JPH0533370B2 - - Google Patents

Info

Publication number
JPH0533370B2
JPH0533370B2 JP59057581A JP5758184A JPH0533370B2 JP H0533370 B2 JPH0533370 B2 JP H0533370B2 JP 59057581 A JP59057581 A JP 59057581A JP 5758184 A JP5758184 A JP 5758184A JP H0533370 B2 JPH0533370 B2 JP H0533370B2
Authority
JP
Japan
Prior art keywords
convex mirror
mirror
optical
optical axis
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057581A
Other languages
Japanese (ja)
Other versions
JPS60201316A (en
Inventor
Takamasa Hirose
Akyoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59057581A priority Critical patent/JPS60201316A/en
Publication of JPS60201316A publication Critical patent/JPS60201316A/en
Publication of JPH0533370B2 publication Critical patent/JPH0533370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0812Catadioptric systems using two curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えば投影型走査露光装置、特に
LSIなどの製造に使用されるアライナ用光学系な
どに適用して好適な反射光学系に関するものであ
る。 従来のこの種の反射光学系には、例えば同心又
は非同心の凹面鏡、凸面鏡を使用した反射光学系
や、凹面鏡、凸面鏡の外に更に負のメニスカスレ
ンズ及び色収差補正機構を加えたほぼ同心の反射
光学系など、種々の形式のものが知られている。 そして、これらの反射光学系は軸外の半弧状領
域に良像域が形成されており、この良像域に対応
するマスクの部分像をウエハー上に形成し、マス
ク、ウエハーを一体として反射光学系に対して相
対的に走査してマスクの全体像をウエハー上に形
成するアライナが知られている。しかしながら、
従来の反射光学系の何れも非点収差、及び像面弯
曲が大きく、そのために良像域の幅は極めて狭く
例えば1mm程度であつて、アライナに適応した場
合に多くの走査時間、即ち露光時間を必要とし、
時間当りのウエハー焼付処理量が比較的小さいと
いう難点があつた。 本発明の目的は、このような従来例の欠点を改
善し、非球面レンズを導入して非点収差及び像面
弯曲を充分に補正しつつ、補正像高の良像域を拡
大し、更には時間当りのウエハー焼付量を増大す
る反射光学系を提供することにあり、その要旨は
次の通りである。 即ち、凹面鏡と凸面鏡をそれぞれの反射面同志
が対向するよう配置し、光軸外の被写体からの光
を前記凹面鏡、凸面鏡、凹面鏡の順に反射するこ
とにより像面に結像させる反射光学系において、
前記凹面鏡と前記被写体の間に第1の光学部材を
設け、前記凹面鏡と前記像面の間に第2の光学部
材を設け、前記被写体の各点から光軸に平行に射
出する光線を前記第1の光学部材を介して前記凹
面鏡で反射した後に前記凸面鏡の前記光軸との交
点で反射させ、かつ前記凸面鏡の前記光軸との交
点で反射した後に前記凹面鏡で反射して前記第2
の光学部材を介して光軸と平行に前記像面に入射
させるように、少なくとも前記第1の光学部材の
前記光線の通過面を非球面とし、前記第1、第2
の光学部材で生ずる色収差を補正するために、前
記凸面鏡はその表面に屈折面を備えると共に、以
下の条件を満たす裏面反射鏡としたことを特徴と
する反射光学系。 |R5|<|R4|<|R5|+d/2 0.005≦d/D≦0.03 ここで、R4は前記凸面鏡の屈折面の曲率半
径、R5は前記凸面鏡の反射面の曲率半径、dは
屈折面と反射面間の軸上肉厚、Dは前記凸面鏡の
有効径である。 本発明を図示の実施例に基づいて詳細に説明す
る。 第1図に示す実施例では、凹面鏡M1とそれよ
りも半径の小さな凸面鏡M2とが、これらの光軸
Oが一致するように配置されると共に、これらの
曲率中心が同一方向になるようにして鏡面同志が
対向的に配置されている。そして、物体S1と凸
面鏡M2との間、及び物体S1と光軸Oの点O1
を中心に対称的な位置の像面S2と凸面鏡M2と
の間に、非球面レンズL1が光軸Oを中心として
対称的な形状で配置され、更に裏面鏡から成る凸
面鏡M2の反射面が非球面とされている。 物体S1から出射された光束は、凹面鏡M1、
凸面鏡M2、凹面鏡M1の順に進行するため、物
体高P1はこれらの2つの鏡面M1,M2間で計
3回反射された後に、像面S2における点P2に
等倍結像されることになり、この反射光学系の絞
りの役割を凸面鏡M2が果している。この反射光
学系は凸面鏡M2の有効径の中心O2に関して対
称的に配置されているので、光束がこの中心O2
に入射するに際して非対称収差であるコマ収差や
歪曲収差が発生することはないが、非点収差と像
面弯曲の発生は免れ難い。 そこでこの反射光学系においては、非点収差と
像面弯曲は非球面レンズL1によつて補正するよ
うにされている。このために非球面レンズL1の
形状は、第2図の非点収差図で示す補正領域h内
での各像高の光軸Oと平行な主光線の全てが凸面
鏡M2の中心O2へ入射し、また凸面鏡M2の中
心O2から反射した各主光線が像面に全て平行に
入射するように非球面レンズL1の形状が決めら
れている。 なお、収差が良好に補正できる範囲であれば、
主光線の全てが多少中心からずれていても、また
一部の主光線が中心からずれて入射するように、
また全ての主光線が像面に多少非平行に或いは一
部の主光線が多少非平行に入射するように非球面
レンズL1の形状を決めてもよい。このような場
合に、例えばレンズL1の物体S1側に非球面を
施し、線面S2側にメニスカスレンズ部材を用い
ることができる。しかしながら、一方だけに非球
面を施すよりも、双方に非球面を施す場合の方が
製作が容易である。 この場合に凹面鏡M1は凸レンズの作用をなす
から、補正領域hの半弧状の各像高に対応した凹
面鏡M1の各入射高での凹面鏡M1で発生する正
の球面収差の値に応じて、非球面レンズL1の対
応入射光で負の球面収差を発生させる。従つて、
正負の球面収差が補正領域hの各像高で互いに打
消し合うように非球面レンズL1の形状を選択す
れば、各像高の光軸Oに平行な主光線はこの光学
系の中心O2に入射することになる。つまり、補
正領域h内での各像高の無限遠主光線が常に光学
系の中心O2へ集光するように補正されたとき、
中心O2での対称性からこの反射光学系全体の非
点収差は補正されることになる。 第2図の補正領域hはサジタル像面sとメリデ
イオナル像面mの傾きと許容深度との関係で決定
されるから、非点収差の補正、即ちサジタル像面
sとメリデイオナル像面mの非点隔差を無くし、
補正領域h内の各像面の像面弯曲を小さくするた
めに非球面レンズL1が採用され、これによつて
補正領域hの拡大、スリツト幅の増大を図ること
ができる。なお、この非球面レンズL1の数は1
個ではなく、これを複数個としても特に支障はな
い。 これによつて非点収差が補正され、かつ前述し
たように光学系の対称性のためにコマ収差や歪曲
収差は発生することはないが、より一層高性能の
ものが要求される場合には、非球面レンズL1の
ガラス厚によつて生ずる色収差や他の収差が無視
できなくなる。そこで、凸面鏡M2を裏面鏡とし
更に非球面化することによつて、非球面レンズL
1の導入により生ずる色収差や横収差をも補正で
きるようにしたのである。即ち、非球面レンズL
1で発生する色収差については凸面鏡M2を裏面
鏡とすることによつて色収差の補正を行い、横収
差は凸面鏡M2の反射面に形成された非球面によ
り補正することになる。 第1図において、非球面レンズL1の働きによ
り補正領域h内で各像高の光軸Oに平行な主光線
は常に凸面鏡M2の中心O2へ入射するから、凸
面鏡M2を非球面としても主光線関係の収差、即
ち非点収差・像面弯曲には全く影響を与えずに、
アツパー光線URとローワー光線LRの収差を補
正することができる。 この第1図に示す第1の実施例では凹面鏡M1
と凸面鏡M2はほぼ同心であり、非球面レンズL
1は緩い凸レンズで凹面鏡M1側の面を非球面と
し、補正領域h内の各主光線が通過する部分は負
の成分を形成するようになつている。非球面レン
ズL1の導入によつて発生する色収差の補正は、
裏面鏡の正成分で行えばよい。 第2図は上述したようにその非点収差図、第3
図a,bは波長365nm、290nm、632.8nmに対す
る凸面鏡M2の非球面量を変えた場合の横収差図
である。この第1の実施例における光学的構成の
数値例を第1表に記載する。なお、Riは光の進
行順序に従つて第i番目面の光学部材面の曲率半
径、Diは第i番目の光学部材の軸上厚又は空気
空隔であり、正負の符号は光が左から右に進行す
る部分を正としており、表中で右側の物質名はレ
ンズ構成物質を示している。
The present invention is applicable to, for example, a projection type scanning exposure apparatus, particularly
The present invention relates to a reflective optical system suitable for application to an optical system for aligners used in the manufacture of LSIs and the like. Conventional reflective optical systems of this type include, for example, reflective optical systems that use concentric or non-concentric concave mirrors and convex mirrors, and nearly concentric reflective systems that use concave mirrors and convex mirrors, as well as negative meniscus lenses and chromatic aberration correction mechanisms. Various types of optical systems are known. These reflective optical systems have a good image area formed in an off-axis semi-arc-shaped area, and a partial image of the mask corresponding to this good image area is formed on the wafer, and the mask and wafer are integrated into the reflective optical system. Aligners are known that form an entire image of a mask on a wafer by scanning relative to the system. however,
All conventional reflective optical systems have large astigmatism and field curvature, and therefore the width of the good image area is extremely narrow, for example, about 1 mm, and when adapted to an aligner, it takes a long scanning time, that is, exposure time. requires,
The drawback was that the amount of wafers printed per hour was relatively small. The purpose of the present invention is to improve the drawbacks of the conventional example, to sufficiently correct astigmatism and field curvature by introducing an aspherical lens, and to expand the good image area of the corrected image height. The object of the present invention is to provide a reflective optical system that increases the amount of wafer printing per hour, and the gist thereof is as follows. That is, in a reflective optical system in which a concave mirror and a convex mirror are arranged so that their reflective surfaces face each other, and light from an object off the optical axis is reflected in the order of the concave mirror, the convex mirror, and the concave mirror to form an image on the image plane,
A first optical member is provided between the concave mirror and the subject, a second optical member is provided between the concave mirror and the image plane, and the light rays emitted from each point of the subject parallel to the optical axis are 1, reflected by the concave mirror through the first optical member, and then reflected at the intersection of the convex mirror with the optical axis, and reflected at the intersection of the convex mirror with the optical axis, then reflected by the concave mirror, and
The passing surface of at least the first optical member is made an aspherical surface so that the light beam is incident on the image plane parallel to the optical axis through the optical member, and the light beam passes through the first and second optical members.
In order to correct chromatic aberration occurring in the optical member, the convex mirror is provided with a refractive surface on its surface, and is a back reflecting mirror that satisfies the following conditions. |R5|<|R4|<|R5|+d/2 0.005≦d/D≦0.03 Here, R4 is the radius of curvature of the refractive surface of the convex mirror, R5 is the radius of curvature of the reflective surface of the convex mirror, and d is the refractive surface. and the axial wall thickness between the reflecting surface and D is the effective diameter of the convex mirror. The present invention will be explained in detail based on illustrated embodiments. In the embodiment shown in FIG. 1, a concave mirror M1 and a convex mirror M2 with a smaller radius are arranged so that their optical axes O coincide and their centers of curvature are in the same direction. Mirror surfaces are placed facing each other. Then, a point O1 between the object S1 and the convex mirror M2, and between the object S1 and the optical axis O.
An aspherical lens L1 is arranged symmetrically about the optical axis O between the image plane S2 and the convex mirror M2, which are symmetrically located about It is considered to be spherical. The light beam emitted from the object S1 passes through the concave mirror M1,
Since it advances in the order of convex mirror M2 and concave mirror M1, object height P1 is reflected three times in total between these two mirror surfaces M1 and M2, and then is imaged at the same magnification at point P2 on image plane S2. The convex mirror M2 plays the role of a diaphragm in this reflective optical system. Since this reflective optical system is arranged symmetrically with respect to the center O2 of the effective diameter of the convex mirror M2, the light flux is
When the light is incident on the lens, coma aberration and distortion aberration, which are asymmetrical aberrations, do not occur, but astigmatism and field curvature cannot be avoided. Therefore, in this reflective optical system, astigmatism and field curvature are corrected by the aspheric lens L1. For this reason, the shape of the aspherical lens L1 is such that all principal rays parallel to the optical axis O at each image height within the correction area h shown in the astigmatism diagram in FIG. 2 enter the center O2 of the convex mirror M2. , and the shape of the aspherical lens L1 is determined so that each principal ray reflected from the center O2 of the convex mirror M2 is all incident parallel to the image plane. In addition, as long as the aberration can be well corrected,
Even if all of the principal rays are slightly off-center, some of the principal rays may be incident off-center.
Further, the shape of the aspherical lens L1 may be determined so that all the principal rays are incident on the image plane somewhat non-parallelly, or some principal rays are incident somewhat non-parallelly on the image plane. In such a case, for example, it is possible to provide an aspherical surface on the object S1 side of the lens L1 and use a meniscus lens member on the linear surface S2 side. However, it is easier to manufacture when both surfaces are formed with an aspheric surface than when only one side is formed with an aspheric surface. In this case, since the concave mirror M1 functions as a convex lens, the non-concave mirror M1 is adjusted according to the value of the positive spherical aberration generated in the concave mirror M1 at each incident height of the concave mirror M1 corresponding to each half-arc image height of the correction area h. Negative spherical aberration is generated in the corresponding incident light of the spherical lens L1. Therefore,
If the shape of the aspherical lens L1 is selected so that the positive and negative spherical aberrations cancel each other out at each image height in the correction area h, the chief ray parallel to the optical axis O at each image height will be directed to the center O2 of this optical system. It will be incident. In other words, when the infinity chief ray at each image height within the correction area h is corrected so that it is always focused on the center O2 of the optical system,
Due to the symmetry at the center O2, the astigmatism of the entire reflective optical system is corrected. Since the correction area h in FIG. 2 is determined by the relationship between the inclination of the sagittal image surface s and the meridional image surface m and the permissible depth, it is necessary to correct astigmatism, that is, the astigmatism of the sagittal image surface s and the meridional image surface m. Eliminate the gap,
An aspherical lens L1 is employed to reduce the field curvature of each image plane within the correction area h, thereby making it possible to enlarge the correction area h and increase the slit width. Note that the number of this aspherical lens L1 is 1.
There is no particular problem in using a plurality of these instead of one. This corrects astigmatism, and as mentioned above, due to the symmetry of the optical system, no comatic aberration or distortion occurs, but if even higher performance is required, , chromatic aberration and other aberrations caused by the glass thickness of the aspherical lens L1 cannot be ignored. Therefore, by making the convex mirror M2 a back mirror and further making it aspherical, the aspherical lens L
This made it possible to correct chromatic aberration and lateral aberration caused by the introduction of 1. That is, the aspherical lens L
1, the chromatic aberration is corrected by using the convex mirror M2 as a back mirror, and the lateral aberration is corrected by the aspheric surface formed on the reflective surface of the convex mirror M2. In Fig. 1, the principal ray parallel to the optical axis O at each image height within the correction area h is always incident on the center O2 of the convex mirror M2 due to the action of the aspherical lens L1, so even if the convex mirror M2 is aspherical, the principal ray without affecting related aberrations, namely astigmatism and field curvature,
Aberrations in the upper ray UR and lower ray LR can be corrected. In the first embodiment shown in FIG. 1, the concave mirror M1
and the convex mirror M2 are almost concentric, and the aspherical lens L
1 is a slightly convex lens whose surface on the concave mirror M1 side is an aspherical surface, and the portion through which each chief ray in the correction area h passes forms a negative component. The correction of chromatic aberration caused by the introduction of the aspherical lens L1 is as follows:
This can be done using the positive component of the back mirror. As mentioned above, Fig. 2 is the astigmatism diagram, and Fig. 3 is the astigmatism diagram.
Figures a and b are lateral aberration diagrams when the amount of asphericity of the convex mirror M2 is changed for wavelengths of 365 nm, 290 nm, and 632.8 nm. Numerical examples of the optical configuration in this first embodiment are listed in Table 1. In addition, Ri is the radius of curvature of the i-th optical member surface according to the order of light progression, Di is the axial thickness or air gap of the i-th optical member, and the positive and negative signs indicate that the light travels from the left. The part that progresses to the right is considered positive, and the material names on the right side of the table indicate the lens constituent materials.

【表】【table】

【表】 また、第2表、第3表は第1の実施例におい
て、凸面鏡M2に関する数値をそれぞれ若干変更
した変形例であり、第4図、第5図にそれぞれ横
収差図を示している。
[Table] Tables 2 and 3 are modified examples of the first embodiment in which the numerical values regarding the convex mirror M2 are slightly changed, respectively, and lateral aberration diagrams are shown in FIGS. 4 and 5, respectively. .

【表】【table】

【表】【table】

【表】 第6図、第7図、第8図a,bは第2の実施例
の構成図、非点収差図、横収差図を示し、凹面鏡
M1と非球面の凸面鏡M2とはほぼ同心であり、
凸面鏡M2の屈折面が非球面とされている。補正
領域h内で各像高の主光線が通過する非球面部分
は像高が高くなるにつれて、つまり凹面鏡M1の
屈折力が大きくなるに従つて、参照球面よりも負
の成分を持つように形成されている。第4表はこ
の第2の実施例の数値例である。
[Table] Figures 6, 7, and 8 a and b show the configuration diagram, astigmatism diagram, and lateral aberration diagram of the second embodiment, and the concave mirror M1 and the aspherical convex mirror M2 are almost concentric. and
The refractive surface of the convex mirror M2 is an aspherical surface. The aspherical surface portion through which the principal ray of each image height passes within the correction region h is formed to have a more negative component than the reference spherical surface as the image height becomes higher, that is, as the refractive power of the concave mirror M1 becomes larger. has been done. Table 4 shows numerical examples of this second embodiment.

【表】【table】

【表】 また、第5表、第6表は第2の実施例におい
て、凸面鏡M2に関する数値をそれぞれ若干変更
した変形例であり、第9図、第10図にそれぞれ
横収差図を示している。
[Table] Also, Tables 5 and 6 are modified examples of the second embodiment in which the numerical values regarding the convex mirror M2 are slightly changed, and Figs. 9 and 10 show lateral aberration diagrams, respectively. .

【表】【table】

【表】【table】

【表】 なお、これらの表において、非球面レンズL
1,L2の非球面量ΔSはΔS=(ΔRH2−
ΔRH1)/ΔHと定義する。ここで、ΔHは第1
1図aに示すように非球面レンズLでH2−H1
で与えられる半弧状の良像域を示し、ΔRH1,
ΔRH2は第11図bに示すように高さH1,H
2における参照球面からの非球面量を表してい
る。なお、bにおける実線Aは点O3を中心とす
る参照球面を、点線Bは非球面を示している。 そして、これらの表から判るように非球面レン
ズの非球面量ΔSは1/104と1/10との間にあ
り、ΔSが1/104よりも小となると非球面の変化
量が少なくなり、非球面の効果が薄れてきて広い
スリツト巾が得られなくなる。またΔSが1/10
より大きくなると非球面の変化量が増大し、サジ
タル像面sとメリデイオナル像面mが離れてゆ
き、広いスリツト巾が得られなくなる。 また、凸面鏡M2の非球面量Δxは、凸面鏡M
2の有効径をD、第11図bに示すように光軸か
ら凸面鏡M2の有効半径の7割の高さにおける凸
面鏡の参照球面から求めた非球面量をΔRとする
とき、ΔR/Dと定義している。非球面量Δxは
9/106と8.6/105の間にあり、Δxが9/106より
も小となると非球面の効果が少なくなり、Δxが
8.6/105よりも大きくなると非球面の変化量が増
大し、広いスリツト巾が得られなくなる。 またこれらの表から、参照球面の大きさによつ
て非球面レンズの非球面量ΔSの許容値が変化し
てくることが判る。即ち、参照球面|R|が1000
mmよりも大の場合に、非球面量ΔSは1/103
1/10の間にあり、ΔSがこれらの下限値及び上
限値を越えると、先に述べた場合と同様のデメリ
ツトを生ずる。 更に、参照球面|R|が200mm以下の場合には、
ΔSは1/104と1/103との間にあり、これらの
下限値及び上限値を越えると同様のデメリツトが
生ずる。 非球面レンズL1,L2のそれぞれ2つの光学
部分を構成するガラスのアツベ数をν1、ν2とする
と、 60<ν1<100 60<ν2<100 なる条件を満足することが望ましい。このアツベ
数ν1、ν2が下限値60よりも小さい場合には色収差
の発生が増大し、使用波長域が非常に狭く限定さ
れる。なお、アツベ数ν1、ν2が100よりも大きな
光学ガラスは現在のところ存在しない。 そして、色収差の補正は凸面鏡M2の屈折面の
曲率半径をR4、その反射面のそれをR5、凸面
鏡M2の有効径をD、光軸O上の厚さをdとし
て、 |R5|<|R4|<|R5|+d/2 を満足することが好ましい。 また、0.005≦d/D≦0.03 を満足することが望ましく、これらの条件外とな
ると、色収差が増大することになる。 次に、本発明に係る反射光学系を半導体焼付装
置に適応した例を第12図、第13図を使用して
説明する。第12図は焼付装置の光学的配置を示
し、1はマスク照明用光学系であり、水平な光軸
に沿つて球面ミラー2、円弧状水銀ランプから成
る光源3、レンズ4、フイルタ5、45度ミラー
6、レンズ7が配置されている。なお、フイルタ
5はウエハーに対して感光性を有する光を除去
し、マスク・ウエハーのアライメント時に照明光
路中に挿入される。このマスク照明用光学系1は
マスクを円弧状に或いは半弧状に照明することに
よつて、反射光学系の結像領域を円弧状或いは半
弧状に制限している。8は上部水平面に配置され
たマスクであり、このマスク8は図示しない公知
のマスク保持具によつて保持されている。このマ
スク8の下方には、マスク8の像をウエハー9上
に形成する本発明に係る反射光学系10が配置さ
れている。なお、非球面レンズLの光軸Oを対称
とする物体側S1と像面S2側とは先の実施例と
異なり分離されており、それぞれミラー11,1
2によつて光束偏向して使用される。ウエハー9
は公知のウエハー保持具によつて保持されてお
り、ウエハー保持具は通常の保持具と同様にX、
Y、θ方向に微調整可能となつている。 照明用光学系としてマスク8との間には、アラ
イメント時に顕微鏡光学系13が挿入され、マス
ク8、ウエハー9が所定の位置関係であるか否か
が判断される。マスク8、ウエハー9が所定の位
置関係にない場合は、先に述べたウエハー保持具
のX、Y、θ調整部材により、マスク8に対して
ウエハー9を調節移動させて所定の関係にする。 続いて、この焼付装置の外観が示された第13
図を説明する。第13図において20はランプハ
ウスであり、この中に第12図の照明光学系1が
内蔵されている。21はアライメント用顕微鏡光
学系13が配置されているユニツトであり、この
ユニツト21は前後に移動可能に支持されてい
る。22はマスク支持具、23はウエハー支持具
であり、これらの支持具22,23は結合部材2
4によつて一体的に移動するように連結されてい
る。ここで、支持具22,23は一体的に移動す
るが、ウエハー9は支持具23に対して微小移動
が可能である。25は結合部材24に固定された
アームであり、このアーム25はガイド26によ
つて支持されている。そして、ガイド26に含ま
れる水平移動機構によつて、支持具22,23は
一体的に水平にかつ直線的に移動される。27は
反射結像光学系を収納する筒、28は基台、29
はターンテーブル、30はオートフイーダであ
る。このオートフイーダ30によつてウエハー9
はターンテーブル29を介してウエハー支持具2
3上に自動的に供給される。 次に、この装置の動作を説明すると、先ずマス
ク8とウエハー9の相互位置関係のアライメント
が行われる。このアライメント時には、前述した
フイルタが照明用光学系1中に挿入され、マスク
8上にレンズ4,7によつて半弧状光源像が非感
光性の光によつて形成される。この際に、顕微鏡
光学系13もレンズ7とマスク8の間に挿入され
ている。この顕微鏡光学系13によつて、マスク
8、ウエハー9のアライメントマークを観察し、
両アライメントマークの調整をウエハー支持具2
3を操作することによつて行う。マスク8、ウエ
ハー9のアライメント終了後に、前述のフイルタ
及び顕微鏡光学系13は光路から退避する。同時
に、光源3は消灯或いは不図示のシヤツタ手段に
よつて遮光され、次いで光源3の点灯或いはシヤ
ツタの開放によつて、感光性の半弧状光源像がマ
スク8上に形成される。これと同時に、アーム2
5がガイド26を水平方向に移動開始する。この
水平移動によつてマスク8全体の像がウエハー9
上に焼付けられることになる。 このようにして本発明に係る反射光学系によれ
ば、非球面レンズの導入により補正領域の各像高
でのサジタル像面s、メリデイオナル像面mを広
範囲に一致するように補正して補正像高の良像域
を拡大することが可能になる。また良像域の拡
大、即ちスリツト幅の拡大によつて露光時間を短
縮できるという効果が得られる。特に、凹面鏡M
1と凸面鏡M2との同心性に制限されず、球面系
のみのレンズ構成と異なつて、配置する位置も制
限されず非球面の補正のみに注目すればよいこと
になり、高性能の反射光学系が得られる。なお実
施例によれば、像高hが100〜90mm即ちスリツト
巾が約10mmまでに良像域が拡大されている。
[Table] In addition, in these tables, aspherical lens L
1, the aspherical amount ΔS of L2 is ΔS=(ΔRH2−
Defined as ΔRH1)/ΔH. Here, ΔH is the first
As shown in Figure 1a, H2-H1 with aspherical lens L
It shows the semi-arc shaped good image area given by ΔRH1,
ΔRH2 is the height H1, H as shown in Figure 11b.
2 represents the aspherical amount from the reference spherical surface. Note that the solid line A in b indicates a reference spherical surface centered at point O3, and the dotted line B indicates an aspherical surface. As can be seen from these tables, the aspherical amount ΔS of an aspherical lens is between 1/10 4 and 1/10, and when ΔS is smaller than 1/10 4 , the amount of change in the aspherical surface is small. As a result, the effect of the aspherical surface is weakened and a wide slit width cannot be obtained. Also, ΔS is 1/10
If it becomes larger, the amount of change in the aspherical surface increases, the sagittal image surface s and the meridional image surface m become separated, and a wide slit width cannot be obtained. Also, the aspherical amount Δx of the convex mirror M2 is
When the effective diameter of M2 is D and the aspherical amount obtained from the reference spherical surface of the convex mirror M2 at a height of 70% of the effective radius of the convex mirror M2 from the optical axis as shown in Fig. 11b is ΔR, then ΔR/D and Defined. The aspheric amount Δx is between 9/10 6 and 8.6/10 5 , and when Δx becomes smaller than 9/10 6 , the effect of the aspheric surface decreases, and Δx
If it is larger than 8.6/ 105 , the amount of change in the aspherical surface will increase, making it impossible to obtain a wide slit width. Furthermore, from these tables, it can be seen that the allowable value of the aspherical amount ΔS of the aspherical lens changes depending on the size of the reference spherical surface. That is, the reference sphere |R| is 1000
When it is larger than mm, the aspherical amount ΔS is between 1/103 and 1/10, and if ΔS exceeds these lower and upper limits, the same disadvantages as in the case described above will occur. . Furthermore, if the reference sphere |R| is less than 200mm,
ΔS is between 1/10 4 and 1/10 3 , and similar disadvantages occur when these lower and upper limits are exceeded. Assuming that the Atsube numbers of the glasses constituting the two optical parts of the aspheric lenses L1 and L2 are ν 1 and ν 2 , it is desirable to satisfy the following conditions: 60<ν 1 <100 60<ν 2 <100. When the Abbe numbers ν 1 and ν 2 are smaller than the lower limit value 60, the occurrence of chromatic aberration increases and the usable wavelength range is extremely narrowly limited. Note that optical glasses with Atsube numbers ν 1 and ν 2 larger than 100 do not currently exist. Then, to correct chromatic aberration, the radius of curvature of the refractive surface of convex mirror M2 is R4, that of its reflecting surface is R5, the effective diameter of convex mirror M2 is D, and the thickness on optical axis O is d, |R5|<|R4 It is preferable to satisfy |<|R5|+d/2. Further, it is desirable that 0.005≦d/D≦0.03 be satisfied, and if these conditions are exceeded, chromatic aberration will increase. Next, an example in which the reflective optical system according to the present invention is applied to a semiconductor printing apparatus will be described with reference to FIGS. 12 and 13. FIG. 12 shows the optical arrangement of the printing apparatus, in which 1 is an optical system for illuminating the mask, and along the horizontal optical axis are arranged a spherical mirror 2, a light source 3 consisting of an arcuate mercury lamp, a lens 4, a filter 5, 45 A degree mirror 6 and a lens 7 are arranged. Note that the filter 5 removes light that is photosensitive to the wafer, and is inserted into the illumination optical path during mask-wafer alignment. This mask illumination optical system 1 limits the imaging area of the reflective optical system to a circular arc or a semi-arc by illuminating the mask in an arc or a semi-arc. Reference numeral 8 denotes a mask placed on the upper horizontal plane, and this mask 8 is held by a known mask holder (not shown). A reflective optical system 10 according to the present invention is arranged below this mask 8 to form an image of the mask 8 on a wafer 9. Note that the object side S1 and the image plane S2 side, which are symmetrical with respect to the optical axis O of the aspherical lens L, are separated from each other, unlike the previous embodiment, and mirrors 11 and 1, respectively, are separated.
2, the light beam is deflected and used. wafer 9
is held by a known wafer holder, and the wafer holder has X,
Fine adjustment is possible in the Y and θ directions. A microscope optical system 13 is inserted as an illumination optical system between the mask 8 and the mask 8 during alignment, and it is determined whether the mask 8 and the wafer 9 are in a predetermined positional relationship. If the mask 8 and wafer 9 are not in a predetermined positional relationship, the wafer 9 is adjusted and moved relative to the mask 8 using the X, Y, and θ adjustment members of the wafer holder described above to bring them into a predetermined relationship. Next, the thirteenth section shows the appearance of this printing device.
Explain the diagram. In FIG. 13, 20 is a lamp house, in which the illumination optical system 1 of FIG. 12 is built. Reference numeral 21 denotes a unit in which the alignment microscope optical system 13 is disposed, and this unit 21 is supported so as to be movable back and forth. 22 is a mask supporter, 23 is a wafer supporter, and these supports 22 and 23 are connected to the coupling member 2.
4 so as to move integrally. Here, the supports 22 and 23 move integrally, but the wafer 9 can move minutely relative to the support 23. 25 is an arm fixed to the coupling member 24, and this arm 25 is supported by a guide 26. The supports 22 and 23 are integrally moved horizontally and linearly by the horizontal movement mechanism included in the guide 26. 27 is a tube that houses the reflective imaging optical system; 28 is a base; 29
is a turntable, and 30 is an auto feeder. By this auto feeder 30, the wafer 9
is the wafer support 2 via the turntable 29.
3 automatically supplied. Next, the operation of this apparatus will be explained. First, the mutual positional relationship between the mask 8 and the wafer 9 is aligned. During this alignment, the aforementioned filter is inserted into the illumination optical system 1, and a semi-arc shaped light source image is formed on the mask 8 by the lenses 4 and 7 using non-photosensitive light. At this time, the microscope optical system 13 is also inserted between the lens 7 and the mask 8. Using this microscope optical system 13, the alignment marks on the mask 8 and wafer 9 are observed,
Adjust both alignment marks using wafer support 2.
This is done by operating 3. After the alignment of the mask 8 and wafer 9 is completed, the aforementioned filter and microscope optical system 13 are retracted from the optical path. At the same time, the light source 3 is turned off or blocked by a shutter means (not shown), and then a photosensitive semi-arc shaped light source image is formed on the mask 8 by turning on the light source 3 or opening the shutter. At the same time, arm 2
5 starts moving the guide 26 in the horizontal direction. Due to this horizontal movement, the entire image of the mask 8 is transferred to the wafer 9.
It will be baked on top. In this way, according to the reflective optical system according to the present invention, the sagittal image plane s and the meridional image plane m at each image height of the correction area are corrected so as to coincide with each other over a wide range by introducing the aspherical lens, and the corrected image It becomes possible to expand the good image area at high altitudes. Further, by expanding the good image area, that is, by increasing the slit width, the exposure time can be shortened. In particular, concave mirror M
1 and the convex mirror M2, and unlike a lens configuration with only a spherical system, there is no restriction on the placement position, and it is only necessary to focus on the correction of the aspherical surface, making it possible to create a high-performance reflective optical system. is obtained. According to the embodiment, the good image area is expanded to an image height h of 100 to 90 mm, that is, a slit width of about 10 mm.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る反射光学系に実施例を示
し、第1図は第1の実施例の構成図、第2図はそ
の非点収差図、第3図a,bは横収差図、第4
図、第5図はそれぞれ第1の実施例の変形例にお
ける横収差図、第6図は第2の実施例の構成図、
第7図はその非点収差図、第8図a,bは横収差
図、第9図、第10図はそれぞれ第2の実施例の
変形例における横収差図、第11図a,bは非球
面量ΔSの説明図、第12図、第13図は本発明
に係る反射光学系を使用した焼付装置の構成図で
ある。 符号M1は凹面鏡、M2は凸面鏡、L1,L
2,Lは非球面レンズ、hは補正領域、O2は凸
面鏡の中心、ΔHは良像域、sはサジタル像面、
mはメリデイオナル像面、1は照明用光学系、8
はマスク、9はウエハー、10は反射光学系、1
3は顕微鏡光学系である。
The drawings show an embodiment of the reflective optical system according to the present invention. FIG. 1 is a configuration diagram of the first embodiment, FIG. 2 is an astigmatism diagram thereof, FIGS. 3a and b are lateral aberration diagrams, and FIG. 4
5 and 5 are lateral aberration diagrams in a modification of the first embodiment, respectively, and FIG. 6 is a configuration diagram of the second embodiment,
Figure 7 is an astigmatism diagram, Figures 8a and b are lateral aberration diagrams, Figures 9 and 10 are lateral aberration diagrams of a modified example of the second embodiment, and Figures 11a and b are lateral aberration diagrams. FIGS. 12 and 13, which are explanatory diagrams of the aspherical amount ΔS, are configuration diagrams of a printing apparatus using a reflective optical system according to the present invention. Symbol M1 is a concave mirror, M2 is a convex mirror, L1, L
2, L is the aspherical lens, h is the correction area, O2 is the center of the convex mirror, ΔH is the good image area, s is the sagittal image surface,
m is the meridional image plane, 1 is the illumination optical system, 8
is a mask, 9 is a wafer, 10 is a reflective optical system, 1
3 is a microscope optical system.

Claims (1)

【特許請求の範囲】 1 凹面鏡と凸面鏡をそれぞれの反射面同志が対
向するよう配置し、光軸外の被写体からの光を前
記凹面鏡、凸面鏡、凹面鏡の順に反射することに
より像面に結像させる反射光学系において、前記
凹面鏡と前記被写体の間に第1の光学部材を設
け、前記凹面鏡と前記像面の間に第2の光学部材
を設け、前記被写体の各点から光軸に平行に射出
する光線を前記第1の光学部材を介して前記凹面
鏡で反射した後に前記凸面鏡の前記光軸との交点
で反射させ、かつ前記凸面鏡の前記光軸との交点
で反射した後に前記凹面鏡で反射して前記第2の
光学部材を介して光軸と平行に前記像面に入射さ
せるように、少なくとも前記第1の光学部材の前
記光線の通過面を非球面とし、前記第1、第2の
光学部材で生ずる色収差を補正するために、前記
凸面鏡はその表面に屈折面を備えると共に、以下
の条件を満たす裏面反射鏡としたことを特徴とす
る反射光学系。 |R5|<|R4|<|R5|+d/2 0.005≦d/D≦0.03 ここで、R4は前記凸面鏡の屈折面の曲率半
径、R5は前記凸面鏡の反射面の曲率半径、dは
屈折面と反射面間の軸上肉厚、Dは前記凸面鏡の
有効径である。 2 前記第1、第2の光学部材で生ずる横収差を
補正するために前記凸面鏡の反射面と屈折面の少
なくとも一方を非球面とした特許請求の範囲第1
項に記載の反射光学系。 3 前記凸面鏡の反射面に非球面を形成し、前記
第1の光学部材の非球面と前記凸面鏡の非球面が
下記の条件を満たすようにした特許請求の範囲第
2項に記載の反射光学系。 1/104≦|(ΔRH2−ΔRH1)/ΔH|≦1/10 9/106<ΔR/D<8.6/105 ここで、ΔHは前記被写体が存する前記光軸か
らの高さH1と高さH2とで囲まれる領域の幅、
ΔRH2とΔRH1は参照球面に対して負の屈折力
が増える方向を正として、高さH1と高さH2で
の前記非球面の参照球面からの前記参照球面の半
径方向に関するずれ、Dは前記凸面鏡の有効径、
ΔRは有効径Dの凸面鏡の半径の7割の高さでの
反射面の参照球面からのずれ量である。 4 前記参照球面の曲率半径をRとするとき、下
記の条件を満たすようにした特許請求の範囲第3
項に記載の反射光学系。 |R|>1000の場合、 1/103<|(ΔRH2−ΔRH1)/ΔH|<1/10 |R|<200の場合、 1/104<|(ΔRH2−ΔRH1)/ΔH|<1/103 5 前記第1の光学部材と共に前記被写体の各点
から光軸に平行に射出する光線を前記第1の光学
部材を介して前記凹面鏡で反射した後に前記凸面
鏡の前記光軸との交点で反射させかつ前記凸面鏡
の前記光軸との交点で反射した後に前記凹面鏡で
反射して前記第2の光学部材を介して光軸と平行
に前記像面に入射させるように、前記第2の光学
部材をメニスカスレンズで構成した特許請求の範
囲第3項又は第4項に記載の反射光学系。 6 前記第1の光学部材と共に前記被写体の各点
から光軸に平行に射出する光線を前記第1の光学
部材を介して前記凹面鏡で反射した後に前記凸面
鏡の前記光軸との交点で反射させ、かつ前記凸面
鏡の前記光軸との交点で反射した後に前記凹面鏡
で反射して前記第2の光学部材を介して光軸と平
行に前記像面に入射させるように、前記第2の光
学部材に前記光線の通過面に前記条件を満たす非
球面を有するようにした特許請求の範囲第3項又
は第4項に記載の反射光学系。
[Scope of Claims] 1. A concave mirror and a convex mirror are arranged so that their respective reflecting surfaces face each other, and light from an object off the optical axis is reflected in the order of the concave mirror, the convex mirror, and the concave mirror to form an image on the image plane. In the reflective optical system, a first optical member is provided between the concave mirror and the subject, a second optical member is provided between the concave mirror and the image plane, and light is emitted from each point of the subject parallel to the optical axis. The light ray is reflected by the concave mirror via the first optical member, and then reflected at the intersection of the convex mirror with the optical axis, and after being reflected at the intersection of the convex mirror and the optical axis, it is reflected by the concave mirror. At least the passing surface of the first optical member is made an aspherical surface so that the light beam is incident on the image plane parallel to the optical axis via the second optical member, and the first and second optical members A reflective optical system characterized in that the convex mirror is provided with a refractive surface on its surface in order to correct chromatic aberration occurring in the member, and is a back reflecting mirror that satisfies the following conditions. |R5|<|R4|<|R5|+d/2 0.005≦d/D≦0.03 Here, R4 is the radius of curvature of the refractive surface of the convex mirror, R5 is the radius of curvature of the reflective surface of the convex mirror, and d is the refractive surface. and the axial wall thickness between the reflecting surface and D is the effective diameter of the convex mirror. 2. Claim 1: At least one of the reflecting surface and the refractive surface of the convex mirror is made an aspherical surface in order to correct lateral aberrations occurring in the first and second optical members.
Reflective optical system as described in Section. 3. The reflective optical system according to claim 2, wherein an aspherical surface is formed on the reflective surface of the convex mirror, and the aspherical surface of the first optical member and the aspherical surface of the convex mirror satisfy the following conditions. . 1/10 4 ≦ | (ΔRH2 − ΔRH1) / ΔH | ≦ 1/10 9/10 6 < ΔR/D < 8.6/10 5 Here, ΔH is the height H1 from the optical axis where the subject is located and the height The width of the area surrounded by H2,
ΔRH2 and ΔRH1 are the deviations in the radial direction of the aspherical surface from the reference spherical surface at heights H1 and H2, with the direction in which the negative refractive power increases with respect to the reference spherical surface as positive, and D is the deviation of the reference spherical surface in the radial direction from the reference spherical surface at heights H1 and H2. effective diameter of,
ΔR is the amount of deviation of the reflecting surface from the reference spherical surface at a height of 70% of the radius of the convex mirror with effective diameter D. 4 When the radius of curvature of the reference spherical surface is R, claim 3 satisfies the following conditions.
Reflective optical system as described in Section. If | R | /10 3 5 After the light rays emitted parallel to the optical axis from each point of the object together with the first optical member are reflected by the concave mirror via the first optical member, the intersection of the convex mirror with the optical axis the second optical member so as to be reflected by the concave mirror and incident on the image plane parallel to the optical axis via the second optical member. A reflective optical system according to claim 3 or 4, wherein the optical member is a meniscus lens. 6. Reflecting the light rays emitted parallel to the optical axis from each point of the subject together with the first optical member by the concave mirror via the first optical member, and then reflecting at the intersection of the convex mirror with the optical axis. , and the second optical member is configured to be reflected at an intersection of the convex mirror with the optical axis, then reflected by the concave mirror, and incident on the image plane parallel to the optical axis via the second optical member. 5. The reflective optical system according to claim 3, wherein said light beam passing surface has an aspherical surface that satisfies said conditions.
JP59057581A 1984-03-26 1984-03-26 Reflection optical system Granted JPS60201316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057581A JPS60201316A (en) 1984-03-26 1984-03-26 Reflection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057581A JPS60201316A (en) 1984-03-26 1984-03-26 Reflection optical system

Publications (2)

Publication Number Publication Date
JPS60201316A JPS60201316A (en) 1985-10-11
JPH0533370B2 true JPH0533370B2 (en) 1993-05-19

Family

ID=13059815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057581A Granted JPS60201316A (en) 1984-03-26 1984-03-26 Reflection optical system

Country Status (1)

Country Link
JP (1) JPS60201316A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196869B2 (en) * 2007-05-15 2013-05-15 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP5201979B2 (en) * 2007-12-26 2013-06-05 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2017049438A (en) * 2015-09-02 2017-03-09 株式会社目白67 Observation device
JP2024125015A (en) 2023-03-03 2024-09-13 キヤノン株式会社 OPTICAL APPARATUS, PROJECTION OPTICAL SYSTEM, EXPOSURE APPARATUS, AND ARTICLE MANUFACTURING METHOD

Also Published As

Publication number Publication date
JPS60201316A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
USRE39024E1 (en) Exposure apparatus having catadioptric projection optical system
US6157498A (en) Dual-imaging optical system
JP3747958B2 (en) Catadioptric optics
JPH0533368B2 (en)
JP3635684B2 (en) Catadioptric reduction projection optical system, catadioptric optical system, and projection exposure method and apparatus
JP4070257B2 (en) High numerical aperture ring field optical reduction system
JP3747951B2 (en) Catadioptric optics
US7239453B2 (en) Projection optical system and projection exposure apparatus
KR20020089204A (en) Catadioptric reduction lens
JP2003114387A (en) Cata-dioptic system and projection exposure device equipped with the same system
KR20040023629A (en) Projection optical system and exposure device having the projection optical system
JP2001185480A (en) Optical projection system and projection exposure device equipped with the system
US7203010B2 (en) Catadioptric projection objective
KR102266723B1 (en) Projection optical system, exposure apparatus, and article manufacturing method
US5257139A (en) Reflection reduction projection optical system
US5856884A (en) Projection lens systems
USRE38438E1 (en) Catadioptric reduction projection optical system and exposure apparatus having the same
JPS59144127A (en) Optical apparatus with adjustment of image
KR100511360B1 (en) Projection optical system and projection exposure apparatus with the same, and device manufacturing method
JP2000098228A (en) Projection exposing device, exposing method and reflection reduction projection optical system
JPH0533371B2 (en)
JPH0533370B2 (en)
WO2005015316A2 (en) Projection objective for microlithography
JPH0533369B2 (en)
JP3423644B2 (en) Projection optical system and projection exposure apparatus using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term