JPH05335605A - Organic image sensor - Google Patents

Organic image sensor

Info

Publication number
JPH05335605A
JPH05335605A JP4136850A JP13685092A JPH05335605A JP H05335605 A JPH05335605 A JP H05335605A JP 4136850 A JP4136850 A JP 4136850A JP 13685092 A JP13685092 A JP 13685092A JP H05335605 A JPH05335605 A JP H05335605A
Authority
JP
Japan
Prior art keywords
film
image sensor
electrode
light
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4136850A
Other languages
Japanese (ja)
Inventor
Kazuko Wakita
佳寿子 脇田
Isamu Nagae
偉 長江
Makoto Tsunoda
誠 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4136850A priority Critical patent/JPH05335605A/en
Publication of JPH05335605A publication Critical patent/JPH05335605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an organic image sensor which has a small size and can be manufactured easily by using phthalocyanine for its photoconductive layer so as to eliminate the need of such a vacuum process as vapor deposition, sputtering, etc. CONSTITUTION:When a photoconductive film 15 is irradiated with light from a transparent insulating substrate 13 side while an electric field is applied across a transparent electrode 12 and metallic electrode 11, electron-hole pairs are generated in the film 15 and the resistance of the film 15 drops. As a result, the electron-hole pairs are separated from each other and an electric current is generated. Although a dark current flows when the electric field is applied even when the film 15 is not irradiated with light, it is considered that the dark current is generated due to the injection of holes from the electrode 12. Accordingly, the generation of the electric current can be prevented when a low-resistance insulating film 14 is inserted on the positive electrode (transparent electrode 12) side. Therefore, the need of such a vacuum process as vapor deposition, sputtering, etc., can be eliminated and a large-size film can be formed. In addition, a simple, inexpensive, and small-sized contact type image sensor can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ファクシミリ、プリ
ンタ等の情報処理装置において、画像の読み取りを行な
う画像読み取り素子としての有機イメージセンサに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic image sensor as an image reading element for reading an image in an information processing apparatus such as a facsimile or a printer.

【0002】[0002]

【従来の技術】従来、ファクシミリ、プリンタ等に用い
られる読み取り装置としては、CCDフォトダイオード
アレイ、例えばMOSフォトダイオードアレイ等の半導
体イメージセンサが広く用いられてきた。これらのイメ
ージセンサにおいては、縮小光学系を用いるのが通例で
あり、レンズ等が必要となり、光路長が長くなる結果、
装置の小型化を図る上で大きな問題であった。
2. Description of the Related Art Conventionally, a semiconductor image sensor such as a CCD photodiode array, for example, a MOS photodiode array has been widely used as a reading device used in a facsimile, a printer and the like. In these image sensors, it is customary to use a reduction optical system, which requires a lens and the like, resulting in a long optical path length.
This was a big problem in downsizing the device.

【0003】図4は従来のイメージセンサを用いた読取
り装置の構成を示し、1はLED等の光源、2はイメー
ジセンサ、5は原稿、6は原稿5の読み取り(進行)方
向、8は光学系の大きさ(光路長)であり、300〜5
00mm程度である。9はミラー、10はレンズである。
FIG. 4 shows the structure of a conventional reader using an image sensor. 1 is a light source such as an LED, 2 is an image sensor, 5 is a document, 6 is a reading (advancing) direction of the document 5, and 8 is optical. System size (optical path length), 300 to 5
It is about 00 mm. 9 is a mirror and 10 is a lens.

【0004】次に、上記装置の動作を説明する。光源1
からの光は原稿5、ミラー9に反射してレンズ10によ
り集光され、イメージセンサ2に入射される。例えば、
原稿5の黒い部分と白い部分では光の反射率が異なり、
イメージセンサ2はこれを光電変換して読み取る。
Next, the operation of the above device will be described. Light source 1
The light from is reflected by the document 5 and the mirror 9, is condensed by the lens 10, and is incident on the image sensor 2. For example,
The light reflectance differs between the black and white parts of the original 5,
The image sensor 2 photoelectrically converts this and reads it.

【0005】これに対し、最近原稿幅と同一寸法を持つ
密着型薄膜読み取り装置が提案されている。この装置は
プレーナ型と呼ばれ、基板上に感光層を設けるとともに
この上に電極を設けて1ビットに対応する素子としてい
る。そして、この素子を複数個列状に形成し、この素子
部分の光照射に対応した光電流を順次測定し、読み取り
を行なうものである。
On the other hand, recently, a contact type thin film reading device having the same size as the document width has been proposed. This device is called a planar type, and a photosensitive layer is provided on a substrate and electrodes are provided on the photosensitive layer to form an element corresponding to 1 bit. Then, a plurality of these elements are formed in a row, and the photocurrent corresponding to the light irradiation of the element portion is sequentially measured and read.

【0006】又、太陽電池からの応用としてアモルファ
スシリコンを光電変換層に用い、その上下に電極を設け
たサンドイッチ型構造のものも多く提案されている。こ
こで、アモルファスシリコンをp−i−n型としたもの
はそのn型アモルファスシリコン層の比抵抗が104
106 Ω・cmと低いため、フォトレジスト塗布およびエ
ッチングなどのリソグラフィ技術を用いて分割されたビ
ット間の完全な分離が大きな問題となった。又、最近高
抵抗のアモルファスシリコン層を用いたものも多く提案
され、製造されているが、やはり隣接するビット間の電
流漏れは解決されなかった。
In addition, as a solar cell application, there have been many proposals of a sandwich type structure in which amorphous silicon is used for a photoelectric conversion layer and electrodes are provided above and below the photoelectric conversion layer. Here, in the case where the amorphous silicon is of the pin type, the specific resistance of the n-type amorphous silicon layer is 10 4 to
Since it is as low as 10 6 Ω · cm, complete separation between bits divided by using a lithography technique such as photoresist coating and etching has become a big problem. Also, recently, many proposals have been made and manufactured using a high resistance amorphous silicon layer, but the current leakage between the adjacent bits has not been solved.

【0007】又、これまでのイメージセンサは無機物の
光導電性物質を用いていたため、成膜に蒸着やスパッタ
リングなどの真空プロセスを有していた。そのため、一
度に大量のものを作るには、大がかりな装置を必要とし
ていた。又、大面積の素子を均一に安価に作るのは困難
であった。
Further, since the conventional image sensors have used the inorganic photoconductive substance, they have a vacuum process such as vapor deposition or sputtering for film formation. Therefore, a large-scale device was needed to make a large quantity at a time. Further, it has been difficult to uniformly and inexpensively manufacture a large-area element.

【0008】[0008]

【発明が解決しようとする課題】上記したように従来の
イメージセンサは、縮小光学系を用いなければならず、
完全密着型にするのは不可能であり、小型化には限界が
あった。又、製造工程に真空工程を有しているので、大
がかりな装置を必要とするとともに、均一に大量生産す
ることは困難であり、素子サイズにも限界があった。
As described above, the conventional image sensor must use the reduction optical system,
It was impossible to make a perfect contact type, and there was a limit to miniaturization. Further, since the manufacturing process includes a vacuum process, a large-scale device is required, and it is difficult to mass-produce uniformly, and the element size is limited.

【0009】この発明は上記のような課題を解決するた
めに成されたものであり、小型で製造が容易な有機イメ
ージセンサを得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain an organic image sensor which is small in size and easy to manufacture.

【0010】[0010]

【課題を解決するための手段】この発明に係る有機イメ
ージセンサは、透明又は半透明電極と、該電極上に形成
された低抵抗絶縁膜と、低抵抗絶縁膜上に形成され、無
金属又は金属フタロシアニンを含む有機光電変換材とバ
インダポリマとからなる光導電層と、光導電層上に形成
された金属電極を設けたものである。
An organic image sensor according to the present invention is a transparent or semi-transparent electrode, a low resistance insulating film formed on the electrode, and a low resistance insulating film formed on a metal-free or A photoconductive layer made of an organic photoelectric conversion material containing a metal phthalocyanine and a binder polymer, and a metal electrode formed on the photoconductive layer are provided.

【0011】[0011]

【作用】この発明においては、光導電層にフタロシアニ
ンが用いられ、蒸着やスパッタリングなどの真空プロセ
スが不要となり、ディッピング等の簡易な方法で生成可
能となる。又、完全密着型であるため、光学系にレンズ
を必要としない。
In the present invention, phthalocyanine is used for the photoconductive layer, which eliminates the need for vacuum processes such as vapor deposition and sputtering, and enables production by a simple method such as dipping. Further, since it is a perfect contact type, no lens is required in the optical system.

【0012】[0012]

【実施例】実施例1.以下、この発明の実施例1につい
て図面とともに説明する。図1は実施例1による有機イ
メージセンサの構造を示し、13は絶縁性基板、12は
絶縁性基板13上に形成された下部透明電極、14は透
明電極12上にディッピングにより形成された低抵抗絶
縁膜、15は低抵抗絶縁膜14上に形成されたフタロシ
アニンとポリマバインダからなる光導電膜であり、光導
電膜15上にはまた低抵抗絶縁膜14を形成し、その上
に蒸着により金属電極11を形成する。なお、図2に示
すように上側の低抵抗絶縁膜14はなくてもよい。
EXAMPLES Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 shows a structure of an organic image sensor according to the first embodiment, 13 is an insulating substrate, 12 is a lower transparent electrode formed on the insulating substrate 13, and 14 is a low resistance formed on the transparent electrode 12 by dipping. An insulating film 15 is a photoconductive film made of phthalocyanine and a polymer binder formed on the low resistance insulating film 14. The low resistance insulating film 14 is formed on the photoconductive film 15 and a metal film is formed on the low conductive insulating film 14 by vapor deposition. The electrode 11 is formed. Note that, as shown in FIG. 2, the low resistance insulating film 14 on the upper side may be omitted.

【0013】ここで、絶縁性基板13はセラミック、ガ
ラス、プラスチックなどのように機械的強度が高く透明
であり、絶縁性が高いものであればよく、また2種以上
の積層構造のものでもよい。又、複数の透明電極12は
任意の形状が可能であるが、ここでは長方形状のものと
している。金属電極11の材質としてはAu,Cr,P
t,Ni,Tlなどが良く、2種以上を併用してもよ
い。低抵抗絶縁膜14及び光導電膜15の形成方法は、
ディッピング法の外に通常の溶媒キャスト法(スピナコ
ート、スプレコートなどを含む。)でもよい。これらの
膜厚は内部インピーダンスが大きくなり過ぎないように
するため、低抵抗絶縁膜14については0.5〜4μm、
光導電膜15については5〜30μmとするのが望まし
い。
Here, the insulating substrate 13 may be made of ceramic, glass, plastic, or the like, as long as it has high mechanical strength and is transparent and has a high insulating property, and may have a laminated structure of two or more kinds. .. The plurality of transparent electrodes 12 can have any shape, but here, they are rectangular. The material of the metal electrode 11 is Au, Cr, P
t, Ni, Tl and the like are good, and two or more kinds may be used in combination. The method for forming the low resistance insulating film 14 and the photoconductive film 15 is as follows.
In addition to the dipping method, an ordinary solvent casting method (including spinner coat, spray coat, etc.) may be used. In order to prevent the internal impedance from becoming too large, the low resistance insulating film 14 has a thickness of 0.5 to 4 μm.
The thickness of the photoconductive film 15 is preferably 5 to 30 μm.

【0014】次に、上記構造の有機イメージセンサの動
作について説明する。原理の詳細は不明であるが、次の
ように考えられる。透明電極12と金属電極11の間に
電界を印加した状態において光を透明の絶縁性基板13
側から照射すると、光導電膜15において電子・正孔対
が発生して低抵抗化し、電子・正孔対が分離され、電流
を生じる。なお、電界を印加した際、光が照射されなく
ても暗電流が流れる。これは透明電極12から正孔が注
入されるために起こると考えられ、正電極(透明電極1
2)側に低抵抗絶縁膜14を挿入することにより防ぐこ
とができる。低抵抗絶縁膜14の比抵抗は109 〜10
13Ω・cmである。又、低抵抗絶縁膜14は隣の素子との
電気的分離を効果的に行なうことができ、大画面化が容
易である。電極12は半透明でもよい。
Next, the operation of the organic image sensor having the above structure will be described. The details of the principle are unknown, but it is considered as follows. Insulating substrate 13 which is transparent to light under an electric field applied between transparent electrode 12 and metal electrode 11
When irradiated from the side, electron-hole pairs are generated in the photoconductive film 15 to reduce the resistance, the electron-hole pairs are separated, and a current is generated. Note that when an electric field is applied, a dark current flows even if light is not applied. This is considered to occur because holes are injected from the transparent electrode 12, and the positive electrode (transparent electrode 1
This can be prevented by inserting the low resistance insulating film 14 on the 2) side. The specific resistance of the low resistance insulating film 14 is 10 9 to 10
It is 13 Ω · cm. Further, the low-resistance insulating film 14 can effectively perform electrical isolation from an adjacent element, and it is easy to increase the screen size. The electrode 12 may be semitransparent.

【0015】次に、イメージセンサの製造方法について
説明する。ポリアミド(CM−8000;東レ株式会社
製)1重量部、メタノール9重量部の溶液を調整し、次
にこの液をガラス上にITO電極パターンを有するもの
の上に乾燥時の膜厚が2μmとなるようにディッピング
法により塗布した。その後、100℃の恒温槽中で30
分乾燥した。
Next, a method of manufacturing the image sensor will be described. A solution of 1 part by weight of polyamide (CM-8000; manufactured by Toray Industries, Inc.) and 9 parts by weight of methanol was prepared, and then this solution was dried on a glass plate having an ITO electrode pattern to have a thickness of 2 μm. Thus, it was applied by the dipping method. Then, in a constant temperature bath at 100 ° C, 30
Min dried.

【0016】次に、塩ビ・酢ビ・マレイン酸の共重合体
(エスレックM;積水化学社製)7重量部とメタルフリ
ーフタロシアニン顔料3重量部をトルエン、メチルエチ
ルケトン1:1溶液50重量部に溶解させ、遊星型粋砕
機(フリッチュジャパン社製)により充分に分散した。
次に、この分散混合物を取り出し、光電変換層形成液と
する。しかる後、2μmの膜厚のポリアミド層が形成さ
れた上記基板上にディッピング法により乾燥時約20μ
mの膜厚が得られるように光電変換層形成液を塗布し、
しかる後100℃で1時間乾燥し、金属電極を真空蒸着
して光電変換素子を得た。
Next, 7 parts by weight of a vinyl chloride / vinyl acetate / maleic acid copolymer (S-REC M; manufactured by Sekisui Chemical Co., Ltd.) and 3 parts by weight of a metal-free phthalocyanine pigment are dissolved in 50 parts by weight of a toluene / methyl ethyl ketone 1: 1 solution. Then, it was sufficiently dispersed by a planetary type crusher (manufactured by Fritsch Japan).
Next, this dispersion mixture is taken out to obtain a photoelectric conversion layer forming liquid. Then, about 20 μm when dried by the dipping method on the substrate on which the polyamide layer having a thickness of 2 μm is formed.
The photoelectric conversion layer forming liquid is applied so that a film thickness of m can be obtained,
Then, it was dried at 100 ° C. for 1 hour, and the metal electrode was vacuum-deposited to obtain a photoelectric conversion element.

【0017】次に、このようにして得た光電変換素子に
対して、Au側を負、透明電極側を正として行なった光
電変換特性の測定方法及び測定結果について述べる。3
00Wのキセノンランプ光を570nmのバンドパスフィ
ルタ及び1/20減光フィルタに通して受光面で約50
μW/cm2 とする。この光を透明電極側から照射し、電
極間には50Vの電圧を印加した。そのときの暗電流は
160nA/cm2 、光電流は370nA/cm2 、応答速
度は立ち上がり(20〜80%)4msec、立ち下がり
(20〜80%)9msecであった。
Next, with respect to the photoelectric conversion element thus obtained, a method of measuring photoelectric conversion characteristics and a result of measurement, in which Au side is negative and transparent electrode side is positive, will be described. Three
Approximately 50 at the light-receiving surface after passing a 00W xenon lamp light through a 570nm bandpass filter and a 1/20 neutral density filter.
μW / cm 2 This light was irradiated from the transparent electrode side, and a voltage of 50 V was applied between the electrodes. At that time, the dark current was 160 nA / cm 2 , the photocurrent was 370 nA / cm 2 , and the response speed was rising (20 to 80%) 4 msec and falling (20 to 80%) 9 msec.

【0018】図3はこの実施例による有機イメージセン
サ16を用いた読み取り装置の構成を示し、3は有機イ
メージセンサ16を支持する支持台、4はロッドレンズ
アレイ、7は光学系の大きさ(光路長)であり、20〜
50mm程度である。このように実施例1では、完全密着
型となるため、光学系の大きさを小さくすることができ
る。
FIG. 3 shows the construction of a reading apparatus using the organic image sensor 16 according to this embodiment, 3 is a support base for supporting the organic image sensor 16, 4 is a rod lens array, and 7 is a size of an optical system ( Optical path length), 20 to 20
It is about 50 mm. As described above, in Example 1, the size of the optical system can be reduced because it is a perfect contact type.

【0019】実施例2.次に、他の製造方法を実施例2
により説明する。まず、透明電極上に実施例1と同様に
調整したポリアミド樹脂溶液をディッピングして成膜
し、100℃の恒温槽で30分乾燥した。次に、塩ビ・
酢ビ・マレイン酸の共重合体(エスレックM)8重量部
とメタルフリーフタロシアニン顔料2重量部をトルエ
ン、メチルエチルケトン1:1溶液80重量部に溶解さ
せ、遊星型粋砕機にて充分に分散した。この混合溶液を
取り出し、透明電極基板上に数滴滴下し、スピナにより
光電変換層をコーティングした(乾燥時膜厚5μm)。
しかる後、100℃の恒温槽中で1時間乾燥した。さら
に、はじめに調整したポリアミド樹脂溶液にてディッピ
ングし、100℃の恒温槽中で30分乾燥し、金属電極
を真空蒸着して光電変換素子を得た。
Example 2. Next, another manufacturing method is described in Example 2.
Will be explained. First, a polyamide resin solution prepared in the same manner as in Example 1 was formed on the transparent electrode by dipping to form a film, which was dried in a constant temperature bath at 100 ° C. for 30 minutes. Next, PVC
8 parts by weight of a vinyl acetate / maleic acid copolymer (Eslec M) and 2 parts by weight of a metal-free phthalocyanine pigment were dissolved in 80 parts by weight of a 1: 1 solution of toluene and methyl ethyl ketone, and sufficiently dispersed by a planetary crusher. This mixed solution was taken out, a few drops of it were dropped on the transparent electrode substrate, and the photoelectric conversion layer was coated with a spinner (film thickness when dry 5 μm).
Then, it was dried in a constant temperature bath at 100 ° C. for 1 hour. Furthermore, the polyamide resin solution prepared at the beginning was dipped, dried in a constant temperature bath at 100 ° C. for 30 minutes, and a metal electrode was vacuum-deposited to obtain a photoelectric conversion element.

【0020】次に、このようにして得た試料に対してA
u 側を負、透明電極側を正として行なった光電変換特性
の測定方法及び測定結果を以下に示す。300Wのキセ
ノンランプ光を570nmのバンドパスフィルタ及び1/
20減光フィルタに通して受光面で約50μW/cm2
する。この光を透明電極側から照射し、電極間には5V
の電圧を印加した。このときの暗電流は30nA/cm2
以下、光電流は60nA/cm2 、応答速度は立ち上がり
(20〜80%)4msec、立ち下がり(20〜80%)
8msecであった。
Next, for the sample thus obtained, A
The measurement method and the measurement results of the photoelectric conversion characteristics performed with the u side being negative and the transparent electrode side being positive are shown below. 300W xenon lamp light with 570nm bandpass filter and 1 /
After passing through a 20 neutral density filter, the light receiving surface is set to about 50 μW / cm 2 . This light is emitted from the transparent electrode side, and 5 V is applied between the electrodes.
Was applied. The dark current at this time is 30 nA / cm 2
Below, photocurrent is 60 nA / cm 2 , response speed is rising (20-80%) 4 msec, falling (20-80%)
It was 8 msec.

【0021】[0021]

【発明の効果】以上のようにこの発明によれば、蒸着や
スパッタリングなどの真空プロセスが不要となり、大規
模な成膜が可能な上、簡易で安価に密着型のイメージセ
ンサを作製することができ、小型化が可能となる。又、
光伝導層と電極との間に低抵抗絶縁膜を設けており、低
電圧印加で感度、応答速度及びSN(光電流/暗電流)
特性に優れた有機光電変換素子が得られる。
As described above, according to the present invention, a vacuum process such as vapor deposition or sputtering is unnecessary, large-scale film formation is possible, and a contact image sensor can be manufactured easily and inexpensively. The size can be reduced. or,
A low-resistance insulating film is provided between the photoconductive layer and the electrode, and sensitivity, response speed and SN (photocurrent / dark current) can be obtained by applying a low voltage.
An organic photoelectric conversion element having excellent characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による有機イメージセンサの断面図で
ある。
FIG. 1 is a sectional view of an organic image sensor according to the present invention.

【図2】この発明による他の有機イメージセンサの斜視
図である。
FIG. 2 is a perspective view of another organic image sensor according to the present invention.

【図3】この発明による有機イメージセンサを用いた読
み取り装置の構成図である。
FIG. 3 is a configuration diagram of a reading device using an organic image sensor according to the present invention.

【図4】従来のイメージセンサを用いた読み取り装置の
構成図である。
FIG. 4 is a configuration diagram of a reading device using a conventional image sensor.

【符号の説明】[Explanation of symbols]

11 金属電極 12 透明電極 13 絶縁性基板 14 低抵抗絶縁膜 15 光導電膜 16 有機イメージセンサ 11 metal electrode 12 transparent electrode 13 insulating substrate 14 low resistance insulating film 15 photoconductive film 16 organic image sensor

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月16日[Submission date] December 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】次に、塩ビ・酢ビ・マレイン酸の共重合体
(エスレックM;積水化学社製)7重量部とX型メタル
フリーフタロシアニン顔料3重量部をトルエン、メチル
エチルケトン1:1溶液50重量部に溶解させ、遊星型
粋砕機(フリッチュジャパン社製)により充分に分散し
た。次に、この分散混合物を取り出し、光電変換層形成
液とする。しかる後、2μmの膜厚のポリアミド層が形
成された上記基板上にディッピング法により乾燥時約2
0μmの膜厚が得られるように光電変換層形成液を塗布
し、しかる後100℃で1時間乾燥し、金属電極を真空
蒸着して光電変換素子を得た。
Next, 7 parts by weight of a vinyl chloride / vinyl acetate / maleic acid copolymer (S-REC M; Sekisui Chemical Co., Ltd.) and X-type metal
3 parts by weight of the free phthalocyanine pigment was dissolved in 50 parts by weight of a 1: 1 solution of toluene and methyl ethyl ketone, and sufficiently dispersed by a planetary type crusher (manufactured by Fritsch Japan). Next, this dispersion mixture is taken out to obtain a photoelectric conversion layer forming liquid. After that, about 2 μm when dried by the dipping method on the substrate on which the polyamide layer having a thickness of 2 μm is formed.
A photoelectric conversion layer forming liquid was applied so as to obtain a film thickness of 0 μm, and then dried at 100 ° C. for 1 hour, and a metal electrode was vacuum-deposited to obtain a photoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明又は半透明電極と、該電極上に形成
された低抵抗絶縁膜と、低抵抗絶縁膜上に形成され、無
金属フタロシアニンと金属フタロシアニンの少なくとも
一方を含有する有機光電変換材料とバインダポリマとか
らなる光導電層と、光導電層上に形成された金属電極を
備えたことを特徴とする有機イメージセンサ。
1. An organic photoelectric conversion material containing a transparent or semitransparent electrode, a low resistance insulating film formed on the electrode, and at least one of a metal-free phthalocyanine and a metal phthalocyanine formed on the low resistance insulating film. An organic image sensor comprising a photoconductive layer made of a binder polymer and a metal electrode formed on the photoconductive layer.
JP4136850A 1992-05-28 1992-05-28 Organic image sensor Pending JPH05335605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4136850A JPH05335605A (en) 1992-05-28 1992-05-28 Organic image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4136850A JPH05335605A (en) 1992-05-28 1992-05-28 Organic image sensor

Publications (1)

Publication Number Publication Date
JPH05335605A true JPH05335605A (en) 1993-12-17

Family

ID=15184968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4136850A Pending JPH05335605A (en) 1992-05-28 1992-05-28 Organic image sensor

Country Status (1)

Country Link
JP (1) JPH05335605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747973A2 (en) * 1995-06-07 1996-12-11 Xerox Corporation Sensor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747973A2 (en) * 1995-06-07 1996-12-11 Xerox Corporation Sensor element
EP0747973A3 (en) * 1995-06-07 1998-07-29 Xerox Corporation Sensor element

Similar Documents

Publication Publication Date Title
JPH05502783A (en) Coating layer for static charge control on photoelectric conversion elements
TWI649865B (en) Image sensor and manufacturing method thereof
JPS60240285A (en) Electronic radiation sensing device and method
US20090032683A1 (en) Flexible bioelectronic photodetector and imaging arrays based on bacteriorhodopsin (BR) thin films
GB2188482A (en) Optical sensor
EP0211720A1 (en) Method for making a light image sensor, and bidimensional sensor array made by this method
JPH05335605A (en) Organic image sensor
EP3140867B1 (en) Matrix detection device incorporating a metal mesh in a detection layer, and manufacturing method
CA2570955A1 (en) Flexible bioelectronic photodetector and imaging arrays based on bacteriorhodopsin (br) thin films
JPH05335541A (en) Organic image sensor
JPH05129576A (en) Image reading element
CN110310972A (en) Photodetector and preparation method
JPS61199660A (en) Contact type photoelectric converter
JPS5879756A (en) Amorphous si image sensor
JPS61216360A (en) Contact-type image sensor
EP0257747A3 (en) Photoelectric array for scanning large-area non-planar image-bearing surfaces
Takamatsu et al. Biomolecular image sensor of bacteriorhodopsin patterned by electrodeposition
JPS61199661A (en) Tightly adhered photoelectric conversion device
JPH05130327A (en) Image sensor
JPS6313381A (en) Photoelectric sensor
JPH0715144Y2 (en) Coplanar type optical sensor
JPS58201357A (en) Thin film type photoelectric conversion element
JPH0563171A (en) Manufacture of optoelectric transducer
SU510688A1 (en) The method of obtaining images on a thermoplastic carrier
JPS58179070A (en) Solid-state image pickup device