JPH05335776A - Dielectric compound material - Google Patents

Dielectric compound material

Info

Publication number
JPH05335776A
JPH05335776A JP16557992A JP16557992A JPH05335776A JP H05335776 A JPH05335776 A JP H05335776A JP 16557992 A JP16557992 A JP 16557992A JP 16557992 A JP16557992 A JP 16557992A JP H05335776 A JPH05335776 A JP H05335776A
Authority
JP
Japan
Prior art keywords
dielectric
powder
needle
metal
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16557992A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamoto
博 河本
Toshikatsu Hayashi
利勝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP16557992A priority Critical patent/JPH05335776A/en
Publication of JPH05335776A publication Critical patent/JPH05335776A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve dielectric loss by simple constitution and thin an electric wave absorber by mixing metal alloy needle-shaped powder which has high resistibility and sphere-shaped metal powder which has a high dielectric constant by almost same quantity with dielectric. CONSTITUTION:As for needle-shaped metal powder A, metal alloy which has a resistibility of rho>=80muOMEGA-cm, or desirably rho>=100muOMEGA-cm is used and when Co- Fe-Si-B amorphous metal alloy is used, especially excellent results are attained as electric wave absorbing material. The desirable shape of the needle-shaped metal powder A is a flake or a needle of which the longest axis is 30mm or shorter, shortest axis is 1-20mum with an aspect ratio of 50 or more. The metal alloy needle-shaped powder A and sphere-shaped metal powder B such as highly conductive Cu powder are mixed with dielectric C by almost same quantity and dielectric compound material with an improved dielectric constant is provided. The desirable resistibility of the highly conductive metal B to be mixed in the dielectric C is 10X10<-6>OMEGA-cm or lower. Therefore, dielectric loss contributes to the absorption of electric field components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波帯域での電波吸
収用材料として使用される誘電複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric composite used as a material for absorbing radio waves in a high frequency band.

【0002】[0002]

【従来の技術】高周波帯域での電波吸収用材料として、
誘電体中に導電性材料、例えば金属などの導電体粒子を
混入して成る複合材が実用されている。
2. Description of the Related Art As a material for absorbing radio waves in a high frequency band,
A composite material in which a conductive material, for example, a conductive particle such as a metal is mixed in a dielectric has been put into practical use.

【0003】これらの複合体の電波吸収作用は、その中
を通過する電磁波のエネルギーが熱エネルギーに変換さ
れる効果を利用するものである。この現象は単に複合体
中で導体を通る電磁波の電磁誘電効果に基く渦電流損失
だけでは説明できず、誘電損失に起因するものとして理
解されている。それで、上述のような導電材と誘電体と
の複合材が採用され、あるいは提案されているが、誘電
損失が不足で、吸収特性が充分得られない場合が多い。
The electromagnetic wave absorbing action of these composites utilizes the effect of converting the energy of the electromagnetic waves passing through it into heat energy. This phenomenon cannot be explained only by the eddy current loss based on the electromagnetic dielectric effect of the electromagnetic wave passing through the conductor in the composite, and is understood to be caused by the dielectric loss. Therefore, although a composite material of a conductive material and a dielectric material as described above has been adopted or proposed, dielectric absorption is insufficient in many cases and sufficient absorption characteristics cannot be obtained.

【0004】例えば、発泡ポリスチロールやゴム等の誘
電体中に導体としてのカーボンを添加、混合した複合体
が、電波吸収体として実用化されているが、吸収体とし
ての必要な厚さが1m以上にも達し、吸収特性の改良、
すなわち誘電損失を大きくすることが要望されている。
For example, a composite material obtained by adding and mixing carbon as a conductor into a dielectric material such as expanded polystyrene or rubber has been put into practical use as a radio wave absorber, but the required thickness as an absorber is 1 m. Reached the above, improved absorption characteristics,
That is, it is desired to increase the dielectric loss.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来実用化
され、提案されている上記構成の電波吸収体としての誘
電複合体の上述の欠点にかんがみ、簡単な構成で誘電損
失を向上させ、電波吸収体としての必要厚さが薄くて済
む誘電複合体を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention improves the dielectric loss with a simple structure in view of the above-mentioned drawbacks of the dielectric composite as a radio wave absorber having the above-mentioned structure which has been put into practical use and proposed. An object of the present invention is to provide a dielectric composite that requires a small thickness as a radio wave absorber.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の誘電複合体は、高電気抵抗金属合金針状粉
末と、導電率の高い球状金属粉末とを誘電体中に概ね同
量混合したことを特徴とする。なお、ここに言う「針
状」とは、針状、繊維状、フレーク状等アスペクト比の
大きい形状を総称したものである。
In order to solve the above-mentioned problems, the dielectric composite of the present invention comprises a high electric resistance metal alloy needle-shaped powder and a spherical metal powder having a high electrical conductivity, which are substantially the same in the dielectric. It is characterized in that the amounts are mixed. The term "needle-like" as used herein is a generic term for needle-like, fibrous, flake-like, and other shapes having a large aspect ratio.

【0007】[0007]

【作用】一般に、高周波域における物質の磁気損失や誘
電損失は、この物質の基本的特性を表すものである。前
者は、複素透磁率μ* =μ′−jμ″(又は損失角 tan
δ=μ″/μ′)、後者については、複素誘電率ε*
ε′−jε″(又は損失角 tanδ=ε″/ε′)で表さ
れる事が知られている。複素透磁率、及び複素誘電率が
判れば、この物質の反射率(入射電磁波が物質に垂直に
入射した場合に物質表面で反射される割合)や表皮深さ
(入射電磁波が物質中で1/eに減衰するまでの吸収層
の厚み)が求められ、物質の吸収特性を知ることができ
る。
In general, the magnetic loss and dielectric loss of a substance in a high frequency range represent the basic characteristics of this substance. The former is complex permeability μ * = μ′−jμ ″ (or loss angle tan
δ = μ ″ / μ ′), and for the latter, complex permittivity ε * =
It is known to be represented by ε'-jε ″ (or loss angle tan δ = ε ″ / ε ′). If the complex magnetic permeability and complex permittivity are known, the reflectance of this substance (the ratio of the incident electromagnetic wave reflected on the surface of the substance when it is vertically incident on the substance) and the skin depth (the incident electromagnetic wave is 1 / m in the substance) The thickness of the absorption layer until it decays to e) is obtained, and the absorption characteristics of the substance can be known.

【0008】電磁波は、図1に示す如く、電界成分Eと
磁界成分Hとを合せ持った波であり、この電界成分と磁
界成分との比は、空間インピーダンスZoとして表され、
遠方界においては377Ωとなっている。磁気損失は磁
界成分に、誘電損失は電界成分の吸収に寄与する。電磁
波の電界成分と磁界成分の比は一定であるため、片方の
みを吸収することにより電磁波を吸収することができ
る。
As shown in FIG. 1, an electromagnetic wave is a wave having an electric field component E and a magnetic field component H together, and the ratio of the electric field component and the magnetic field component is expressed as a spatial impedance Zo,
It is 377Ω in the far field. The magnetic loss contributes to the magnetic field component, and the dielectric loss contributes to the absorption of the electric field component. Since the ratio of the electric field component and the magnetic field component of the electromagnetic wave is constant, the electromagnetic wave can be absorbed by absorbing only one of them.

【0009】本発明で使用される針状金属粉末として
は、電気抵抗率ρ≧80μΩ−cm、好ましくはρ≧10
0μΩ−cmを有する金属合金が使用される。よく知られ
ている高透磁率アモルファス金属類、例えばFe−Si−B
系、Co−Fe−Si−B系などの金属合金、Fe−Al−Si系
(センダスト系)等は使用に好ましい金属合金であり、
特に、Co−Fe−Si−B系アモルファス金属合金は電波吸
収用材料として好結果が得られる。金属合金であって
も、パーマロイ等は電気抵抗率が低く、望ましい結果が
得られない。
The acicular metal powder used in the present invention has an electrical resistivity ρ ≧ 80 μΩ-cm, preferably ρ ≧ 10.
A metal alloy with 0 μΩ-cm is used. Well-known high permeability amorphous metals such as Fe-Si-B
System, metal alloys such as Co-Fe-Si-B system, Fe-Al-Si system (Sendust system), etc. are preferable metal alloys for use.
In particular, Co-Fe-Si-B based amorphous metal alloys can obtain good results as radio wave absorbing materials. Even if it is a metal alloy, permalloy has a low electric resistivity, and a desired result cannot be obtained.

【0010】使用する金属合金粉末の形状、寸法は電波
吸収材の誘電損失(複素誘電率)特性に重要な影響を及
ぼし、球状、塊状のものを用いても好ましい結果は得ら
れず、針状、繊維状あるいはフレーク状等のアスペクト
比の大きいものが好ましい結果を与える。
The shape and size of the metal alloy powder used have an important influence on the dielectric loss (complex dielectric constant) characteristics of the electromagnetic wave absorber, and even if spherical or lumpy ones are used, favorable results cannot be obtained, and needle-like shapes are obtained. Those having a large aspect ratio such as a fibrous shape or a flake shape give preferable results.

【0011】誘電体中に混合する針状金属粉末の形状お
よび寸法は、誘電複合体の特性を維持するための重要な
因子となる。本発明においては、針状金属粉末の形状
は、最長軸が30mm以下、最短軸が1〜20μmでアス
ペクト比が50以上のフレーク状、または針状が好まし
い。
The shape and size of the acicular metal powder mixed in the dielectric is an important factor for maintaining the properties of the dielectric composite. In the present invention, the shape of the acicular metal powder is preferably flake or acicular having a longest axis of 30 mm or less, a shortest axis of 1 to 20 μm and an aspect ratio of 50 or more.

【0012】合金は、特開昭58−6907号公報に開
示されているキャビテーション法、すなわち、溶融金属
に対して濡れ性の小さい表面層を有し、高速で回転して
いるロール表面に溶融金属を供給し、この溶融金属を微
細な溶融金属滴に分断した後、引続いてこの溶融金属滴
を高速で回転する金属回転体に衝突させて急速凝固させ
る方法で製作するのが望ましい。特に、最短軸の小さな
合金を製造するためには、金属回転体の回転数を大きく
することにより実現できる。又、エッチング等化学的方
法により、合金の最短軸を小さくすることも可能であ
る。
The alloy has a cavitation method disclosed in Japanese Unexamined Patent Publication No. Sho 58-6907, that is, it has a surface layer having a low wettability with respect to the molten metal, and the molten metal is formed on the surface of the roll rotating at high speed. It is desirable to manufacture by a method in which the molten metal is supplied and the molten metal is divided into fine molten metal droplets, and subsequently the molten metal droplets are collided with a metal rotating body rotating at high speed to rapidly solidify. In particular, in order to manufacture an alloy having a shortest axis, it can be realized by increasing the rotation speed of the metal rotating body. It is also possible to make the shortest axis of the alloy small by a chemical method such as etching.

【0013】上記の金属合金の針状粉末と、導電率の高
いCu粉末などを誘電体中に混合することにより、誘電率
を向上させた誘電複合体を得ることができる。ちなみ
に、Cuの電気抵抗率は1.7×10-6Ω−cmである。誘電
体中に上記金属合金の針状粉末とともに混合する高導電
率金属はCuに限られるものではないが、電気抵抗率が1
0×10-6Ω−cm以下であることが望ましい。
By mixing the above-mentioned acicular powder of a metal alloy with Cu powder having a high conductivity into a dielectric, a dielectric composite having an improved dielectric constant can be obtained. Incidentally, the electric resistivity of Cu is 1.7 × 10 −6 Ω-cm. The high conductivity metal mixed with the acicular powder of the above metal alloy in the dielectric is not limited to Cu, but has an electric resistivity of 1
It is preferably 0 × 10 −6 Ω-cm or less.

【0014】本発明の誘電複合体では、Cuなどの高導電
率金属を金属合金の針状粉末とともに誘電体中に混合す
る手段として、高電気抵抗金属合金針状粉末と、高導電
率球状金属粉末とを誘電体中に概ね同量混合するように
している。
In the dielectric composite of the present invention, as a means for mixing a high conductivity metal such as Cu with a needle powder of a metal alloy into the dielectric, a high electric resistance metal alloy needle powder and a high conductivity spherical metal are used. The powder and the dielectric are mixed in substantially the same amount.

【0015】[0015]

【実施例】以下に、本発明の実施例を、図及び表に基づ
いて詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings and tables.

【0016】Co系アモルファス合金フレーク(最長軸2
0mm、最短軸10μm)Aと、直径20μmの球状のCu
粉末Bとを作成し、図2に示す如く、AとBとを同量誘
電体C中に混合したもの、AだけをC中に混合したも
の、BだけをC中に混合したものを夫々体積混合比を数
種に変えて10種類の誘電複合体供試体を作成した。こ
れらの各供試体について、100〜3000MHz の周波
数帯の電波に対する透磁率μ′、μ″及び誘電率ε′、
ε″を測定した。表1に測定周波数200MHz に対す
る、体積比による透磁率と誘電率との変化を示す。又、
表2に No.8の供試体(A、B両粉末の体積比が夫々5
%のもの)について透磁率と誘電率との周波数特性を示
す。
Co-based amorphous alloy flakes (longest axis 2
0 mm, shortest axis 10 μm) A and spherical Cu with a diameter of 20 μm
Powder B was prepared, and as shown in FIG. 2, A and B were mixed in the same amount in the dielectric C, A was mixed in C, and B was mixed in C, respectively. Ten types of dielectric composite specimens were prepared by changing the volume mixing ratio to several types. For each of these specimens, magnetic permeability μ ', μ "and dielectric constant ε'for radio waves in the frequency band of 100 to 3000 MHz,
ε ″ was measured. Table 1 shows changes in the magnetic permeability and the dielectric constant depending on the volume ratio with respect to the measurement frequency of 200 MHz.
Table 2 shows the No. 8 specimen (volume ratio of both A and B powders is 5
The frequency characteristics of the magnetic permeability and the dielectric constant are shown for (% of the above).

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】これらの表より、球状金属粉末Bと針状金
属粉末Aとを同量誘電体Cに混合したものが、A又はB
のみを誘電体Cに混合したものに比して効果があり、又
AとBとの混合比が夫々3%以下では粉末を添加した効
果が認められず、10%を越えると導電率が高くなりε
を有限な値として制御することが困難となり、特性を向
上させることができないことが示されている。
From these tables, a mixture of spherical metal powder B and acicular metal powder A in the same amount in dielectric C is A or B.
Is more effective than the one in which only the dielectric C is mixed, and the effect of adding the powder is not observed when the mixing ratio of A and B is 3% or less, respectively, and the conductivity is high when it exceeds 10%. Nari ε
It is difficult to control as a finite value, and it has been shown that the characteristics cannot be improved.

【0020】なお、表には示していないが、種々の実験
の結果、球状金属粉末の外径は20μmに限らず5〜2
0μmでも同じ効果が得られ、又完全な球でなく偏平な
ものであっても差支えない。又、AとBとの夫々の体積
比は完全に同じでなくても、ほぼ同じであればよいこと
が確認された。
Although not shown in the table, as a result of various experiments, the outer diameter of the spherical metal powder is not limited to 20 μm, but may be 5 to 2
The same effect can be obtained even when the thickness is 0 μm, and it does not matter if the shape is not a perfect sphere but a flat shape. It was also confirmed that the volume ratios of A and B do not have to be completely the same, but may be substantially the same.

【0021】以上の如く、本発明によれば、簡単な構成
で誘電複合体の誘電損失を向上させ、電波吸収体の必要
厚さを薄くすることが可能となる効果が得られる。
As described above, according to the present invention, it is possible to improve the dielectric loss of the dielectric composite and reduce the required thickness of the radio wave absorber with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】電磁波の性質を説明する説明図である。FIG. 1 is an explanatory diagram illustrating the properties of electromagnetic waves.

【図2】本発明の誘電複合体の組成を示す概念図であ
る。
FIG. 2 is a conceptual diagram showing the composition of the dielectric composite of the present invention.

【符号の説明】[Explanation of symbols]

A 磁性金属合金針状粉末 B 高導電率球状金属粉末 C 誘電体 A Magnetic metal alloy acicular powder B High conductivity spherical metal powder C Dielectric

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高電気抵抗金属合金針状粉末と、導電率
の高い球状金属粉末とを誘電体中に概ね同量混合した事
を特徴とする誘電複合体。
1. A dielectric composite characterized in that a needle-like powder of a high electric resistance metal alloy and a spherical metal powder having a high conductivity are mixed in substantially the same amount in a dielectric.
【請求項2】 上記の金属合金の電気抵抗率が80μΩ
−cm以上で、その針状粉末の最長軸寸法が30mm以下、
最短軸寸法が1〜20μm、アスペクト比が50以上で
あることを特徴とする請求項1に記載の誘電複合体。
2. The electrical resistivity of the above metal alloy is 80 μΩ.
-Cm or more, the longest axial dimension of the acicular powder is 30 mm or less,
The dielectric composite according to claim 1, wherein the shortest axis dimension is 1 to 20 µm and the aspect ratio is 50 or more.
【請求項3】 上記の球状金属粉末の外径が5〜20μ
mであることを特徴とする請求項1に記載の誘電複合
体。
3. The spherical metal powder has an outer diameter of 5 to 20 μm.
The dielectric composite according to claim 1, wherein m is m.
【請求項4】 上記の金属合金針状粉末と球状金属粉末
との夫々の容積比が3〜10%であることを特徴とする
請求項1に記載の誘電複合体。
4. The dielectric composite according to claim 1, wherein the volume ratio of each of the metal alloy acicular powder and the spherical metal powder is 3 to 10%.
JP16557992A 1992-06-02 1992-06-02 Dielectric compound material Pending JPH05335776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16557992A JPH05335776A (en) 1992-06-02 1992-06-02 Dielectric compound material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16557992A JPH05335776A (en) 1992-06-02 1992-06-02 Dielectric compound material

Publications (1)

Publication Number Publication Date
JPH05335776A true JPH05335776A (en) 1993-12-17

Family

ID=15815041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16557992A Pending JPH05335776A (en) 1992-06-02 1992-06-02 Dielectric compound material

Country Status (1)

Country Link
JP (1) JPH05335776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116184B2 (en) 2001-03-01 2006-10-03 Kanji Otsuka Method of terminating bus, bus termination resistor, and wiring substrate having terminated buses and method of its manufacture
JP2013201375A (en) * 2012-03-26 2013-10-03 Tdk Corp Planar coil element and manufacturing method therefor
US8999764B2 (en) * 2007-08-10 2015-04-07 International Business Machines Corporation Ionizing radiation blocking in IC chip to reduce soft errors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116184B2 (en) 2001-03-01 2006-10-03 Kanji Otsuka Method of terminating bus, bus termination resistor, and wiring substrate having terminated buses and method of its manufacture
US7631422B2 (en) 2001-03-01 2009-12-15 Kanji Otsuka Method of manufacturing wiring substrate having terminated buses
US8999764B2 (en) * 2007-08-10 2015-04-07 International Business Machines Corporation Ionizing radiation blocking in IC chip to reduce soft errors
US10784200B2 (en) 2007-08-10 2020-09-22 International Business Machines Corporation Ionizing radiation blocking in IC chip to reduce soft errors
JP2013201375A (en) * 2012-03-26 2013-10-03 Tdk Corp Planar coil element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Wei et al. Techniques to enhance magnetic permeability in microwave absorbing materials
Zhao et al. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption
Liu et al. Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material
Liu et al. Flexible nanocomposites with enhanced microwave absorption properties based on Fe 3 O 4/SiO 2 nanorods and polyvinylidene fluoride
Feng et al. Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt% Ni alloy by shape modification
Kong et al. Recent progress in some composite materials and structures for specific electromagnetic applications
Liu et al. Microporous Co@ CoO nanoparticles with superior microwave absorption properties
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
JP5481538B2 (en) Radio wave absorber
Yang et al. Electromagnetic wave absorption properties of FeCoNiCrAl0. 8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling
Liu et al. Complex permittivity, permeability and electromagnetic wave absorption of α-Fe/C (amorphous) and Fe2B/C (amorphous) nanocomposites
Luo et al. Long-range-ordered Fe 3 Al with excellent electromagnetic wave absorption
CN109699165B (en) Three-dimensional porous manganese oxide-cobalt composite electromagnetic wave absorption material and preparation method and application thereof
Wang et al. Magnetic and microwave-absorption properties of SnO-coated α-Fe (Sn) nanocapsules
JPH05335776A (en) Dielectric compound material
Cao et al. Flaky FeSiAl powders with high permeability towards broadband microwave absorption through tuning aspect ratio
Zhang et al. Preparation and electromagnetic properties of Fe80. 7Si4B13Cu2. 3 nanocrystalline alloy powders for electromagnetic wave absorbers in X-band
JP2012230958A (en) Magnetic particle, magnetic material for high frequency, and high-frequency device
Dong et al. A simple method for preparing flaky FeSiAl for low-frequency electromagnetic wave absorber
Shuchao et al. Investigation of the absorption properties of the alloys Fe-Ni and Fe-Ni-Cr prepared by mechanical alloying
Wu et al. Enhancing the microwave absorption properties of Fe–Cu–Nb–Si–B nanocomposite flakes by coating with spinel ferrite NiFe 2 O 4
JPH05335777A (en) Dielectric compound material
JP2007088121A (en) Composite magnetic film and its manufacturing method
Kumar et al. Dual-Band Microwave/mm-Wave Absorption Properties of γ-Fe2O3 and Fe3O4 Nanoparticles for Stealth Applications
JPH0527059A (en) Composite body for radio wave absorption