JPH05335156A - Ferrite core insulating method - Google Patents

Ferrite core insulating method

Info

Publication number
JPH05335156A
JPH05335156A JP4141382A JP14138292A JPH05335156A JP H05335156 A JPH05335156 A JP H05335156A JP 4141382 A JP4141382 A JP 4141382A JP 14138292 A JP14138292 A JP 14138292A JP H05335156 A JPH05335156 A JP H05335156A
Authority
JP
Japan
Prior art keywords
ferrite core
core
film
mhz
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4141382A
Other languages
Japanese (ja)
Inventor
Yoshikazu Fujimura
美一 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4141382A priority Critical patent/JPH05335156A/en
Publication of JPH05335156A publication Critical patent/JPH05335156A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To realize a method of keeping an Mn-Zn ferrite electrically insulated even in a high frequency region. CONSTITUTION:A ferrite core is electrically insulated through such a manner that a crosslinked organic high molecular film is formed on the surface of the ferrite core, where the crosslinked organic high molecular film is formed through such a method that thermoplastic resin where crosslinking assistant is added is subjected to a crosslinking treatment for the formation of the high molecular film concerned. Or, the crosslinked organic high molecular film is formed through such a method that a thermoplastic resin film is irradiated with radiation to turn into a crosslinked resin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,おもにスイッチング電
源で用いられるトランス用Mn−Zn系フェライトコア
の絶縁方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for insulating a Mn-Zn ferrite core for a transformer used mainly in a switching power supply.

【0002】[0002]

【従来の技術】スイッチング電源の小型軽量化は,コン
ピューターやOA関連機器の軽薄短小化に不可欠である
が,電源を構成する基幹部品の中で最も大きな体積を占
めるのがトランスコアである。それ故トランスコアの小
型化高性能化に対する要求は強く,スイッチング周波数
の高周波化が図られており,その上限は1MHzにまで
達しようとしている。また,トランスの設計面からも小
型化が図られており,外部素子との接続を行う端子部を
コアの表面に直接設ける構造のものが主流になりつつあ
る。これまでの技術トレンドとして,おもにスイッチン
グ電源に用いられるトランスコア用Mn−Znフェライ
ト材は,SiO2 ,CaOまたはその他酸化物を微量添
加することにより高抵抗の粒界相を形成し,おもに渦電
流損失を低下させている。その結果2000〜4000
Ω・cmもの高い電気抵抗を有するものも得られてい
る。
2. Description of the Related Art The reduction in size and weight of a switching power supply is indispensable for making a computer and OA-related equipment lighter, thinner, and shorter, but the transformer core occupies the largest volume among the basic parts constituting the power supply. Therefore, there is a strong demand for miniaturization and high performance of the transformer core, and the switching frequency is being increased, and the upper limit is reaching 1 MHz. In addition, miniaturization has been achieved from the perspective of the design of the transformer, and a structure in which a terminal section for connecting to an external element is directly provided on the surface of the core is becoming mainstream. As a technical trend up to now, Mn-Zn ferrite materials for transformer cores, which are mainly used for switching power supplies, form a high-resistance grain boundary phase by adding a small amount of SiO 2 , CaO or other oxides, and mainly eddy currents are formed. It is reducing losses. As a result 2000-4000
Those having an electric resistance as high as Ω · cm have also been obtained.

【0003】[0003]

【発明が解決しようとする課題】しかし,上記構造のト
ランスでMn−Znフェライトを上記の高周波領域で用
いた場合,Mn−Znフェライトの電気抵抗は負の周波
数依存性を持つため,直流の電気抵抗が3000Ω・c
m程度のものでも1MHz付近では数10Ω・cmにま
で低下してしまい,漏電による機能低下や他の電子部品
の損傷が問題となっていた。これについての詳細な原因
は現在のところ不明であり,材質上の改善は期待できな
いのが現状である。そのため,コア表面に何らかの絶縁
材料を被覆するなどしてコアの絶縁性を高める処置を取
ることが考えられるが,その場合,絶縁被膜としては絶
縁耐力や抵抗率が高いことはもちろんとして,コア表面
ではんだ付けを行う必要があるために絶縁被膜の耐熱性
も大きな問題となる。
However, when Mn-Zn ferrite is used in the above high frequency region in the transformer having the above structure, the electric resistance of the Mn-Zn ferrite has a negative frequency dependence, so that the DC electric Resistance is 3000Ω ・ c
Even in the case of about m, it drops to several tens of Ω · cm near 1 MHz, and there has been a problem that the function is deteriorated due to electric leakage and other electronic parts are damaged. The detailed cause of this is currently unknown, and it is the current situation that no improvement in material quality can be expected. Therefore, it is conceivable that the core surface is coated with some kind of insulating material to enhance the insulating property of the core. In that case, the insulating film has high dielectric strength and resistivity, and the core surface is The heat resistance of the insulating coating also becomes a big problem because it is necessary to solder at.

【0004】ところで,一般的に熱可塑性合成樹脂には
体積抵抗率及び絶縁耐力の大きなものが多く,また誘電
損が小さいものが多い。よってこれらの樹脂は電気絶縁
材料としての電気的特性に優れており,特に高周波絶縁
材料としては優れていると言える。しかしながらこれら
の樹脂は鎖状体の高分子であるため一般的に融点が低い
という欠点を持っている。このため耐熱性という点で問
題があり,これらの樹脂をコアの表面に被覆してもはん
だ付け作業の際にその熱により溶融してしまう。
By the way, generally, many thermoplastic synthetic resins have a large volume resistivity and a large dielectric strength and a small dielectric loss. Therefore, it can be said that these resins have excellent electrical characteristics as an electric insulating material, and particularly excellent as a high frequency insulating material. However, since these resins are chain polymers, they generally have the drawback of having a low melting point. For this reason, there is a problem in heat resistance, and even if these resins are coated on the surface of the core, they will be melted by the heat during the soldering work.

【0005】そこで,本発明の技術的課題は,高周波領
域においてもMn−Znフェライトの電気絶縁性を保つ
方法を提供することにある。
Therefore, a technical object of the present invention is to provide a method for maintaining the electrical insulation of Mn-Zn ferrite even in a high frequency region.

【0006】[0006]

【課題を解決するための手段】本発明者らは,前述した
熱可塑性樹脂に適当な架橋助剤を加えるか,放射線を照
射することで鎖状分子間に架橋結合を生成させ,分子構
造を鎖状から三次元網目構造とすることによって融点を
著しく向上させて耐熱性の問題を解決し,本発明に至っ
たものである。
Means for Solving the Problems The inventors of the present invention add a suitable crosslinking aid to the above-mentioned thermoplastic resin or irradiate it with radiation to form a cross-linking bond between chain molecules and The present invention has achieved the present invention by solving the problem of heat resistance by remarkably improving the melting point by making a chain to a three-dimensional network structure.

【0007】本発明では,前述した電気抵抗の低下とい
う課題を解決するために,Mn−Znフェライトコアの
表面に架橋された有機高分子被膜を被覆することにより
高周波領域においてもコアの電気絶縁性を保つように構
成したもので,その架橋された有機高分子被膜は熱可塑
性樹脂に有機過酸化物を代表とするような架橋助剤を加
えるか,放射線を照射することによって架橋反応を起こ
させて形成することを特徴とする。
According to the present invention, in order to solve the above-mentioned problem of reduction in electric resistance, the surface of the Mn-Zn ferrite core is coated with a crosslinked organic polymer film, so that the electric insulation of the core is maintained even in a high frequency region. The cross-linked organic polymer film is added to the thermoplastic resin by adding a cross-linking auxiliary agent such as an organic peroxide, or by irradiating radiation to cause a cross-linking reaction. It is characterized by being formed.

【0008】ここで,本発明における熱可塑性樹脂とし
ては,ポリエチレン,エチレン−酢酸ビニル共重合体な
どが挙げられるが,もちろんこれらに限定されるもので
はない。また,本発明に用いられる架橋助剤としては熱
分解によりラジカルを与えるものなら何でもよいが,樹
脂の種類及び製造工程によっても最も適したものを選択
する必要があり,ポリエチレンの場合ではジクミルパー
オキサイドが好適である。その他には代表的なものとし
てベンゾイルパーオキサイド,ブチルパーオキサイドな
どが挙げられるが,本発明はこれらに限定されないこと
は勿論である。
Here, examples of the thermoplastic resin in the present invention include polyethylene, ethylene-vinyl acetate copolymer and the like, but the thermoplastic resin is not limited to these. Further, the crosslinking aid used in the present invention may be any as long as it gives a radical by thermal decomposition, but it is necessary to select the most suitable one depending on the kind of resin and the manufacturing process. In the case of polyethylene, dicumylper Oxide is preferred. Other typical examples include benzoyl peroxide and butyl peroxide, but it goes without saying that the present invention is not limited to these.

【0009】[0009]

【実施例】以下,本発明について実施例により詳細に説
明する。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0010】(実施例1)53.0Fe2 3 −35.
0MnO−12.0ZnO(数字はmol%)を主成分
とするフェライトコアを通常の粉末冶金法で作製した
後,トルエンに比較的低分子量(500〜2500)の
ポリエチレンを加え,加熱しながら溶解させこれにジク
ミルパーオキサイドを添加し,粘度を調整した後上記M
n−Znフェライトコアに塗布した。次に,恒温槽中1
00℃で約3時間保持した後,室温まで冷却して被膜を
形成した。このようにして得られた被膜の膜厚を測定し
たところ10〜20μmであった。さらに上記絶縁被膜
を被覆したコアについて周波数500kHz,1MH
z,2MHzの夫々におけるμiおよび電気抵抗と駆動
磁束500G,温度60℃でのコアロスを測定した。周
波数500kHzにおける測定結果を表1に,1MHz
における測定結果を表2に,2MHzにおける測定結果
を表3に夫々示す。また,被膜が溶融する温度について
も測定し,表4に示した。表1乃至4の測定結果からい
ずれの周波数においても架橋された高分子被膜被覆によ
る磁気特性の劣化は認められず,電気抵抗が著しく向上
し,また耐熱性も向上していることがわかる。
(Example 1) 53.0Fe 2 O 3 -35.
After preparing a ferrite core containing 0MnO-12.0ZnO (numerical value is mol%) as a main component by an ordinary powder metallurgy method, polyethylene having a relatively low molecular weight (500 to 2500) is added to toluene and dissolved while heating. Dicumyl peroxide was added to this to adjust the viscosity, and then M
It was applied to an n-Zn ferrite core. Next, 1 in the constant temperature bath
After holding at 00 ° C. for about 3 hours, it was cooled to room temperature to form a film. The film thickness of the film thus obtained was measured and found to be 10 to 20 μm. Further, the core coated with the above insulating film has a frequency of 500 kHz, 1 MH
μi, electric resistance, driving magnetic flux of 500 G, and core loss at a temperature of 60 ° C. were measured at z and 2 MHz, respectively. Table 1 shows the measurement results at a frequency of 500 kHz and 1 MHz.
Table 2 shows the measurement results at 2 MHz, and Table 3 shows the measurement results at 2 MHz. The temperature at which the coating melts was also measured and is shown in Table 4. From the measurement results of Tables 1 to 4, it is understood that no deterioration of the magnetic properties due to the coating of the crosslinked polymer film was observed at any frequency, the electric resistance was remarkably improved, and the heat resistance was also improved.

【0011】(実施例2)実施例1と同様な組成のMn
−Znフェライトコアを作製した後,トルエンにエチレ
ン−酢酸ビニル共重合体を加え,加熱しながら溶解さ
せ,これにジクミルパーオキサイドを添加し,粘度を調
整した後,上記Mn−Znフェライトに塗布した。次
に,恒温槽中100℃で約3時間保持した後,室温まで
冷却して被膜を形成した。このようにして得られた被膜
の膜厚を測定したところ15〜30μmであった。さら
に上記絶縁被膜を被覆したコアについて実施例1と同様
に周波数が500kHz,1MHz,2MHz夫々での
μiおよび電気抵抗,駆動磁束500G,温度60℃で
のコアロスを測定した。周波数500kHzにおける測
定結果を表1に,1MHzにおける測定結果を表2に,
2MHzにおける測定結果を表3に夫々示す。また,被
膜が溶融する温度についても測定し,表4に示した。表
1乃至表4の測定結果からいずれの周波数においても架
橋された高分子被膜被覆による磁気特性の劣化は認めら
れず,電気抵抗が著しく向上し,また耐熱性も向上して
いることがわかる。
(Example 2) Mn having the same composition as in Example 1
After preparing a -Zn ferrite core, ethylene-vinyl acetate copolymer was added to toluene and dissolved with heating, dicumyl peroxide was added to this, the viscosity was adjusted, and then the above Mn-Zn ferrite was coated. did. Next, after holding at 100 ° C. in a constant temperature bath for about 3 hours, it was cooled to room temperature to form a film. The film thickness of the film thus obtained was measured and found to be 15 to 30 μm. Further, with respect to the core coated with the insulating coating, μi and electric resistance at frequencies of 500 kHz, 1 MHz and 2 MHz respectively, driving magnetic flux of 500 G and core loss at a temperature of 60 ° C. were measured in the same manner as in Example 1. The measurement results at a frequency of 500 kHz are shown in Table 1, the measurement results at 1 MHz are shown in Table 2,
Table 3 shows the measurement results at 2 MHz. The temperature at which the coating melts was also measured and is shown in Table 4. From the measurement results of Tables 1 to 4, it is understood that no deterioration of the magnetic properties due to the crosslinked polymer film coating was observed at any frequency, the electric resistance was remarkably improved, and the heat resistance was also improved.

【0012】(実施例3)実施例1と同様な組成のMn
−Znフェライトコアを作製した後,トルエンに比較的
低分子量(500〜2500)のポリエチレンを加え,
加熱しながら溶解させ,粘度を調整した後これを上記M
n−Znフェライトコアに塗布した。恒温槽中70℃で
約5時間乾燥させた後,これに電子線を照射して架橋処
理を行った。このようにして得られた被膜の膜厚を測定
したところ15〜25μmであった。さらに上記絶縁被
膜を被覆したコアについて測定周波数500kHz,1
MHz,2MHzの夫々におけるμiおよび電気抵抗,
駆動磁束500G,温度60℃でのコアロスを測定し
た。周波数500kHzにおける測定結果を表1に,1
MHzにおける測定結果を表2に,2MHzにおける測
定結果を表3に夫々示す。また,被膜が溶融する温度に
ついても測定し,表4に示した。表1乃至表4の測定結
果からいずれの周波数においても架橋された高分子被膜
被覆による磁気特性の劣化は認められず,電気抵抗が著
しく向上し,また耐熱性も向上していることがわかる。
(Example 3) Mn having the same composition as in Example 1
After making the -Zn ferrite core, add a relatively low molecular weight polyethylene (500-2500) to toluene,
Melt while heating and adjust the viscosity.
It was applied to an n-Zn ferrite core. After drying in a constant temperature bath at 70 ° C. for about 5 hours, this was irradiated with an electron beam to carry out a crosslinking treatment. The film thickness of the coating film thus obtained was measured and found to be 15 to 25 μm. Further, with respect to the core coated with the above insulating film, the measurement frequency is 500 kHz, 1
Μi and electric resistance at MHz and 2 MHz,
The core loss was measured at a driving magnetic flux of 500 G and a temperature of 60 ° C. Table 1 shows the measurement results at a frequency of 500 kHz.
Table 2 shows the measurement results at MHz, and Table 3 shows the measurement results at 2 MHz. The temperature at which the coating melts was also measured and is shown in Table 4. From the measurement results of Tables 1 to 4, it is understood that no deterioration of the magnetic properties due to the crosslinked polymer film coating was observed at any frequency, the electric resistance was remarkably improved, and the heat resistance was also improved.

【0013】(実施例4)実施例1と同様な組成のMn
−Znフェライトコアを作製した後,トルエンにエチレ
ン−酢酸ビニル共重合体を加え,加熱しながら溶解さ
せ,粘度を調整した後これを上記Mn−Znフェライト
コアに塗布した。恒温槽中80℃で約5時間乾燥させた
後これに電子線を照射して架橋処理を行った。このよう
にして得られた被膜の膜厚を測定したところ17〜28
μmであった。さらに上記絶縁被膜を被覆したコアにつ
いて測定周波数500kHz,1MHz,2MHzにお
けるμiおよび電気抵抗,駆動磁束500G,温度60
℃でのコアロスを測定した。周波数500kHzにおけ
る測定結果を表1に,1MHzにおける測定結果を表2
に,2MHzにおける測定結果を表3に夫々示す。ま
た,被膜が溶融する温度についても測定し,表4に示し
た。表1乃至表4の測定結果からいずれの周波数におい
ても架橋された高分子被膜被覆による磁気特性の劣化は
認められず,電気抵抗が著しく向上し,また耐熱性も向
上していることがわかる。
(Example 4) Mn having the same composition as in Example 1
After the -Zn ferrite core was prepared, the ethylene-vinyl acetate copolymer was added to toluene and dissolved while heating to adjust the viscosity, and this was then applied to the Mn-Zn ferrite core. After drying in a constant temperature bath at 80 ° C. for about 5 hours, this was irradiated with an electron beam for cross-linking treatment. When the film thickness of the coating film thus obtained was measured, it was 17 to 28.
was μm. Further, regarding the core coated with the above-mentioned insulating film, μi and electric resistance at measurement frequencies of 500 kHz, 1 MHz and 2 MHz, driving magnetic flux 500 G, temperature 60
The core loss at ° C was measured. Table 1 shows the measurement results at a frequency of 500 kHz and Table 2 shows the measurement results at 1 MHz.
Table 3 shows the measurement results at 2 MHz. The temperature at which the coating melts was also measured and is shown in Table 4. From the measurement results of Tables 1 to 4, it is understood that no deterioration of the magnetic properties due to the crosslinked polymer film coating was observed at any frequency, the electric resistance was remarkably improved, and the heat resistance was also improved.

【0014】(比較例)53.0Fe2 3 −35.0
MnO−12.0ZnO(数字はmol%)を主成分と
するフェライトコアを通常の粉末冶金法で作製し,何の
絶縁処理も行わなかったものを比較材とした。この比較
材についても周波数500kHz,1MHz,2MHz
におけるμiおよび駆動磁束500G,温度60℃での
コアロス,電気抵抗を測定した。周波数500kHzに
おける測定結果を表1に,1MHzにおける測定結果を
表2に,2MHzにおける測定結果を表3に夫々示す。
(Comparative Example) 53.0Fe 2 O 3 -35.0
A ferrite core containing MnO-12.0ZnO (numerical value: mol%) as a main component was prepared by a normal powder metallurgy method, and no insulation treatment was performed as a comparative material. The frequency of this comparative material is 500kHz, 1MHz, 2MHz
, Magnetic flux of 500 G, core loss at a temperature of 60 ° C., and electric resistance were measured. Table 1 shows the measurement results at a frequency of 500 kHz, Table 2 shows the measurement results at 1 MHz, and Table 3 shows the measurement results at 2 MHz.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【発明の効果】以上述べたごとく,本発明の絶縁方法に
よれば,熱可塑性樹脂を架橋反応して得られる絶縁被膜
で被覆されたMn−Znフェライトは磁気特性の劣化を
伴なわず,きわめて高い絶縁特性を有することがわか
る。それ故,本発明の絶縁方法によるフェライトコア
は,高周波領域においても漏電の心配がなくスイッチン
グ電源用のトランスコアとして使用可能である。
As described above, according to the insulating method of the present invention, the Mn-Zn ferrite coated with the insulating coating obtained by the crosslinking reaction of the thermoplastic resin does not cause the deterioration of the magnetic characteristics and is extremely excellent. It can be seen that it has high insulating properties. Therefore, the ferrite core according to the insulation method of the present invention can be used as a transformer core for a switching power supply without fear of leakage even in a high frequency region.

【0020】また,本発明の絶縁方法によるフェライト
コアは,耐熱性が向上しているために,半田付け作業の
際に溶融することもない。このことが高周波電源用トラ
ンスコアの新たな用途拡大などに寄与するところは非常
に大きく,工業上極めて重要である。
Since the ferrite core manufactured by the insulating method of the present invention has improved heat resistance, it does not melt during the soldering work. The fact that this contributes to the expansion of new applications for transformer cores for high-frequency power supplies is extremely large, and is extremely important in industry.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フェライトコア表面に,架橋された有機
高分子被膜で被覆することを特徴とするフェライトコア
の絶縁方法。
1. A method for insulating a ferrite core, which comprises coating the surface of the ferrite core with a crosslinked organic polymer film.
【請求項2】 請求項1記載のフェライトコアの絶縁方
法において,前記有機高分子被膜は熱可塑性樹脂に,架
橋助剤を加えて架橋処理を施したものであることを特徴
とするフェライトコアの絶縁方法。
2. The method of insulating a ferrite core according to claim 1, wherein the organic polymer film is a thermoplastic resin to which a cross-linking aid is added and cross-linking is performed. Insulation method.
【請求項3】 請求項1記載のフェライトコアの絶縁方
法において,前記有機高分子被膜は熱可塑性樹脂の被膜
に放射線を照射して架橋処理を施したものであることを
特徴とするフェライトコアの絶縁方法。
3. The method of insulating a ferrite core according to claim 1, wherein the organic polymer film is a thermoplastic resin film irradiated with radiation to be crosslinked. Insulation method.
JP4141382A 1992-06-02 1992-06-02 Ferrite core insulating method Withdrawn JPH05335156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141382A JPH05335156A (en) 1992-06-02 1992-06-02 Ferrite core insulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141382A JPH05335156A (en) 1992-06-02 1992-06-02 Ferrite core insulating method

Publications (1)

Publication Number Publication Date
JPH05335156A true JPH05335156A (en) 1993-12-17

Family

ID=15290700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141382A Withdrawn JPH05335156A (en) 1992-06-02 1992-06-02 Ferrite core insulating method

Country Status (1)

Country Link
JP (1) JPH05335156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289010B2 (en) 2004-04-21 2007-10-30 Tdk Corporation Mn-Zn based ferrite member
WO2022202394A1 (en) * 2021-03-22 2022-09-29 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle-introduced substrate, and electronic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289010B2 (en) 2004-04-21 2007-10-30 Tdk Corporation Mn-Zn based ferrite member
WO2022202394A1 (en) * 2021-03-22 2022-09-29 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle-introduced substrate, and electronic material

Similar Documents

Publication Publication Date Title
US6780457B2 (en) Method for producing a high-quality insulation of electrical conductors or conductor bundles of rotating electrical machines by means of fluidized-bed sintering
JPH05335156A (en) Ferrite core insulating method
US2851380A (en) Conductive ink and article coated therewith
JPH06203942A (en) Manufacture of electric part
EP0566148B1 (en) Varnish-coated electric wire and method of producing the same
JPS5946172A (en) Method of impregnating or coating electric or electronic member
JPH01210419A (en) Flexible epoxy resin composition
JP2005005644A (en) Wire wound electronic component and resin composition
JP4201925B2 (en) Resin-sealed electronic / electrical parts and method for manufacturing the same
JPH1171503A (en) Epoxy resin composition and insulation treatment of electric instrument using the same
TWI830477B (en) Resin composition
JPS59159819A (en) Epoxy resin composition
JPS6161487B2 (en)
JP6887967B2 (en) Insulated electric wire, its manufacturing method, coil, electrical / electronic equipment and electrical / electronic equipment manufacturing method
JPH02223107A (en) Self-fusion insulated electric wire
JP2004152607A (en) Resin composition for electrical insulation and electric apparatus
JPH03241608A (en) Self-fusing insulated wire
JP3047854B2 (en) Insulating tape and adhesive composition used therefor
JPH0977847A (en) Casting epoxy resin composition for electric insulation
JPH05304020A (en) Ferrite core insulating material and its insulating method
JPH07282637A (en) Enamel copper wire strengthening adhesiveness to copper conductor
JPH0617454B2 (en) Flexible epoxy resin powder composition
JPH0412562B2 (en)
JP2001011325A (en) Electronic material composition, article for electronic use and usage of electronic material composition
JPH05159630A (en) Insulated wire for coil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803