critical patent/JPH085085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a manufacture of a polyolefin foam body and an apparatus therefor for obtaining a final foam body having the properties of excellent surface smoothness, enriched compression stress, and low permanent distortion by efficiently performing cooling and heating without spoiling advantages of a two-stage foaming method with a high manufacturing yield. CONSTITUTION:A polyolefin foaming apparatus (secondary foaming apparatus) comprises a cooling mold 1 and a pair of heating plates 2, 2 that are disposed above and below the cooling mold 1 and has heating medium flow path 21 therein, and the cooling mold 1 is equipped with a side mold frame 11 provided with coolant flow paths 121 therein and a pair of flat plates 12a, 12b that are arranged to secure the side mold frame 11 from its upper and lower sides and thus form a non-sealed inner space corresponding to the conflgurational dimensions of a final foam body in association with the side mold frame 11, and have coolant paths 121 therein. A final foam body is manufactured by secondarily foaming an intermediate foam body obtained by firstly foaming it in use of this apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリオレフィン発泡体
の製造方法及び中間発泡体を加工して最終発泡体を製造
するための発泡装置に関し、更に詳しくは、2段発泡の
第2発泡工程において、加熱と冷却とを均一に且つ効率
良く行い、成形性や表面平滑性に優れ、圧縮応力に富
み、且つ永久歪みの比較的小さいポリオレフィン発泡体
を製造する方法及びそのための装置等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyolefin foam and a foaming apparatus for processing an intermediate foam to produce a final foam. More specifically, in a second foaming step of two-stage foaming. The present invention relates to a method for producing a polyolefin foam which is uniformly and efficiently heated and cooled, is excellent in moldability and surface smoothness, is rich in compressive stress, and has a relatively small permanent set, and an apparatus therefor.

【0002】[0002]

【従来の技術】ポリオレフィンのブロック発泡体の製造
方法としては、ポリオレフィン樹脂、架橋剤及び発泡剤
の混和物を金型に充填し、加圧、加熱状態でその架橋
剤、発泡剤を完全に分解し、その後、除圧することによ
り、この混和物を一度に所望の密度に膨張させる方法
(以下、1段発泡と称す。)や、特公平2−42649
号公報等に開示されている如く、混和物を一次金型に充
填し、加圧下で加熱して発泡剤の15〜60%を分解す
ることにより1次膨張させ、その後、その発泡体を常圧
で加熱し、残余の発泡剤を分解して2次膨張させ、所望
密度の発泡体を得る方法(以下、2段発泡と称す。)
が、知られている。
2. Description of the Related Art A method for producing a polyolefin block foam is to fill a mold with a mixture of a polyolefin resin, a cross-linking agent and a foaming agent, and completely decompose the cross-linking agent and the foaming agent under pressure and heat. Then, by depressurizing the mixture, the mixture is expanded at a time to a desired density (hereinafter, referred to as one-stage foaming), or Japanese Patent Publication No. 2-42649.
As disclosed in Japanese Unexamined Patent Publication (Kokai), etc., the mixture is filled in a primary mold and heated under pressure to decompose 15 to 60% of the foaming agent to cause primary expansion. A method of heating by pressure to decompose the residual foaming agent and subjecting it to secondary expansion to obtain a foam having a desired density (hereinafter referred to as two-stage foaming).
It has been known.

【0003】しかし、上記1段発泡で高発泡体を得る場
合は、一度に所望密度の最終発泡体に膨張させるため、
得られる最終発泡体に変形が生じたり、また、金型から
取り出す際、その発泡体に割れが生じたりして、その製
品化率が極めて低くなるという問題があった。そのた
め、2段発泡が、上記1段発泡の製品化歩留りの低下を
改善すべく開発された。2段発泡では、所定の発泡倍率
の製品を一度に発泡膨張させずに、2段階に分けて発泡
膨張させることで、割れ等の製品化歩留りを低下させる
要因を除いている。
However, in order to obtain a high foam by the above-mentioned first-stage foaming, in order to expand the final foam at a desired density at a time,
There has been a problem that the final foam obtained is deformed, or the foam is cracked when taken out from the mold, resulting in a very low commercialization rate. Therefore, the two-stage foaming was developed in order to improve the reduction in the production yield of the above-mentioned one-stage foaming. In the two-stage foaming, a product having a predetermined expansion ratio is not expanded and expanded at a time, but expanded and expanded in two stages, thereby eliminating a factor such as cracking which lowers a product yield.

【0004】[0004]

【発明が解決しようとする課題】しかし、斯る2段発泡
法においても、最終発泡体の表面平滑性の点で充分とは
いえなかった。この対策として、特開昭61−2664
41号公報に述べている如く、第2発泡工程終了後の最
終発泡体を温熱時に取り出し、第3工程となる冷却工程
にて冷却板(特開昭61−266441号公報の表現で
は加熱板となっているが、発泡体の温度から見た場合、
その機能としては冷却板といえる。)に挟んで冷却し、
発泡体の表面を平滑化する等の新たな工程を付加するこ
とが必要となっている。このように新たな工程を付加し
た場合、設備コストの増加、工程の複雑化等による生産
性低下は免れ得なかった。加えて、特開昭61−266
441号公報に記載の如く発泡体を温熱時に取り出す
と、発泡体自体が柔く、取り出し作業時に発泡体が変形
したり、表面に割れが発生したりして、製品歩留りが下
がるといった不具合もあった。
However, even in such a two-stage foaming method, the surface smoothness of the final foam was not sufficient. As a countermeasure against this, JP-A-61-2664
As described in Japanese Patent Publication No. 41, No. 41, the final foam after the second foaming process is taken out at the time of heating, and a cooling plate (in the expression of Japanese Patent Laid-Open No. 61-266441, a heating plate is used in the cooling process as the third process). However, when viewed from the temperature of the foam,
Its function is a cooling plate. ), Cool down,
It is necessary to add new steps such as smoothing the surface of the foam. When a new process is added in this way, there is an unavoidable decrease in productivity due to an increase in equipment costs, complication of processes and the like. In addition, JP-A 61-266
When the foam is taken out during heating as described in Japanese Patent No. 441, there is a problem that the foam itself is soft, the foam is deformed during the taking-out work, cracks occur on the surface, and the product yield is lowered. It was

【0005】上記欠点を最も確実に解消する方法は、第
2発泡工程で最終発泡を終えた発泡体をその金型から取
り出すことなく、そのままの状態で冷却することであ
る。しかし、特公平2−42649号公報で述べられて
いる加熱方法、即ち、熱板に流路を設けた金型内に中間
発泡体を入れ、その流路に熱媒を流通させることによっ
て直接的に金型を加熱する方法では、金型を冷却するの
が困難であった。仮に、この熱媒流路に冷媒を流入させ
冷却させても、通常、高圧状態のスチーム等の熱媒から
水等の冷媒への切替え及び逆の切替えは、非常に困難
で、冷却の為の降温、次の中間発泡体を加熱する為の再
昇温に相当な時間がかかり、且つエネルギーの損失が大
きくなるという欠陥があった。
The most reliable solution to the above drawbacks is to cool the foam that has undergone the final foaming in the second foaming step without removing it from the mold. However, the heating method described in Japanese Examined Patent Publication No. 2-42649, that is, by directly inserting the intermediate foam into a mold in which a flow path is provided in a hot plate and circulating a heat medium in the flow path With the method of heating the mold, it was difficult to cool the mold. Even if a refrigerant is allowed to flow into this heat medium passage to cool it, it is usually very difficult to switch from a heat medium such as steam in a high-pressure state to a refrigerant such as water, and vice versa. There is a defect that it takes a considerable amount of time to lower the temperature and to re-rise the temperature for heating the next intermediate foam, and the energy loss increases.

【0006】本発明は、上記問題点を解決するものであ
り、製品化歩留りの優れた2段発泡法の利点を損うこと
なく、効率的に冷却と加熱とを行い、しかも成形性や表
面平滑性に優れ、圧縮応力に富み、且つ永久歪みの小さ
い最終発泡体を提供するポリオレフィン発泡体の製造方
法及びそのための発泡装置等を提供することを目的とす
る。
The present invention solves the above-mentioned problems, and efficiently cools and heats without deteriorating the advantages of the two-stage foaming method, which has an excellent production yield, and has a good moldability and surface. It is an object of the present invention to provide a method for producing a polyolefin foam, which provides a final foam excellent in smoothness, rich in compressive stress, and small in permanent set, a foaming apparatus therefor, and the like.

【0007】[0007]

【課題を解決するための手段】即ち、本第1発明のポリ
オレフィン発泡体の製造方法は、ポリオレフィン、架橋
剤及び発泡剤を含む発泡性組成物を金型に充填し、加圧
下で加熱して上記発泡剤の一部を分解させ発泡を誘起せ
しめた後、高温熱時に除圧し上記金型から取り出して中
間発泡体を製造する第1工程と、その後、上記第1工程
で得られた中間発泡体を、内部に冷媒流路を設けた側方
型枠(11)と、該側方型枠を上下から固定し該側方型
枠と共に最終発泡体の形状寸法に対応した非密閉の空間
を形成するように配設され、且つ内部に冷媒流路を有す
る一対の平板(12)と、からなる冷却成形用型(1)
内に入れ、該冷却成形用型の上下に配設された一対の加
熱板(2)を、該各加熱板に設けられた流路に熱媒を注
入することにより加熱して、上記冷却成形用型を介して
常圧下で上記中間発泡体を加熱することで、上記発泡剤
の残部を分解させ発泡を誘起せしめ、次いで、上記冷却
成形用型の平板及び上記側方型枠の各冷媒流路に冷媒を
注入することにより、発泡体の外周面を均一に冷却し
て、最終発泡体を製造する第2工程と、からなることを
特徴とする。
[Means for Solving the Problems] That is, in the method for producing a polyolefin foam of the first aspect of the present invention, a mold is filled with a foamable composition containing a polyolefin, a cross-linking agent and a foaming agent, and heated under pressure. After decomposing a part of the foaming agent to induce foaming, the first step of depressurizing at high temperature heat and taking out from the mold to produce an intermediate foam, and then the intermediate foaming obtained in the first step The body is provided with a lateral formwork (11) having a refrigerant flow passage therein, and the lateral formwork is fixed from above and below to form an unsealed space corresponding to the shape and dimensions of the final foam together with the sidework form. Cooling molding die (1) comprising a pair of flat plates (12) arranged so as to form and having a refrigerant channel inside
The pair of heating plates (2) disposed above and below the cooling mold are heated by injecting a heat medium into the flow passages provided in each of the heating plates, and the cooling molding is performed. By heating the intermediate foam under atmospheric pressure through a working mold, the rest of the foaming agent is decomposed to induce foaming, and then the cooling medium flow of the flat plate of the cooling molding mold and the side molds. The second step of manufacturing the final foam by cooling the outer peripheral surface of the foam uniformly by injecting a refrigerant into the passage.

【0008】本発明において、「ポリオレフィン」と
は、例えば、通常市販されている高圧法、中圧法又は低
圧法により製造されたポリエチレン、エチレン−プロピ
レン共重合体、エチレン−ブテン共重合体、エチレン−
酢酸ビニル共重合体、エチレンとメチル、エチル、プロ
ピル若しくはブチルの各アクリル酸エステル(このエス
テルの含有量;45モル%以内)との共重合体、又はこ
れらのそれぞれ塩素含有率60重量%まで塩素化したも
の、更に、これら二種以上の混合物、又はこれらとアイ
ソタクチックポリプロピレン若しくはアタクチックポリ
プロピレンとの混合物等をいう。
In the present invention, the term "polyolefin" refers to, for example, polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-, which are produced by the high pressure method, medium pressure method or low pressure method which are usually commercially available.
Vinyl acetate copolymer, copolymer of ethylene and acrylic acid ester of methyl, ethyl, propyl or butyl (content of this ester; within 45 mol%), or chlorine content up to 60% by weight of chlorine And the like, or a mixture of two or more kinds thereof, or a mixture of these with isotactic polypropylene or atactic polypropylene.

【0009】本発明にいう「架橋剤」とは、上記ポリオ
レフィン中において少なくともポリオレフィンの流動開
始温度以上の分解温度を有するものであって、加熱によ
り分解され、遊離ラジカルを発生してその分子間に架橋
結合を生じせしめるラジカル発生剤である有機過酸化物
等をいう。例えばジクミルパーオキサイド、2,5−ジ
メチル−2,5−ビス−ターシャリーブチルパーオキシ
ヘキサン、1,3−ビス−ターシャリーパーオキシ−イ
ソプロピルベンゼン等である。本発明にいう「発泡剤」
とは、上記ポリオレフィンの流動開始温度以上の分解温
度を有するものをいい、例えば、アゾジカルボンアミ
ド、ジニトロソペンタメチレンテトラミン等である。
The "crosslinking agent" referred to in the present invention has a decomposition temperature of at least the flow initiation temperature of the polyolefin in the above-mentioned polyolefin, and is decomposed by heating to generate free radicals to cause intermolecular formation. It refers to an organic peroxide that is a radical generator that causes cross-linking. For example, dicumyl peroxide, 2,5-dimethyl-2,5-bis-tert-butylperoxyhexane, 1,3-bis-tert-peroxy-isopropylbenzene and the like. The "foaming agent" referred to in the present invention
The term "having a decomposition temperature not lower than the flow initiation temperature of the above polyolefin" means, for example, azodicarbonamide, dinitrosopentamethylenetetramine and the like.

【0010】また、本発明において、発泡状態をコント
ロールする為に、尿素を主成分とする化合物、酸化亜
鉛、酸化鉛等の金属酸化物、低級若しくは高級脂肪酸又
は低級若しくは高級脂肪酸の金属塩等の発泡助剤等を添
加することができる。更に、物性改善の為にカーボンブ
ラック、亜鉛華、酸化チタン、その他常用の配合剤を添
加することもできる。
In the present invention, in order to control the foaming state, compounds containing urea as a main component, metal oxides such as zinc oxide and lead oxide, lower or higher fatty acids or metal salts of lower or higher fatty acids, etc. A foaming aid or the like can be added. Further, in order to improve the physical properties, carbon black, zinc white, titanium oxide and other commonly used compounding agents may be added.

【0011】本発明のポリオレフィン発泡体の製造方法
において、第1工程における1次発泡時の発泡剤分解率
は特に限定されないが、第2発明のように、第1工程に
おいて、金型を50kg/cm2 以上の加圧状態で加熱
して、発泡剤を下式を満足する分解率となる如く分解さ
せ発泡を誘起せしめ、高温熱時に除圧し該金型から取り
出して中間発泡体を製造するのが好ましい。第1工程の
発泡剤分解率(%)=(9〜12)×(100/最終発
泡倍率)このようにすることにより、250〜450μ
mと比較的気泡径が大きく、且つ5〜20%の連泡率を
有する発泡体となし、圧縮応力に富み、且つ永久圧縮歪
みの小さい製品が得られる。
In the method for producing a polyolefin foam of the present invention, the decomposition rate of the foaming agent at the time of primary foaming in the first step is not particularly limited, but as in the second invention, in the first step, 50 kg / m of the mold is used. By heating in a pressurized state of cm 2 or more, the foaming agent is decomposed so as to have a decomposition rate satisfying the following formula to induce foaming, depressurized at high temperature and taken out from the mold to produce an intermediate foamed product. Is preferred. Decomposition rate of foaming agent in the first step (%) = (9 to 12) × (100 / final expansion ratio) By doing in this way, 250 to 450 μm
A product having a relatively large cell diameter of m and an open cell ratio of 5 to 20%, rich in compressive stress, and small in permanent compression strain can be obtained.

【0012】上記において、第1工程での圧力が50k
g/cm2 未満では、本発明の発泡剤分解率とした場
合、発泡体を10倍付近まで膨張させる条件となり、発
泡膨張時に1次金型より発泡体の洩れが生じ、1次膨張
品の変形原因になり、更にこれが製品化率の低下を招く
ので好ましくない。2段発泡法では、通常、「一次の高
圧下で、一部発泡剤の加熱分解により形成する無数の核
気泡を除圧膨張時に70〜90μmの微細セルに成長さ
せ、更に、2次の常圧発泡膨張で、この微細セルを10
0〜150μmの平均気泡径へと均一に成長させる。」
と、いう気泡形成メカニズムのため、得られる発泡体は
均一微細な独立気泡体となり、このような発泡体は一般
的に圧縮硬さに乏しく、且つ永久歪みが比較的大きいと
いう欠点を有している。
In the above, the pressure in the first step is 50 k
If it is less than g / cm 2 , the foaming agent decomposition rate of the present invention is such that the foam will be expanded up to about 10 times, and the foam will leak from the primary mold during foaming expansion, and It is not preferable because it causes deformation, which further lowers the productization rate. In the two-stage foaming method, in general, "innumerable nuclear bubbles formed by thermal decomposition of a partial blowing agent under primary high pressure are grown into 70 to 90 μm fine cells during decompression expansion, and further secondary secondary This fine cell is expanded by pressure expansion to 10
Grow uniformly to an average bubble size of 0 to 150 μm. "
Due to the cell formation mechanism, the resulting foam becomes a uniform and fine closed cell, and such a foam generally has poor compression hardness and relatively large permanent set. There is.

【0013】これに対し、本第2発明では、第1次発泡
工程での発泡剤の分解率を前式を満足する分解率とする
ことで、第1発泡工程で発泡剤分解時に形成される核気
泡の数密度が高くなり、核気泡間の間隔、即ちその気泡
壁を薄くすることができる。このように形成される気泡
壁と、除圧時に惹起される爆発的膨張と、が相まって、
その爆発的膨張時の微細セル成長過程においては、一部
気泡壁の破壊を発生誘起させることができる。その結
果、微細セルが集合し、セルサイズが大きくなると共に
破壊された気泡壁のストランドが残存した気泡壁へ融着
し、その気泡壁を補強し圧縮応力に富み、且つ比較的永
久歪みの小さい発泡体を提供することが可能となる。例
えば、15倍の最終発泡倍率の場合の分解率は60〜8
0%であり、60%未満では平均気泡径が小さくなり過
ぎて圧縮応力に乏しくなり、一方、80%を越えると、
一次及び二次発泡体の変形、割れが生じることとなる。
On the other hand, in the second aspect of the present invention, the decomposition rate of the foaming agent in the primary foaming step is set to a decomposition rate satisfying the above equation, whereby the foaming agent is formed during decomposition of the foaming agent in the first foaming step. The number density of the nuclear bubbles becomes high, and the interval between the nuclear bubbles, that is, the bubble wall can be made thin. The bubble wall formed in this way and the explosive expansion caused during depressurization combine,
In the process of growing the fine cells at the time of explosive expansion, it is possible to partially induce the bubble wall destruction. As a result, the fine cells aggregate, the cell size increases and the strands of the destroyed bubble wall fuse to the remaining bubble wall, which reinforces the bubble wall and is rich in compressive stress, and has a relatively small permanent set. It becomes possible to provide a foam. For example, when the final expansion ratio is 15 times, the decomposition rate is 60 to 8
If it is less than 60%, the average bubble diameter becomes too small and the compressive stress becomes poor, while if it exceeds 80%,
The primary and secondary foams will be deformed and cracked.

【0014】尚、発泡剤の分解量を調整する手段として
は、金属酸化物等の発泡助剤の添加量を調整する等の方
法があるが、最も簡単且つ確実な方法としては、1次発
泡の加熱温度を130〜170℃程度の比較的低温に設
定しておき、その加熱時間によりコントロールする方法
がある。また、2次発泡での加熱温度は、発泡剤を完全
に分解し発泡させることが大切であり、且つポリオレフ
ィンに悪影響を及ぼさない範囲で設定するのが好まし
く、通常、160〜190℃程度であり、その加熱時間
は、通常、20〜60分間程度である。
As a means for adjusting the decomposition amount of the foaming agent, there is a method of adjusting the addition amount of a foaming auxiliary agent such as a metal oxide, but the simplest and surest method is the primary foaming. There is a method in which the heating temperature is set to a relatively low temperature of about 130 to 170 ° C. and the heating time is controlled. Further, the heating temperature in the secondary foaming is important to completely decompose and foam the foaming agent, and is preferably set in a range that does not adversely affect the polyolefin, and is usually about 160 to 190 ° C. The heating time is usually about 20 to 60 minutes.

【0015】本第3発明のポリオレフィン発泡装置は、
中間発泡体を加工して最終発泡体を製造するためのもの
であり、冷却成形用型(1)と、該冷却成形用型の上下
に配設され、内部に熱媒流路を有する一対の加熱板
(2)と、を具備し、上記冷却成形用型(1)は、内部
に冷媒流路を設けた側方型枠と、該側方型枠を上下から
固定し、該側方型枠(11)と共に最終発泡体の形状寸
法に対応した非密閉の内部空間を形成するように配設さ
れ、且つ内部に冷媒流路を有する一対の平板(12)
と、を備えることを特徴とする。
The polyolefin foaming apparatus of the third invention is
It is for processing an intermediate foam to produce a final foam, and includes a cooling mold (1) and a pair of cooling medium molds disposed above and below the cooling mold and having a heat medium channel inside. The cooling mold (1) includes a heating plate (2), and the cooling mold (1) is a lateral mold in which a refrigerant channel is provided, and the lateral mold is fixed from above and below. A pair of flat plates (12) which are arranged together with the frame (11) so as to form an unsealed internal space corresponding to the shape and size of the final foam and which has a refrigerant channel inside.
And are provided.

【0016】本発明のポリオレフィン発泡装置におい
て、一次発泡型のキャビティや、冷却成形用型の側方型
枠と一対の平板とから形成される非密閉の内部空間の形
状は、特に限定されないが、第4発明のように、一次発
泡型内のキャビティと、冷却成形用型の側方型枠と一対
の平板とで形成される非密閉の内部空間とは、共に最終
発泡体に略相似形であり、且つ該冷却成形用型の該内部
空間は、縦、横及び高さの各寸法のいずれもがこの冷却
成形用型内で最終発泡させた発泡体の発泡直後の夫々の
寸法に対し、1〜10%小さくした寸法であるのが好ま
しい。尚、この場合の「縦、横及び高さ」とは、明確に
これが概念されないような立体形状の場合は、三次元的
にみて略相似形状という意味に用いる。尚、本発明にい
う「非密閉の内部空間」とは、該空間内において中間発
泡体が2次膨張する際、空間内に残存する空気を発泡体
の膨張圧により外部へ排除しうる構造を意味し、通常、
側方型枠部の側面に上記内部空間と外部雰囲気とを連通
させる小孔を各辺に1〜2個設けることが一般的であ
る。
In the polyolefin foaming apparatus of the present invention, the shape of the cavity of the primary foaming mold and the unsealed internal space formed by the side mold of the cooling mold and the pair of flat plates is not particularly limited, As in the fourth aspect of the invention, the cavity in the primary foaming mold and the unsealed internal space formed by the side mold and the pair of flat plates of the cooling molding mold are both substantially similar to the final foam. Yes, and the internal space of the cooling mold has a vertical, horizontal and height dimensions, respectively, with respect to the respective dimensions immediately after foaming of the foam that has been finally foamed in the cooling mold. It is preferable that the size is reduced by 1 to 10%. In this case, the term “vertical, horizontal and height” is used to mean a substantially similar shape when viewed three-dimensionally in the case of a three-dimensional shape that is not clearly defined. The term "non-sealed internal space" as used in the present invention refers to a structure in which, when the intermediate foam expands secondarily in the space, the air remaining in the space can be removed to the outside by the expansion pressure of the foam. Means, usually,
It is common to provide one or two small holes on each side for allowing the internal space and the external atmosphere to communicate with each other on the side surface of the side mold part.

【0017】一次発泡型のキャビティと冷却成形用型等
の内部空間との形状を最終発泡体の形状に略相似形とす
ることによって、発泡体の3次元膨張をできるだけ均一
に惹起せしめることができる。これに伴って、経時収縮
で最終発泡体の表面の収縮斑による凹凸及び寸法誤差の
発生を防ぐことができるからである。特に、冷却成形用
型の内部空間の寸法を1〜10%小さくすることによっ
て、発泡膨張した最終発泡体が、その自己膨張力でこの
内部空間の壁面に余すところなく均一に接触し押しつけ
られることで、該内部空間の形状通りに成形可能となる
とともに、最終製品形状のバラツキが小さくなる。加え
て、加熱や冷却での熱移動効率も向上する。
By making the shape of the cavity of the primary foaming mold and the internal space of the cooling molding mold or the like substantially similar to the shape of the final foam, the three-dimensional expansion of the foam can be induced as uniformly as possible. .. With this, it is possible to prevent unevenness and dimensional error due to shrinkage unevenness on the surface of the final foam due to aging shrinkage. In particular, by reducing the size of the internal space of the cooling molding die by 1 to 10%, the foamed and expanded final foam is uniformly and uniformly pressed against the wall surface of the internal space by its self-expanding force. Thus, the molding can be performed according to the shape of the internal space, and the variation in the final product shape is reduced. In addition, heat transfer efficiency in heating and cooling is also improved.

【0018】尚、内部空間寸法が1%未満でしか小さく
ない場合には、発泡体の自己膨張力による該内部空間内
壁面への該発泡体の押圧力が不充分となり、発泡体側面
が凹凸になったり角部が形成されなかったりして、二次
金型通りに成形され難くなると共に加熱効率や冷却効率
も悪化する。一方、10%を超えて小さくした場合に
は、その後の冷却により発泡体が収縮しても、なお発泡
体外寸が該空間内寸より相当大きく、冷却成形用型から
の発泡体の取出しが困難になったり、冷却用型の開放時
に発泡体の中央部が浮き上がったりして、変形割れ発生
の原因となる。
When the size of the internal space is less than 1%, the pressing force of the foam on the inner wall surface of the internal space due to the self-expansion force of the foam becomes insufficient and the side surface of the foam becomes uneven. And the corners are not formed, it becomes difficult to mold the secondary mold and the heating efficiency and cooling efficiency also deteriorate. On the other hand, when it is made smaller than 10%, even if the foam shrinks due to subsequent cooling, the outer dimension of the foam is still considerably larger than the inner dimension of the space, and it is difficult to remove the foam from the cooling mold. Or when the cooling mold is opened, the center part of the foam rises, causing deformation and cracking.

【0019】また、上記冷却成形用型の一対の上記平板
における上記最終発泡体との接触面は、本第5発明のよ
うに、微細な凹凸からなる平滑面とすることができる。
この平滑面の平滑度(Rmax )としては、通常、3〜1
00μm程度である。これにより、発泡膨張時に無理な
抵抗をかけることなく膨張させることができ、極めて成
形状態の良好な発泡体を得ることができるし、またその
取出しも容易である。更に、従来のように型内での発泡
体の滑りを良くするために金属硝酸塩水溶液等をコーテ
ィングする必要もなく、そのためそれに伴う発泡体の洗
浄もいらなくなるので、大きな省力化につながる。尚、
上記発泡体接触面の平滑性を出す方法としては、JIS
規格B0601の4S〜20Sの梨地加工するか、又は
テフロンコーティング加工等とするのが望ましい。
Further, the contact surfaces of the pair of flat plates of the cooling mold with the final foam can be smooth surfaces having fine irregularities as in the fifth aspect of the invention.
The smoothness (Rmax) of this smooth surface is usually 3 to 1
It is about 00 μm. As a result, the foam can be expanded without applying excessive resistance during expansion, and a foam in a very good molded state can be obtained, and the foam can be easily taken out. Further, unlike the conventional case, it is not necessary to coat the metal nitrate aqueous solution or the like in order to improve the sliding property of the foam in the mold, and thus the cleaning of the foam is not required, which leads to a great labor saving. still,
As a method for obtaining the smoothness of the foam contact surface, JIS
It is desirable to perform a satin finish of 4S to 20S according to the standard B0601 or a Teflon coating process.

【0020】更に、本発明のポリオレフィン発泡装置
は、本第6発明の如く、冷却成形用型が加熱板へ着脱可
能な如く取り付けられており、更に該型の側方型枠と一
対の平板とは分離できるようにするのが好ましい。長期
間の使用により、その面の平滑性が損われても、平板自
体が加熱板や側方型枠から容易に分離できるので、交換
したり再加工処理したりするに適し、また目的、用途に
応じたものを適宜交換して使用できるからである。
Further, in the polyolefin foaming apparatus of the present invention, as in the sixth aspect of the present invention, the cooling molding mold is detachably attached to the heating plate, and the side mold of the mold and the pair of flat plates are provided. Are preferably separable. The flat plate itself can be easily separated from the heating plate and the side mold even if the smoothness of the surface is impaired due to long-term use, so it is suitable for replacement and reworking. This is because those corresponding to the above can be appropriately replaced and used.

【0021】[0021]

【作用】本発明は、第1工程で得られた中間発泡体を、
内部に冷媒流路を設けた側方型枠と、この側方型枠を上
下から固定し該側方型枠と共に最終発泡体の形状寸法に
対応した非密閉の空間を形成するように配設され、且つ
その内部に冷媒流路を有する一対の平板と、からなる冷
却成形用型内に入れ、この冷却成形用型の上下に配設さ
れた一対の加熱板に設けられた流路に熱媒を注入するこ
とによって、冷却成形用型を介して常圧下に上記中間発
泡体を加熱して上記発泡剤の残部を分解させ、その後、
上記冷却成形用型の平板及び側方型枠の冷媒流路に冷媒
を注入する。従って、発泡体の外周面で加熱と冷却とを
均一に効率良く行うことができる。
In the present invention, the intermediate foam obtained in the first step is
A side mold with a coolant channel inside, and a side mold that is fixed from above and below to form an unsealed space corresponding to the shape and dimensions of the final foam together with the side mold. Which is placed in a cooling molding die composed of a pair of flat plates each having a cooling medium flow path therein, and heat is applied to the flow paths provided in a pair of heating plates arranged above and below the cooling molding die. By injecting a medium, the intermediate foam is heated under normal pressure through a cooling mold to decompose the rest of the foaming agent, and thereafter,
Refrigerant is injected into the flat plate of the cooling mold and the coolant channels of the side frame. Therefore, the outer peripheral surface of the foam can be uniformly and efficiently heated and cooled.

【0022】そして、このように最終発泡完了後の発泡
体を金型から取り出すことなく連続して冷却成形する方
式であるので、発泡体の表面平滑性を向上させるための
新たな冷却工程を付加する必要もない。また、冷却成形
用型内の冷媒流路に冷媒を流して冷却する一方、この冷
却成形用型を挟み込む加熱板内に熱媒通路を設け、これ
に熱媒を流通させて加熱する。従って、加熱から冷却或
いは冷却から加熱への切替えが円滑に行なえ、更に所定
の加熱温度や冷却温度に到達する時間も短くでき、生産
効率を上げることができる。
Since the foamed body after the final foaming is continuously cooled and molded without taking it out of the mold, a new cooling step is added to improve the surface smoothness of the foamed body. You don't even have to. Further, while cooling the refrigerant by flowing it through a cooling medium passage in the cooling molding die, a heating medium passage is provided in a heating plate sandwiching the cooling molding die, and the heating medium is circulated and heated. Therefore, switching from heating to cooling or cooling to heating can be smoothly performed, and the time required to reach a predetermined heating temperature or cooling temperature can be shortened, and production efficiency can be improved.

【0023】更に、本発明のように、冷却成形用型の平
板を介して発泡体を加熱する方式では、その熱移動効率
の悪さが懸念されるが、本第2発明の如く、1次発泡工
程で1/3程度以上の発泡剤を分解させ、その残分発泡
剤を第2工程で分解させるので、換言すれば、第2工程
を成形、冷却主体の工程とするので、その加熱時の熱移
動効率の低下は、さほど問題とはならない。却って、平
板を介して加熱することによって、金属製熱板の熱伝導
度が極めて高いことから、熱板での熱媒流路付近とその
他の部分とでの温度差が緩和できるので、均一加熱を可
能とする長所を有する。また、第1工程の発泡分解率を
所定の適当な範囲とすることで、250〜450μmと
比較的気泡径が大きく、且つ5〜20%の連泡率を有す
る発泡体となるので、圧縮応力に富み、且つ永久圧縮歪
みの小さい製品が得ることができる。
Further, in the method of heating the foam through the flat plate of the cooling mold as in the present invention, the heat transfer efficiency may be poor, but as in the second invention, the primary foaming is performed. In the process, about 1/3 or more of the foaming agent is decomposed, and the residual foaming agent is decomposed in the second step. In other words, the second step is mainly a molding and cooling step. The decrease in heat transfer efficiency is not a serious problem. On the contrary, by heating through a flat plate, the thermal conductivity of the metal hot plate is extremely high, so the temperature difference between the heat medium flow path near the hot plate and other parts can be relaxed, so uniform heating is possible. It has the advantage of enabling In addition, by setting the foaming decomposition rate in the first step within a predetermined appropriate range, a foam having a relatively large cell diameter of 250 to 450 μm and an open cell ratio of 5 to 20% is obtained. It is possible to obtain a product which is rich in and has a small permanent compression set.

【0024】[0024]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (1)ポリオレフィン発泡装置(二次型)の構成 図1は、本発明に係るポリオレフィン発泡装置の一実施
例を示すもので、発泡成形部は、冷却成形用型1と、加
熱板2と、から構成される。冷却成形用型1は、一対の
側方型枠11a、11bと、一対の平板12a、12b
と、からなる。平板12a、12bが側方型枠11a、
11bをボルト4、4で上下から固定して非密閉の内部
空間3を形成している。この内部空間3は、最終発泡体
に略相似形であり、且つ冷却成形用型1の内部空間3を
構成する縦、横、高さの各寸法が、最終発泡体と略相似
形である1次発泡型で得た中間発泡体を最終発泡した発
泡体の発泡直後の夫々の寸法に対し、1〜10%小さく
した寸法に設定したものである。側方型枠11には、冷
媒流路111が形成されている。平板12a、12bに
も、同様に冷媒流路121を設けている。
EXAMPLES The present invention will be specifically described below with reference to examples. (1) Configuration of Polyolefin Foaming Device (Secondary Mold) FIG. 1 shows an embodiment of the polyolefin foaming device according to the present invention, in which a foam molding part includes a cooling molding mold 1, a heating plate 2, Composed of. The cooling mold 1 includes a pair of side molds 11a and 11b and a pair of flat plates 12a and 12b.
And consists of. The flat plates 12a and 12b are side molds 11a,
11b is fixed from above and below with bolts 4 and 4 to form an unsealed internal space 3. The internal space 3 is substantially similar to the final foam, and the vertical, horizontal, and height dimensions forming the internal space 3 of the cooling mold 1 are substantially similar to the final foam 1. The intermediate foam obtained in the subsequent foaming type is set to have a size reduced by 1 to 10% with respect to the respective sizes of the foamed product finally foamed immediately after foaming. A coolant channel 111 is formed in the side mold 11. The flat plate 12a, 12b is also provided with a refrigerant flow channel 121.

【0025】符号5は、冷却成形用型1を上下の加熱板
2、2に固定するボルトを示す。側方型枠11は、図1
の如く上型枠11aと下型枠11bに二分割され、加熱
板2、2のいずれかが上方又は下方へ移動すると、冷却
成形用型1の開放状態となり、発泡冷却完了後の発泡体
の取出しができるようになっている。平板12a、12
bは、図2(一方の上側平板を省略した説明図)のよう
に、蛇行した貫通孔121を有する中板122を通常の
板状体123で両側からサンドイッチ状に挟み込んだ構
造であり、この貫通孔121が最終的に冷媒流路121
(図1)となる。尚、符号12aに示す如く、その冷媒
流路121内に管状体1211a、1211bを挿入
し、補強してもよい。
Reference numeral 5 indicates a bolt for fixing the cooling mold 1 to the upper and lower heating plates 2 and 2. The lateral formwork 11 is shown in FIG.
As described above, the upper mold frame 11a and the lower mold frame 11b are divided into two, and when any one of the heating plates 2 and 2 moves upward or downward, the cooling molding mold 1 is opened, and the foam after cooling and foaming is completed. It can be taken out. Flat plates 12a, 12
As shown in FIG. 2 (an explanatory view in which one upper flat plate is omitted), b has a structure in which a middle plate 122 having a meandering through hole 121 is sandwiched between normal plate members 123 from both sides. The through hole 121 is finally the refrigerant flow channel 121.
(Fig. 1). Incidentally, as shown by the reference numeral 12a, the tubular bodies 1211a and 1211b may be inserted and reinforced in the refrigerant flow channel 121.

【0026】加熱板2は、肉厚の金属板で構成され、注
入した熱媒で加熱できるように、その内部には熱媒流路
21が設けられている。ここで、加熱板2は、図3に示
すように、金属製箱状体22と、この箱状体23内であ
って底板23にロー付けされ熱媒の流路を構成する管状
体24と、を備えるものとすることができる。この管状
体24が金属製底板23aにロー付けされるので、熱伝
導に優れ、また、この箱状体内に熱の不良導体である空
気が充満されるので、熱のロスも少なくなる。図3に示
すように、箱状体内にリブ25を設けて補強することも
できる。更に、この金属製箱状体内に、断熱材(例え
ば、発泡セラミック等)を充填配置したものとすること
もできる。
The heating plate 2 is composed of a thick metal plate, and a heating medium passage 21 is provided inside the heating plate 2 so that it can be heated by the injected heating medium. Here, as shown in FIG. 3, the heating plate 2 includes a metallic box-shaped body 22 and a tubular body 24 inside the box-shaped body 23 that is brazed to the bottom plate 23 to form a flow path of the heat medium. , Can be provided. Since the tubular body 24 is brazed to the metal bottom plate 23a, the heat conduction is excellent, and the box-shaped body is filled with air, which is a poor heat conductor, so that heat loss is reduced. As shown in FIG. 3, ribs 25 may be provided in the box-shaped body for reinforcement. Further, a heat insulating material (for example, foam ceramic or the like) may be filled and arranged in the metal box-shaped body.

【0027】(2)ポリオレフィン発泡体の製造 実施例1 メルトインデックス1.0のポリエチレン100重量部
(以下、部という。)に、アゾジカルボンアミド5部、
ジクミルパーオキサイド2部及び酸化亜鉛0.5部から
なる組成物を表面温度100℃のロール上で混練して混
和物を得た。この混和物6kgを一次型(410mm×
410mm×40mm)に充填し70kg/cm2 の加
圧下で、且つ160℃で30分間加熱した後、高温熱時
に除圧し10倍程度に発泡膨張した中間発泡体(880
mm×880mm×86mm)を得た。この高温状態の
中間発泡体を、図1に示すような一対の加熱板2で挟ま
れた冷却成形用型1(内部空間寸法:1000mm×1
000mm×100mm)に入れ、熱媒流路21にスチ
ームを導通させることにより165℃に維持された加熱
板2を用いて、この冷却成形型1を介して30分間加熱
した。
(2) Production of Polyolefin Foam Example 1 100 parts by weight of polyethylene having a melt index of 1.0 (hereinafter referred to as "part"), 5 parts of azodicarbonamide,
A composition containing 2 parts of dicumyl peroxide and 0.5 part of zinc oxide was kneaded on a roll having a surface temperature of 100 ° C. to obtain a mixture. 6 kg of this mixture was added to the primary mold (410 mm ×
(410 mm × 40 mm), heated under pressure of 70 kg / cm 2 , and heated at 160 ° C. for 30 minutes, then depressurized at high temperature to expand and expand about 10 times.
mm × 880 mm × 86 mm) was obtained. This intermediate foam in a high temperature state is sandwiched between a pair of heating plates 2 as shown in FIG. 1 for a cooling molding die 1 (internal space dimension: 1000 mm × 1).
000 mm × 100 mm), and heating was performed through the cooling mold 1 for 30 minutes using the heating plate 2 which was maintained at 165 ° C. by passing steam through the heat medium flow passage 21.

【0028】尚、冷却成形用型1の上下に取り付けられ
た平板12a、12bの発泡体との接触面はテフロンコ
ーティングが施されており、この型の内壁面には硝酸金
属塩水溶液等の滑剤は一切散布されていない。加熱完了
後、加熱板2に供給していたスチームを止め、同時に冷
却成形用型1の冷媒流路111、121に常温の冷却水
を流通させた。尚、この場合、加熱板2の熱媒流路21
内の熱媒は、そのままの状態であるが、圧縮空気等によ
り除去することもできる。
The flat plates 12a and 12b attached to the upper and lower sides of the cooling mold 1 are contacted with the foam by Teflon coating, and the inner wall surface of the mold has a lubricant such as a metal nitrate aqueous solution. Has not been sprayed at all. After the heating was completed, the steam being supplied to the heating plate 2 was stopped, and at the same time, the cooling water at room temperature was circulated through the coolant channels 111 and 121 of the cooling mold 1. In this case, the heating medium passage 21 of the heating plate 2
The heat medium inside is as it is, but it can be removed by compressed air or the like.

【0029】その結果、冷却成形用型1の側方型枠11
部分は約3分後に50℃前後まで降温し、発泡体側方外
周部は約30分後に90℃まで降温した。この時点で、
最終発泡体を取り出すと同時に冷却水を止め、再び加熱
板2へスチームを流通させた。尚、この場合、冷媒流路
111、121内の冷媒は、圧縮空気等により除去する
が、そのままの状態とすることもできる。これにより加
熱板2が再び165℃となるのに約18分要した。従っ
て、冷却開始→冷却完了→冷却成形用型の再昇温に要し
た時間はたった48分であった。また、最終発泡体の型
からの取出しも容易であった。得られた最終発泡体は、
密度が0.06g/cc、発泡倍率が約15倍のもの
で、縦、横が995〜1000mm、厚さが98〜10
1mmと略均一で、冷却成形用型1の内部空間3の形状
と殆ど同じで、その外周表面は平滑性に優れ、極めて美
麗なものであった。
As a result, the side mold 11 of the cooling mold 1 is formed.
After about 3 minutes, the temperature of the portion was lowered to around 50 ° C, and after 30 minutes, the temperature of the outer peripheral portion of the foam was lowered to 90 ° C. at this point,
Simultaneously with taking out the final foam, the cooling water was stopped, and the steam was circulated to the heating plate 2 again. In this case, the refrigerant in the refrigerant channels 111 and 121 is removed by compressed air or the like, but it can be left as it is. It took about 18 minutes for the heating plate 2 to reach 165 ° C. again. Therefore, the time required for cooling start → cooling completion → cooling mold temperature rise again was only 48 minutes. Further, it was easy to remove the final foam from the mold. The final foam obtained is
The density is 0.06 g / cc, the expansion ratio is about 15 times, the length and width are 995 to 1000 mm, and the thickness is 98 to 10.
It was approximately 1 mm and was almost the same as the shape of the internal space 3 of the cooling mold 1, and the outer peripheral surface thereof was excellent in smoothness and was extremely beautiful.

【0030】比較例1 実施例1と同様の方法で得られた中間発泡体を、図4に
示す2次金型6(内部空間寸法:1000mm×100
0mm×100mm)に入れ、金型上面及び下面を構成
する金属板61、62の熱媒流路611、621にスチ
ームを導通させることによりその金属板を165℃に維
持し、この中間発泡体を30分加熱した。尚、上記金属
板の発泡体との接触面には発泡膨張をスムーズに行なえ
るよう、予め硝酸金属塩水溶液が滑剤として散布されて
いる。
Comparative Example 1 An intermediate foam obtained by the same method as in Example 1 was used as a secondary mold 6 (internal space size: 1000 mm × 100) shown in FIG.
0 mm × 100 mm), and the steam is conducted to the heat medium flow paths 611 and 621 of the metal plates 61 and 62 forming the upper and lower surfaces of the mold to maintain the metal plate at 165 ° C. Heated for 30 minutes. An aqueous solution of a metal nitrate salt is previously sprayed as a lubricant on the contact surface of the metal plate with the foam so that the foam expansion can be smoothly performed.

【0031】加熱完了後、金属板61、62に供給して
いたスチームを止め、配管切替えにより該金属板の熱媒
流路611、621に冷却水配管を接続し、この熱媒流
路611、621に冷却水を供給した。熱媒流路61
1、621内に残存するスチームの圧力を低下させ、冷
却水を流通するのに10分の時間を要した。更に、金型
枠部の温度が50℃前後まで降温するのに40分の時間
を要した。発泡体側方外周部は約60分後に90℃まで
降温し、この時点で、最終発泡体を取り出すと共に冷却
水を止め、再び配管をスチームに切替えて、熱媒流路6
11、621にスチームを供給した。しかし、ウォータ
ーハンマリング現象発生のため、スチーム圧は徐々にし
か増加させざるを得なかった。再び金属板を165℃に
するのに、結局約40分要した。得られた発泡体は、実
施例1と同様に、寸法、形状、外周表面状態共優れたも
のであったが、冷却開始→冷却完了→再昇温に100分
の時間を要し、実施例1の2倍の時間がかかった。
After the heating is completed, the steam supplied to the metal plates 61 and 62 is stopped, and the cooling medium pipes are connected to the heat medium flow passages 611 and 621 of the metal plates by switching the pipes. Cooling water was supplied to 621. Heat medium channel 61
It took 10 minutes to reduce the pressure of the steam remaining in 1,621 and to circulate the cooling water. Furthermore, it took 40 minutes for the mold frame temperature to drop to around 50 ° C. After about 60 minutes, the outer peripheral portion of the foam body was cooled to 90 ° C. At this time, the final foam body was taken out, cooling water was stopped, and the piping was switched to steam again to change the heat medium flow path 6
Steam was supplied to 11,621. However, due to the occurrence of the water hammering phenomenon, the steam pressure had to be gradually increased. It took about 40 minutes to bring the metal plate to 165 ° C. again. The obtained foam had excellent dimensions, shape, and outer peripheral surface state as in Example 1, but it took 100 minutes to start cooling, complete cooling, and reheat. It took twice as long as 1.

【0032】実施例2〜3及び比較例2〜3 実施例1と同様の混和物の所定量(表1に示す。)を、
表1に示す所定の型寸法をもつ一次金型を用いて、実施
例1と同様の条件で加工した。更に、実施例1と同様の
条件、設備で2次発泡、冷却成形を行った。尚、二次型
寸法の大きさを表1に示す。これらの結果を表1に示
す。表1において、2次発泡膨張完了直後の発泡体寸法
〔C〕は、二次発泡完了直後の発泡体を冷却することな
しに強制的に金型より取り出し、縦、横、高さのそれぞ
れについて各3ヶ所の寸法を測定し、その平均値で表し
たものである。また、最終発泡体寸法のバラツキは冷却
完了後の発泡体の縦、横、高さについてそれぞれ最大部
分と最小部分を測定し、その差で表したものである。表
1中の*印を付した数値は、第2発明の範囲から外れる
ものである。
Examples 2-3 and Comparative Examples 2-3 Predetermined amounts of the same admixture as in Example 1 (shown in Table 1) were used.
Processing was performed under the same conditions as in Example 1 using a primary mold having predetermined mold dimensions shown in Table 1. Further, secondary foaming and cooling molding were performed under the same conditions and equipment as in Example 1. The size of the secondary mold is shown in Table 1. The results are shown in Table 1. In Table 1, the foam dimension [C] immediately after the completion of the secondary foaming is the foam immediately after the completion of the secondary foaming. It is a value obtained by measuring the dimensions at each of three places and expressing the average value. In addition, the variation in the final foam size is expressed by the difference between the maximum, minimum, and vertical dimensions of the foam after cooling is completed. Numerical values marked with * in Table 1 are out of the range of the second invention.

【0033】以上の結果によれば、表1に示すように、
二次型縮小率が不適切な比較例2及び3では、最終発泡
体の寸法バラツキが大きかった。また、比較例3では発
泡体上面に長さ200mm、深さ10mmの割れが発生
し、しかも最終発泡体の型からの取出しが窮屈であり、
相当無理に取り出す必要があった。一方、実施例1及び
2では、上記のような不具合はなく(バラツキはあるも
のの、大変少ない。)、良好であった。
According to the above results, as shown in Table 1,
In Comparative Examples 2 and 3 in which the secondary mold reduction ratio was inappropriate, the dimensional variation of the final foam was large. Further, in Comparative Example 3, a crack having a length of 200 mm and a depth of 10 mm was generated on the upper surface of the foam, and the final foam was difficult to remove from the mold.
I had to take it out forcibly. On the other hand, in Examples 1 and 2, the above-mentioned problems did not occur (there were variations, but very few), and the results were good.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例4〜5及び比較例4〜6 実施例1において一次発泡の加熱時間を種々変更し、一
次発泡工程での発泡剤分解率を変えた。これらの条件を
表2に示す。各加工条件につき100個の発泡体を作
り、その時の製品化歩留り、及び物性について調査し
た。その結果を表2に示す。ここで、表2中*印の付し
た数値は、本発明の範囲から外れるものである。また、
同表中、「一次金型での発泡体洩れ」欄及び「1次、2
次発泡体の変形、割れ」欄の数字の単位は数である。平
均気泡径の測定は、各発泡体につき100個の気泡の直
径を測定し、その平均値で示したものである。25%圧
縮応力の測定は、JIS K6767の方法により行っ
た。斯る測定によって得られた値が大きいと、圧縮応力
が大きくなり、圧縮応力に富むことになる。また、連泡
率の測定はエアーピクノメーター法(ASTM D28
56)に準拠して行った。更に25%圧縮永久歪みの測
定は、JIS K6767により行った。
Examples 4 to 5 and Comparative Examples 4 to 6 In Example 1, the heating time for primary foaming was variously changed to change the decomposition rate of the foaming agent in the primary foaming step. Table 2 shows these conditions. 100 foams were made for each processing condition, and the product yield and physical properties at that time were investigated. The results are shown in Table 2. Here, the numerical values marked with * in Table 2 are out of the scope of the present invention. Also,
In the same table, the columns "Foam leak in the primary mold" and "Primary, 2"
The unit of the numbers in the "Following foam deformation and cracking" column is a number. The average cell diameter is measured by measuring the diameter of 100 cells in each foam and showing the average value. The 25% compressive stress was measured by the method of JIS K6767. When the value obtained by such measurement is large, the compressive stress is large, and the compressive stress is rich. The open cell ratio is measured by the air pycnometer method (ASTM D28
56). Further, the measurement of the 25% compression set was performed according to JIS K6767.

【0036】[0036]

【表2】 [Table 2]

【0037】表2の結果によれば、比較例4では1次分
解率が50%と小さいので、発泡体の洩れ、変形はない
ものの、平均気泡径が小さ過ぎ(所望のものではな
い。)、25%圧縮応力が小さく、連泡率も低く、且つ
25%圧縮永久ひずみも大きい。比較例5及び6では、
最終発泡体の物性は満足するものの、いずれも発泡体の
洩れ、変形が生じた。一方、実施例4及び5では、この
ような不具合は全くなく、効率良く優れた性能品を製造
できた。尚、本発明においては、前記具体的実施例に示
すものに限られず、目的、用途に応じて本発明の範囲内
で種々変更した実施例とすることができる。即ち、上記
実施例では、一対の加熱板と1つの冷却成形用型を1組
とするが、加熱板と冷却成形用型とを順次積層し、更に
他端に加熱板を積層し、固定して、即ち1つの加熱板と
1つの冷却成形用型とを1組としこれを順次複数組み合
わせ且つ両端には加熱板を配設して、複数の中間発泡体
を同時に加熱、冷却できる構成とすることができる。こ
の固定方法は特に限定されず、例えば、上記実施例の如
く、各部材をボルトで固定してもよいし、複数の加熱板
をステー、長尺状固定ボルト等により同時に固定しても
よい。また、側方型枠は、一対のものでなく1つからな
ってもよいし、3以上でもよい。更に、側方型枠及び平
板に設けられる冷媒流路の断面形状、大きさ、数も特に
限定されないし、その流入口及び出口の数も種々選択さ
れる。また、平板の構造もサンドイッチ型でなく、内部
に冷媒流路を有する厚肉の一板状体とすることもでき
る。
According to the results shown in Table 2, in Comparative Example 4, the primary decomposition rate was as small as 50%, so that although the foam did not leak or deform, the average cell diameter was too small (not desired). , 25% compressive stress is small, open cell ratio is low, and 25% compression set is large. In Comparative Examples 5 and 6,
Although the physical properties of the final foam were satisfactory, the foam leaked and deformed in all cases. On the other hand, in Examples 4 and 5, there were no such defects, and excellent performance products could be efficiently manufactured. The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is, in the above embodiment, one pair of heating plates and one cooling molding die are set, but the heating plate and the cooling molding die are sequentially laminated, and the heating plate is further laminated and fixed on the other end. That is, one heating plate and one cooling molding die are set as one set, and a plurality of these are sequentially combined and heating plates are arranged at both ends, so that a plurality of intermediate foams can be simultaneously heated and cooled. be able to. This fixing method is not particularly limited, and for example, each member may be fixed by bolts as in the above-described embodiment, or a plurality of heating plates may be fixed at the same time by stays, long fixing bolts or the like. Further, the side molds may be made of one piece instead of a pair, or may be three or more. Furthermore, the cross-sectional shape, size, and number of the refrigerant passages provided in the side mold and the flat plate are not particularly limited, and the number of inlets and outlets thereof can be variously selected. Further, the flat plate structure is not limited to the sandwich type, and may be a thick one plate-shaped body having a refrigerant channel inside.

【0038】[0038]

【発明の効果】以上のように、本発明の製造方法及び発
泡装置によれば、上下の加熱板と冷却成形用型とを個別
に組み合わせているので、冷却と加熱を各々分担するこ
とができ、そのため効率的に加熱と冷却とを行うことが
できる。また、冷却成形用型が形成する内部空間を最終
発泡体の形状寸法に対応させているので、成形性や表面
平滑性に優れる製品を得ることができる。更に、第1工
程の発泡剤分解率を一定範囲内におさめ、比較的気泡径
が大きく、且つ適度な連泡率をもつ発泡体とすることが
できるので、圧縮応力に富み、且つ永久歪みの少ない最
終発泡体を得ることができる。
As described above, according to the manufacturing method and the foaming apparatus of the present invention, the upper and lower heating plates and the cooling molding die are individually combined, so that cooling and heating can be shared respectively. Therefore, heating and cooling can be efficiently performed. Moreover, since the internal space formed by the cooling mold corresponds to the shape and size of the final foam, a product having excellent moldability and surface smoothness can be obtained. Furthermore, since the foaming agent decomposition rate in the first step can be kept within a certain range and a foam having a relatively large cell diameter and an appropriate open cell rate can be obtained, it is rich in compressive stress and permanent set. Fewer final foams can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るポリオレフィン発泡体の製造装置
の発泡成形部を示す説明断面図である。
FIG. 1 is an explanatory cross-sectional view showing a foam molding part of a manufacturing apparatus for a polyolefin foam according to the present invention.

【図2】図1で冷媒流路を有する平板の概略説明図であ
る。
FIG. 2 is a schematic explanatory view of a flat plate having a coolant channel in FIG.

【図3】熱媒流路を有する加熱板の概略説明図である。FIG. 3 is a schematic explanatory diagram of a heating plate having a heat medium passage.

【図4】従来の2次発泡装置を示す説明断面図である。FIG. 4 is an explanatory sectional view showing a conventional secondary foaming device.

【符号の説明】[Explanation of symbols]

1;冷却成形用型、11;側方型枠、11a;上型枠、
11b;下型枠、111;冷媒流路、12a、12b;
平板、121;冷媒流路、1211;管状体、122;
中板、123;板状体、2;加熱板、21;熱媒流路、
22;金属製箱状体、23;底板、24;管状体、2
5;リブ、3;内部空間、4;ボルト、5;ボルト、
6;2次金型。
1; Cooling mold, 11; Side mold, 11a; Upper mold,
11b; Lower formwork, 111; Refrigerant flow path, 12a, 12b;
Flat plate, 121; refrigerant channel, 1211; tubular body, 122;
Middle plate, 123; plate-shaped body, 2; heating plate, 21; heat medium flow path,
22; metal box-like body, 23; bottom plate, 24; tubular body, 2
5; rib, 3; internal space, 4; bolt, 5; bolt,
6; Secondary mold.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン、架橋剤及び発泡剤を含
む発泡性組成物を金型に充填し、加圧下で加熱して上記
発泡剤の一部を分解させ発泡を誘起せしめた後、高温熱
時に除圧し上記金型から取り出して中間発泡体を製造す
る第1工程と、 その後、上記第1工程で得られた中間発泡体を、内部に
冷媒流路を設けた側方型枠(11)と、該側方型枠を上
下から固定し該側方型枠と共に最終発泡体の形状寸法に
対応した非密閉の空間を形成するように配設され、且つ
内部に冷媒流路を有する一対の平板(12)と、からな
る冷却成形用型(1)内に入れ、該冷却成形用型の上下
に配設された一対の加熱板(2)を、該各加熱板に設け
られた流路に熱媒を注入することにより加熱して、上記
冷却成形用型を介して常圧下で上記中間発泡体を加熱す
ることで、上記発泡剤の残部を分解させ発泡を誘起せし
め、 次いで、上記冷却成形用型の平板及び上記側方型枠の各
冷媒流路に冷媒を注入することにより、発泡体の外周面
を均一に冷却して、最終発泡体を製造する第2工程と、
からなることを特徴とするポリオレフィン発泡体の製造
方法。
1. A mold is filled with a foaming composition containing a polyolefin, a cross-linking agent and a foaming agent, and heated under pressure to decompose a part of the foaming agent to induce foaming, and then at high temperature heat. The first step of depressurizing and taking out from the mold to produce an intermediate foam, and thereafter, the intermediate foam obtained in the first step is used as a side mold (11) having a refrigerant channel inside. , A pair of flat plates which are fixed so that the side molds are fixed from above and below so as to form an unsealed space corresponding to the shape and dimension of the final foam together with the side molds, and which have a refrigerant flow passage therein. (12), and a pair of heating plates (2) arranged above and below the cooling molding die (1) are placed in the cooling mold (1). It is heated by injecting a heating medium, and the intermediate foam is heated under normal pressure through the cooling mold. With, to induce the foaming by decomposing the remaining portion of the foaming agent, then by injecting a refrigerant into the refrigerant channels of the flat plate of the cooling mold and the side mold, the outer peripheral surface of the foam A second step of uniformly cooling to produce the final foam;
A method for producing a polyolefin foam, comprising:
【請求項2】 第1工程の1次発泡において、金型を5
0kg/cm2 以上の加圧状態で加熱して、上記発泡剤
を下式を満足する分解率となる如く分解させて発泡を誘
起せしめ、高温熱時に除圧し上記金型から取り出して上
記中間発泡体を製造する請求項1記載のポリオレフィン
発泡体の製造方法。 第1工程の発泡剤分解率(%)=(9〜12)×(10
0/最終発泡倍率)
2. In the first foaming of the first step, the mold is 5
The foaming agent is heated under a pressure of 0 kg / cm 2 or more to decompose the foaming agent so as to have a decomposition rate satisfying the following formula to induce foaming, depressurize at high temperature and taken out from the mold to obtain the intermediate foaming. The method for producing a polyolefin foam according to claim 1, wherein the body is produced. Decomposition rate of foaming agent in the first step (%) = (9 to 12) × (10
0 / final expansion ratio)
【請求項3】 冷却成形用型(1)と、該冷却成形用型
の上下に配設され、内部に熱媒流路を有する一対の加熱
板(2)と、を具備し、 上記冷却成形用型(1)は、内部に冷媒流路を設けた側
方型枠と、該側方型枠を上下から固定し、該側方型枠
(11)と共に最終発泡体の形状寸法に対応した非密閉
の内部空間を形成するように配設され、且つ内部に冷媒
流路を有する一対の平板(12)と、を備え、中間発泡
体を加工して最終発泡体を製造することを特徴とするポ
リオレフィン発泡装置。
3. A cooling molding die (1) comprising: a cooling molding die (1); and a pair of heating plates (2) arranged above and below the cooling molding die and having a heat medium flow passage therein. The working mold (1) was prepared by fixing a side mold having a refrigerant flow path inside and the side mold from above and below, together with the side mold (11) in conformity with the shape and size of the final foam. A pair of flat plates (12) arranged so as to form a non-hermetic internal space and having a refrigerant channel therein, and processing an intermediate foam to produce a final foam. Polyolefin foaming equipment.
【請求項4】 上記冷却成形用型の側方型枠と一対の上
記平板とで形成される非密閉の内部空間は、最終発泡体
に略相似形であり、且つ該冷却成形用型の該内部空間を
構成する縦、横及び高さの各寸法のいずれもが、上記最
終発泡体と略相似形のキャビティを有する1次発泡型で
得た中間発泡体を最終発泡させた発泡体の発泡直後の夫
々の寸法に対し、1〜10%小さくした寸法であること
を特徴とする請求項3記載のポリオレフィン発泡装置。
4. An unsealed internal space formed by the side molds of the cold-molding mold and the pair of flat plates has a shape substantially similar to that of the final foam, and the cold-molding mold has a shape similar to that of the final foam. Foaming of a foamed product obtained by finally foaming an intermediate foamed product obtained by a primary foaming mold having a cavity having a shape similar to that of the final foamed product in all of the longitudinal, lateral and height dimensions forming the internal space. The polyolefin foaming apparatus according to claim 3, wherein the polyolefin foaming device has a size reduced by 1 to 10% with respect to the respective sizes immediately after.
【請求項5】 上記冷却成形用型の一対の上記平板にお
いて、上記最終発泡体との接触面は、微細な凹凸からな
る平滑面となっている請求項3又は4記載のポリオレフ
ィン発泡装置。
5. The polyolefin foaming apparatus according to claim 3 or 4, wherein a contact surface of the pair of flat plates of the cooling molding die with the final foam is a smooth surface having fine irregularities.
【請求項6】 上記冷却成形用型は、上記加熱板へ着脱
可能に取り付けられており、且つ該冷却成形用型の上記
側方型枠と一対の上記平板とは、分離可能である請求項
3〜5記載のポリオレフィン発泡装置。
6. The cooling molding die is detachably attached to the heating plate, and the side mold of the cooling molding die and the pair of flat plates are separable from each other. The polyolefin foaming device according to 3 to 5.
JP4179152A 1992-06-12 1992-06-12 Method for producing polyolefin foam and polyolefin foaming apparatus Expired - Lifetime JPH085085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4179152A JPH085085B2 (en) 1992-06-12 1992-06-12 Method for producing polyolefin foam and polyolefin foaming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4179152A JPH085085B2 (en) 1992-06-12 1992-06-12 Method for producing polyolefin foam and polyolefin foaming apparatus

Publications (2)

Publication Number Publication Date
JPH05338052A true JPH05338052A (en) 1993-12-21
JPH085085B2 JPH085085B2 (en) 1996-01-24

Family

ID=16060870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4179152A Expired - Lifetime JPH085085B2 (en) 1992-06-12 1992-06-12 Method for producing polyolefin foam and polyolefin foaming apparatus

Country Status (1)

Country Link
JP (1) JPH085085B2 (en)

Also Published As

Publication number Publication date
JPH085085B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US4671910A (en) Process for the production of closed-cell foam molded articles of crosslinked polyolefin
CA2696510A1 (en) Press system
FI82477C (en) FOER FARING FOR FRAMSTAELLNING AV TVAERBUNDNA POLYOLEFINSKUMPRODUKTER.
JP2562102B2 (en) Method for producing polyolefin foam
JPH05338052A (en) Manufacture of polyolefin foam body and apparatus for foaming polyolefin
JPS6219294B2 (en)
JPS6221525A (en) Manufacture of polyolefin foam
JP2001105447A (en) Method for producing foamed molded object
JP3189377B2 (en) Molding method of foamed synthetic resin molded product
JP2000280332A (en) Method for foaming blow molding
JP3272779B2 (en) Method for producing polyolefin plate-like foam
JP2872505B2 (en) Method for producing polyolefin foam
JPH0367613B2 (en)
JP2869475B2 (en) Method for producing polyolefin foam
KR100246930B1 (en) Dies structure easy to adjust temperature
JP3146004B2 (en) Method for producing olefin-based synthetic resin foam molded article
CN111906985B (en) Multi-stage foaming method
JP3178897B2 (en) Two-stage foam molding method and apparatus
KR20170124268A (en) Surface glazing method of reducing weight matter
TWI708671B (en) Multi-stage foaming method
JP3279368B2 (en) Method for producing polyolefin foam
JPH06218832A (en) Manufacture of polyolefin foamed body
JP3148689B2 (en) Foam molding steam supply apparatus and foam molding method
JP2008183782A (en) Manufacturing method of thermoplastic resin foam
JPH1144081A (en) Manufacture of floor substrate material for piping