JPH05333342A - Liquid crystal element - Google Patents
Liquid crystal elementInfo
- Publication number
- JPH05333342A JPH05333342A JP31112692A JP31112692A JPH05333342A JP H05333342 A JPH05333342 A JP H05333342A JP 31112692 A JP31112692 A JP 31112692A JP 31112692 A JP31112692 A JP 31112692A JP H05333342 A JPH05333342 A JP H05333342A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- angle
- chiral smectic
- upper substrate
- polarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示素子や液晶光
シャッター等で用いる液晶素子、特に強誘電性液晶素子
に関し、更に詳しくは、液晶分子の配向状態を改善する
ことにより、表示特性を改善した液晶素子に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, a liquid crystal device used in a liquid crystal optical shutter, etc., and more particularly to a ferroelectric liquid crystal device. More specifically, by improving the alignment state of liquid crystal molecules, display characteristics are improved. The present invention relates to an improved liquid crystal element.
【0002】[0002]
【従来の技術】強誘電性液晶分子の屈折率異方性を利用
して偏光素子との組み合わせにより透過光線を制御する
型の表示素子がクラーク(Clark)及びラガーウオ
ル(Lagerwall)により提案されている(米国
特許第4367924号明細書等)。この強誘電性液晶
は、一般に特定の温度域において、非らせん構造のカイ
ラルスメクティックC相(SmC* )又はH相(SmH
* )を有し、この状態において、加えられる電界に応答
して第1の光学的安定状態と第2の光学的安定状態のい
ずれかを取り、且つ電界の印加のないときはその状態を
維持する性質、即ち双安定性を有し、また電界の変化に
対する応答も速やかであり、高速ならびに記憶型の表示
素子用としての広い利用が期待され、特にその機能から
大画面で高精細なディスプレーへの応用が期待されてい
る。2. Description of the Related Art A display device of a type in which transmitted light rays are controlled by using a refractive index anisotropy of ferroelectric liquid crystal molecules in combination with a polarizing element has been proposed by Clark and Lagerwall. (U.S. Pat. No. 4,367,924, etc.). This ferroelectric liquid crystal generally has a non-helical chiral smectic C phase (SmC * ) or H phase (SmH) in a specific temperature range.
* ), And in this state, takes one of the first optical stable state and the second optical stable state in response to the applied electric field, and maintains that state when no electric field is applied. It has the property of being stable, that is, bistability, and has a quick response to changes in the electric field, and is expected to be widely used for high-speed and memory type display elements. Is expected to be applied.
【0003】この双安定性を有する液晶を用いた光学変
調素子が所定の駆動特性を発揮するためには、一対の平
行基板間に配置される液晶が、電界の印加状態が効果的
に起るような分子配列状態にあることが必要である。In order for the optical modulation element using the liquid crystal having the bistability to exhibit a predetermined driving characteristic, the liquid crystal arranged between the pair of parallel substrates is effectively applied with an electric field. It is necessary to have such a molecular arrangement state.
【0004】また、液晶の複屈折を利用した液晶素子の
場合、直交ニコル下での透過率は、Further, in the case of a liquid crystal element utilizing the birefringence of liquid crystal, the transmittance under orthogonal Nicols is
【0005】[0005]
【数1】 (式中:I。は入射光強度、Iは透過光強度、θa は後
述する見かけのチルト角、△nは屈折率異方性、dは液
晶層の膜厚、λは入射光の波長である。)で表わされ
る。非らせん構造における見かけのチルト角θa は、第
1と第2の配向状態でのねじれ配列した液晶分子の平均
分子軸方向の角度として現われることになる。上式によ
れば、かかる見かけのチルト角θa が22.5°の角度
の時最大の透過率となり、双安定性を実現する非らせん
構造での見かけのチルト角θaが、22.5。にできる
限り近いことが必要である。[Equation 1] (Wherein:. I is the incident light intensity, I is the transmitted light intensity, theta tilt angle of the apparent a is to be described later, △ n is the refractive index anisotropy, d is the liquid crystal layer thickness, lambda is the wavelength of the incident light It is represented by). The apparent tilt angle θ a in the non-helical structure appears as the angle in the average molecular axis direction of the twisted liquid crystal molecules in the first and second alignment states. According to the above equation, the maximum transmittance is obtained when the apparent tilt angle θ a is 22.5 °, and the apparent tilt angle θ a in the non-helical structure that realizes the bistability is 22.5. .. It is necessary to be as close as possible to.
【0006】ところで、強誘電性液晶の配向方法として
は、大きな面積に亘って、スメクティック液晶を形成す
る複数の分子で組織された分子層を、その法線に沿って
一軸方向に配向させることができ、しかも製造プロセス
も、簡便なラビング処理により実現できるものが望まし
い。By the way, as a method of orienting a ferroelectric liquid crystal, a molecular layer composed of a plurality of molecules forming a smectic liquid crystal is oriented uniaxially along its normal line over a large area. It is desirable that the manufacturing process can be realized by a simple rubbing process.
【0007】強誘電性液晶、特に非らせん構造のカイラ
ルスメクティック液晶のための配向方法としては、例え
ば米国特許第4561726号公報に記載されたものな
どが知られている。As an alignment method for a ferroelectric liquid crystal, in particular, a chiral smectic liquid crystal having a non-helical structure, for example, the one described in US Pat. No. 4,561,726 is known.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、これま
で用いられてきた配向方法、特にラビング処理したポリ
イミド膜による配向方法を、前述のクラークとラガウォ
ールによって発表された双安定性を示す非らせん構造の
強誘電性液晶に対して適用した場合には、下述の如き問
題点を有していた。However, the alignment method that has been used so far, particularly the alignment method using a rubbing-treated polyimide film, is applied to the strong non-helical structure exhibiting the bistability disclosed by Clark and Raggawall. When it is applied to a dielectric liquid crystal, it has the following problems.
【0009】即ち、本発明者らの実験によれば、従来の
ラビング処理したポリイミド膜によって配向させて得ら
れた非らせん構造の強誘電性液晶での見かけのチルト角
θa(2つの安定状態の分子軸のなす角度の1/2)が
強誘電性液晶でのコーン角(後述の図3(a)に示す三
角錐の頂角の1/2の角度Θ)と較べて小さくなってい
ることが判明した。特に、従来のラビング処理したポリ
イミド膜によって配向させて得た非らせん構造の強誘電
性液晶での見かけのチルト角θa は、一般に3°〜8°
程度で、その時の透過率はせいぜい3〜5%であった。That is, according to the experiments by the present inventors, an apparent tilt angle θ a (two stable states) in a ferroelectric liquid crystal having a non-helical structure obtained by aligning with a conventional rubbing-treated polyimide film was obtained. 1/2 of the angle formed by the molecular axis of is smaller than the cone angle (1/2 angle Θ of the apex of the triangular pyramid shown in FIG. 3A described later) in the ferroelectric liquid crystal. It has been found. In particular, the apparent tilt angle θ a in a ferroelectric liquid crystal having a non-helical structure obtained by aligning with a conventional rubbing-treated polyimide film is generally 3 ° to 8 °.
However, the transmittance at that time was at most 3 to 5%.
【0010】そこで本発明者らは、カイラルスメクティ
ック液晶の非らせん構造での見かけのチルト角θa が大
で、高コントラストな画像が表示されるディスプレーを
実現するために検討した結果、以下のことを発見した。The inventors of the present invention have conducted studies to realize a display in which a chiral smectic liquid crystal has a large apparent tilt angle θ a in a non-helical structure and a high-contrast image is displayed. I have found
【0011】カイラルスメクティック液晶は一般に層構
造をもつが、Sa相からSc相又はSc* 相に転移する
と層間隔が縮むので図2の21のように層が上下基板の
中央で折れ曲がった構造(シェブロン構造)をとる。The chiral smectic liquid crystal generally has a layered structure, but when the transition from the Sa phase to the Sc phase or the Sc * phase shrinks the layer spacing, the layer is bent at the center of the upper and lower substrates as shown by 21 in FIG. 2 (chevron). Structure).
【0012】折れ曲がる方向は図2に示すように、高温
相からSc* 相に転移した直後に表われる配向状態(C
1配向状態22)とさらに温度を下げた時にC1配向状
態に混在して表われる(C2配向状態23)の2つ有り
得ることを本発明者らは発見した。さらに特定の配向膜
と液晶の組み合わせを用いると、上記のC1→C2転移
が起こりにくく、液晶材料によっては全くC2配向状態
が生じないことを新たに発見した。さらに、高プレチル
ト配向膜を用い、後述するΘ<α+δの関係が成立する
時、C1配向のコントラストが非常に高く、一方C2配
向のコントラストは近いということも発見した。従っ
て、高プレチルト配向膜を用い表示画面全体をC1配向
状態に統一すれば、白黒コントラストの高いディスプレ
ーが期待できる。As shown in FIG. 2, the bending direction is the orientation state (C) which appears immediately after the transition from the high temperature phase to the Sc * phase.
The present inventors have found that there are two possible states, one oriented state 22) and a mixed state of the C1 oriented state (C2 oriented state 23) when the temperature is further lowered. Furthermore, it was newly discovered that when the combination of a specific alignment film and a liquid crystal is used, the above C1 → C2 transition hardly occurs, and depending on the liquid crystal material, the C2 alignment state does not occur at all. Furthermore, it was also found that when a high pretilt alignment film is used, the contrast of the C1 alignment is very high and the contrast of the C2 alignment is close when the relation of Θ <α + δ to be described later is established. Therefore, if a high pretilt alignment film is used to unify the entire display screen to the C1 alignment state, a display with high black and white contrast can be expected.
【0013】図3に示すように、C1配向、C2配向で
の基板近くのディレクタはそれぞれ図3(a)および
(b)のコーン31にある。よく知られているようにラ
ビングによって基板界面の液晶分子は基板に対してプレ
チルトと呼ばれる角度をなし、その方向はラビング方向
(A方向)に向って液晶分子が頭をもたげる(先端が浮
いた格好になる)向きである。以上のことより液晶のコ
ーンΘ、プレチルト角α及び層傾斜角δの間には、 C1配向のとき Θ+δ>α C2配向のとき Θ−δ>α の関係が成り立っていなければならない。As shown in FIG. 3, the directors near the substrate in the C1 and C2 orientations are in the cone 31 of FIGS. 3 (a) and 3 (b), respectively. As is well known, the rubbing causes the liquid crystal molecules at the substrate interface to form an angle called a pretilt with respect to the substrate, and the direction is that the liquid crystal molecules lift their heads in the rubbing direction (direction A) (the tip is floating). Will be). From the above, between the cone Θ of the liquid crystal, the pretilt angle α, and the layer tilt angle δ, the relationship of Θ + δ> α in the C1 orientation and Θ−δ> α in the C2 orientation must be established.
【0014】従って、C2配向を生ぜずC1配向を生じ
させるための条件は、Θ−δ>αつまり Θ<α+δ (a) である。Therefore, the condition for producing the C1 orientation without producing the C2 orientation is Θ-δ> α, that is, Θ <α + δ (a).
【0015】さらに界面の分子が一方の位置から他方の
位置へ電界によって移る(スイッチング)の際にトルク
の簡単な考察より、界面分子のスイッチングが起こりや
すい条件として、 α<δ (b) が得られる。Further, α <δ (b) is obtained as a condition under which the interface molecules are easily switched from a simple consideration of torque when the interface molecules are transferred (switching) from one position to the other position by the electric field. Be done.
【0016】よって、C1配向状態をより安定に形成さ
せるには、(a)に加えて(b)の関係を満たすことが
効果的である。Therefore, in order to form the C1 orientation state more stably, it is effective to satisfy the relationship of (b) in addition to (a).
【0017】(a)、(b)の条件の下で、さらに実験
を進めた結果、液晶の見かけのチルト角θa も、従来の
(a)、(b)の条件を満たさない場合の3°〜8°程
度から本発明の(a)、(b)の条件を満たす場合の8
°〜16°程度にまで増大し、コーン角Θとの間に Θ>θa >Θ/2 (c) という関係式が成り立つことが経験的に得られた。As a result of further experiments under the conditions (a) and (b), the apparent tilt angle θ a of the liquid crystal was 3 when the conventional conditions (a) and (b) were not satisfied. 8 to 8 when the conditions (a) and (b) of the present invention are satisfied from about 8 ° to 8 °
It has been empirically obtained that the relational expression of Θ> θ a > Θ / 2 (c) holds between the cone angle Θ and the cone angle Θ.
【0018】以上のように、(a)、(b)、(c)の
条件を満足すれば高コントラストな画像が表示されるデ
ィスプレーが実現できることが明らかとなった。As described above, it has become clear that a display in which a high-contrast image is displayed can be realized if the conditions (a), (b), and (c) are satisfied.
【0019】しかしながら、(a)、(b)条件を満た
したC1配向状態の中にもコントラストの高い、配向2
状態(以下ユニフォーム配向と定義する。)とコントラ
ストの低い配向2状態(以下スプレイ配向と定義す
る。)が存在しうることも明らかとなった。本発明者ら
は、スプレイ配向を不安定化して解消し、ユニフォーム
配向も安定に得るべく検討し、液晶セルの上下基板の一
軸性配向軸を互いに2〜25°(交差角)の範囲でずら
した配向手法(以下特にラビング処理の場合、クロスラ
ビングと呼ぶ)が有効であることがわかった。However, even in the C1 orientation state satisfying the conditions (a) and (b), the orientation 2 having a high contrast is obtained.
It has also been clarified that a state (hereinafter defined as uniform alignment) and an alignment 2 state having low contrast (hereinafter defined as splay alignment) may exist. The inventors of the present invention studied to destabilize and eliminate the splay alignment and obtain uniform alignment stably, and shift the uniaxial alignment axes of the upper and lower substrates of the liquid crystal cell from each other within a range of 2 to 25 ° (crossing angle). It was found that the alignment method (hereinafter referred to as cross rubbing particularly in the case of rubbing treatment) was effective.
【0020】しかし、クロスラビングのみの配向改善で
は、まだ不十分であり、依然として、スプレイ配向が安
定で、且つ、ユニフォームでのスイッチング特性が悪い
場合が存在していた。However, the improvement of the alignment only by cross rubbing is still insufficient, and there are still cases in which the splay alignment is stable and the uniform switching characteristics are poor.
【0021】さらに、クロスラビングは上下基板の一軸
配向処理をずらすために、液晶の一軸配向性が悪くな
り、均一配向できない場合も存在していた。Further, in the cross rubbing, since the uniaxial alignment treatment of the upper and lower substrates is shifted, the uniaxial alignment property of the liquid crystal is deteriorated, and in some cases uniform alignment cannot be performed.
【0022】本発明の目的は、上述の問題点を解決した
液晶素子を提供することにある。An object of the present invention is to provide a liquid crystal device that solves the above problems.
【0023】本発明の別の目的は、安定なユニフォーム
配向を有し、且つ良好なスイッチング特性をもつカイラ
ルスメクチック液晶を用いた液晶素子を提供することに
ある。Another object of the present invention is to provide a liquid crystal device using a chiral smectic liquid crystal having a stable uniform orientation and having good switching characteristics.
【0024】[0024]
【課題を解決するための手段及び作用】本発明者らは、
上記問題点を解消すべく、鋭意検討した結果、液晶のコ
レステリック相のらせんのねじれ方向と、クロスラビン
グの交差方向の組み合わせにより、上記問題点が解消さ
れ、均一一軸配向がなされ且つユニフォーム配向性およ
びユニフォーム配向下でのスイッチング特性が良好にな
ることを発見し、本願第1の発明を達成した。また、本
発明者らは用いるカイラルスメクティック液晶のPsの
極性と、クロスラビングの交差方向の組み合わせによ
り、上記問題点が解消されユニフォーム配向性および、
ユニフォーム配向下でのスイッチング特性が良好になる
ことを発見し、本願第2の発明を達成した。Means and Actions for Solving the Problems The present inventors have
In order to solve the above problems, as a result of extensive studies, the twisting direction of the spiral of the cholesteric phase of the liquid crystal and the cross direction of the cross rubbing are combined to solve the above problems, uniform uniaxial alignment and uniform alignment and It was discovered that the switching characteristic under uniform orientation was good, and the first invention of the present application was achieved. In addition, the inventors of the present invention eliminate the above-mentioned problems by the combination of the polarity of Ps of the chiral smectic liquid crystal used and the cross direction of cross rubbing, and uniform alignment and
It was discovered that the switching characteristic under uniform orientation was good, and the second invention of the present application was achieved.
【0025】即ち本願第1の発明は、液晶に電圧を印加
するための電極と液晶を配向させるための一軸配向膜を
それぞれ有する一対の基板間にカイラルスメクティック
液晶を挟持してなる液晶素子であって、上基板と下基板
の配向膜の処理軸が交差し、且つ下基板に対する上基板
の処理軸の交差方向が上記カイラルスメクティック液晶
のコレステリック相のらせんのねじれ方向と同じであ
り、上記カイラルスメクティック液晶が、プレチルト角
をα、コーン角をΘ、Sm* C層の傾斜角をδとした
時、Θ<α+δで表わされる配向状態を有し、見かけの
チルト角をθa とすると、Θ>θa >Θ/2であること
を特徴とする液晶素子である。That is, the first invention of the present application is a liquid crystal element in which a chiral smectic liquid crystal is sandwiched between a pair of substrates each having an electrode for applying a voltage to the liquid crystal and a uniaxial alignment film for aligning the liquid crystal. The processing axes of the alignment films of the upper substrate and the lower substrate intersect, and the crossing direction of the processing axes of the upper substrate with respect to the lower substrate is the same as the twist direction of the spiral of the cholesteric phase of the chiral smectic liquid crystal, and the chiral smectic When the liquid crystal has an alignment state represented by Θ <α + δ, where α is the pretilt angle, Θ is the cone angle, and δ is the tilt angle of the Sm * C layer, and the apparent tilt angle is θ a , Θ> The liquid crystal element is characterized in that θ a > θ / 2.
【0026】本発明者らは更に、カイラルスメクティッ
ク液晶のPsの極性とクロスラビングの交差方向(極
性)をあわせ、且つ、用いるカイラルスメクティック液
晶のコレステリックのねじれ方向とクロスラビングの交
差方向をあわせ、更に、特定のPsの大きさとクロス角
の組み合わせを選択することにより、前記問題が改善さ
れ、ユニフォーム配向性及びユニフォーム配向下でのス
イッチング特性が良好になることを発見した。The present inventors further match the polarity of Ps of the chiral smectic liquid crystal with the cross direction (polarity) of cross rubbing, and the twist direction of the cholesteric of the chiral smectic liquid crystal used and the cross direction of cross rubbing. It has been found that by selecting a specific combination of Ps size and cross angle, the above problems are improved and uniform orientation and switching characteristics under uniform orientation are improved.
【0027】即ち、本願第3の発明はカイラルスメクテ
ィック液晶と、該液晶を挟持して対向すると共にその対
向面にそれぞれ上記液晶に電圧を印加するための電極が
形成され、さらに液晶を配向するための一軸性配向処理
が施された1対の基板を備えた液晶素子であって、一軸
配向処理軸が互いにある角度(以下「クロス角」と記
す)で交差し、該交差方向が上基板側から見て下基板の
方向に対して上基板の方向が左側になる場合の極性を
負、右側になる場合の極性を正とした時に、該極性と挟
持した液晶の自発分極(以下「Ps」と記す)の極性の
積が正になる関係を有し、カイラルスメクティック相上
限温度から30℃したの温度におけるPsの大きさとク
ロス角の関係が |Ps|<2nc/cm2 の時に|クロス角|<4° |Ps|≧2nc/cm2 の時に|クロス角|≧4° であり、かつ、用いるカイラルスメクティック液晶のコ
レステリックのねじれ方向とクロスラビングの交差方向
をあわせ、上記液晶のコーン角Θ、プレチルト角α、ス
メクティック相における液晶層の傾斜角をδとすると、
該液晶はΘ<α+δ、α>δで表わされる少なくとも2
つの安定状態を示す配向状態を有し、該少なくとも該2
つの安定状態における光学軸のなす角度の1/2である
θa が Θ>θa >Θ/2 の関係を満足することを特徴とする液晶素子である。That is, in the third invention of the present application, the chiral smectic liquid crystal is opposed to the liquid crystal while sandwiching the liquid crystal, and electrodes for applying a voltage to the liquid crystal are respectively formed on the opposing surfaces to further align the liquid crystal. A liquid crystal device comprising a pair of substrates that have been subjected to a uniaxial alignment treatment, wherein the uniaxial alignment treatment axes intersect with each other at an angle (hereinafter referred to as “cross angle”), and the intersecting direction is the upper substrate side. When the polarity when the direction of the upper substrate is on the left side with respect to the direction of the lower substrate is negative and the polarity when the direction of the upper substrate is on the right side is positive, the spontaneous polarization of the liquid crystal sandwiched with the polarity (hereinafter referred to as “Ps”). The relation between the magnitude of Ps and the cross angle at a temperature of 30 ° C. from the upper limit temperature of the chiral smectic phase is | Ps | <2nc / cm 2 | Cross angle │ <4 ° | Ps | 2NC / cm when 2 | cross angle | is ≧ 4 °, and, in the chiral smectic combined liquid of cholesteric the cross direction of the twisting direction and the cross rubbing, the liquid crystal cone angle theta, the pretilt angle alpha, smectic phase used If the tilt angle of the liquid crystal layer is δ,
The liquid crystal has at least 2 represented by Θ <α + δ, α> δ
Two stable states, the at least the two
The liquid crystal element is characterized in that θ a, which is ½ of the angle formed by the optical axes in the two stable states, satisfies the relationship of Θ> θ a > Θ / 2.
【0028】[0028]
【実施例】本発明において、コーン角Θ、層の傾き角
δ、プレチルト角α、及び見かけのチルト角θa 、コレ
ステリックらせんピッチは以下のようにして測定した。EXAMPLES In the present invention, the cone angle Θ, the layer inclination angle δ, the pretilt angle α, the apparent tilt angle θ a , and the cholesteric helical pitch were measured as follows.
【0029】コーン角Θの測定 ±30V〜±50V、100HzのACをFLC素子の
上下基板間に印加しながら直交クロスニコル下、その間
に配置されたFLC素子を偏光板と水平に回転させフォ
トマル(浜松フォトニクス(株)製)で光学反応を検知
しながら第1の消光位(透過率が最も低くなる位置)、
第2の消光位を捜す。この時の第1の消光位から第2の
消光位までの角度の1/2をコーン角Θとした。 Measurement of cone angle Θ ± 30 V to ± 50 V, AC of 100 Hz is applied between the upper and lower substrates of the FLC element under orthogonal crossed Nicols, and the FLC element arranged between them is rotated horizontally with the polarizing plate. The first extinction position (position where the transmittance is the lowest) while detecting the optical reaction with (Hamamatsu Photonics Co., Ltd.),
Search for the second extinction position. At this time, 1/2 of the angle from the first extinction position to the second extinction position was defined as the cone angle Θ.
【0030】見かけのチルト角θa の測定 液晶の閾値の単発パルスを印加した後、無電界下、且つ
直交クロスニコル下、その間に配置されたFLC素子を
偏光板と水平に回転させ第1の消光位を捜し、次に上記
の単発パルスと逆極性のパルスを印加した後、無電界
下、第2の消光位を捜す。この時の第1の消光位から第
2の消光位までの角度の1/2をθa とした。 Measurement of Apparent Tilt Angle θ a After applying a single pulse of the threshold value of the liquid crystal, the FLC element placed between them under no electric field and under orthogonal crossed Nicols is rotated horizontally with the polarizing plate. After searching for the extinction position, and then applying a pulse having a polarity opposite to that of the above-mentioned single-shot pulse, the second extinction position is searched for under no electric field. ½ of the angle from the first extinction position to the second extinction position at this time was defined as θ a .
【0031】層の傾き角δの測定 X線解析装置RAD−IIB(45KV、30mA)を
用いてX線解析法でδを測定した。 Measurement of Layer Inclination Angle δ was measured by X-ray analysis using an X-ray analyzer RAD-IIB (45 KV, 30 mA).
【0032】プレチルト角αの測定 Jpn.J.Appl.Phys.voll9(198
0)NO.10,Short Notes 2013に
記載されている方法(クリスタルローテーション法)に
従って求めた。 Measurement of pretilt angle α Jpn. J. Appl. Phys. vol9 (198
0) NO. 10, according to the method (crystal rotation method) described in Short Notes 2013.
【0033】つまり、平行且つ反対方向にラビングした
基板を貼り合わせてセル厚20μmのセルを作成し、0
℃〜60℃の範囲でSmA相を有する液晶(A)を封入
し測定を行った。液晶(A)は強誘電性液晶組成物に一
般的に含有するフェニルピリミジンを主成分とする混合
液晶である。That is, substrates rubbed in parallel and in opposite directions were bonded to each other to form a cell having a cell thickness of 20 μm, and
The liquid crystal (A) having the SmA phase was sealed in the range of 60 ° C to 60 ° C and the measurement was performed. The liquid crystal (A) is a mixed liquid crystal containing phenylpyrimidine as a main component, which is generally contained in a ferroelectric liquid crystal composition.
【0034】液晶セルを上下基板に垂直且つ配向処理軸
を含む面で回転させながら回転軸と45°の角度をなす
偏光面をもつヘリウム・ネオンレーザ光を回転軸に垂直
な方向から照射し、その反対側で入射偏光面と平行な透
過軸をもつ偏光板を通してフオトダイオードで透過光強
度を測定した。While rotating the liquid crystal cell in a plane perpendicular to the upper and lower substrates and containing the alignment treatment axis, helium / neon laser light having a polarization plane making an angle of 45 ° with the rotation axis is irradiated from a direction perpendicular to the rotation axis. The transmitted light intensity was measured with a photodiode through a polarizing plate having a transmission axis parallel to the incident polarization plane on the opposite side.
【0035】干渉によってできた透過光強度の双曲線群
の中心となる角と液晶セルに垂直な線となす角度をφx
とし、下式に代入してプレチルト角α0 を求めた。The angle formed by the center of the hyperbolic group of transmitted light intensity formed by interference and the line perpendicular to the liquid crystal cell is φ x
Then, the pretilt angle α 0 was obtained by substituting in the following equation.
【0036】[0036]
【数2】 [Equation 2]
【0037】コレステリックらせんピッチの測定 コレステリックらせんピッチは、canoのくさび法を
用い、松村らの方法[応用物理、43(1974)12
5]に準じて測定した。 Measurement of Cholesteric Helical Pitch The cholesteric helical pitch is determined by the method of Matsumura et al. [Applied Physics, 43 (1974) 12] using the wedge method of cano.
5] was measured.
【0038】らせんピッチの方向は、あらかじめらせん
ピッチの方向のわかっている液晶とch相でのコンタク
ト法(Gray et al.,Mol,Crys
t.,Lig.Cryst.,34(Lett.),
(1977)211.)での判別、又はあらかじめピッ
チの方向のわかっている液晶と比率を変えながら混合
し、それぞれの比率でピッチを測定し、比率とピッチ長
の関係からある比率で発散傾向なら逆方向、連続的なら
ば同方向として判別した。The direction of the helical pitch is the contact method (Gray et al., Mol, Crys) for the liquid crystal and the ch phase whose helical pitch direction is known in advance.
t. , Lig. Cryst. , 34 (Lett.),
(1977) 211. ), Or mix with a liquid crystal whose pitch direction is known in advance while changing the ratio, measure the pitch at each ratio, and if there is a divergence tendency at a certain ratio from the ratio and pitch length, reverse direction, continuous If so, it was determined as the same direction.
【0039】以下、本発明に係る液晶素子を作成した実
施例を説明する。Examples in which the liquid crystal element according to the present invention is prepared will be described below.
【0040】図1に本発明の液晶素子の一例の断面概略
図を示す。FIG. 1 shows a schematic sectional view of an example of the liquid crystal element of the present invention.
【0041】図1において、符号15は強誘電性液晶
層、11a、11bはガラス基板12a、12bは透明
電極、13a、13bは絶縁膜、14a、14bは配向
制御膜、16はスペーサー、17a、17bは偏光板を
示している。In FIG. 1, reference numeral 15 is a ferroelectric liquid crystal layer, 11a and 11b are glass substrates 12a and 12b, transparent electrodes, 13a and 13b are insulating films, 14a and 14b are alignment control films, 16 is a spacer, 17a and Reference numeral 17b indicates a polarizing plate.
【0042】2枚のガラス基板11a、11bには、そ
れぞれIn2 O3 ,SnO2 或いはITO(インジウム
ティン オキサイド;Indium−Tin Oxi
de)等の薄膜からなる透明電極12a、12bが被覆
されている。その上に例えばシリコン窒化物、水素を含
有するシリコン炭化物、シリコン酸化物、硼素窒化物、
水素を含有する硼素窒化物、セリウム酸化物、アルミニ
ウム酸化物、ジルコニウム酸化物、チタン酸化物やフッ
化マグネシウムなどからなる絶縁膜13a、13bを形
成し、更にその上にポリビニルアルコール、ポリイミ
ド、ポリアミドイミド、ポリエステルイミド、ポリパラ
キシレン、ポリエステル、ポリカーボネート、ポリビニ
ルアセタール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリ
アミド、ポリスチレン、セルロース樹脂などの高分子の
薄膜をガーゼやアセテート植毛布等でラビングして、液
晶をラビング方向にならべる配向制御膜14a、14b
が形成されている。また、これら絶縁膜、配向制御膜
は、必ずしも2層でなく両方の性質を備えていれば単層
であっても良い。On the two glass substrates 11a and 11b, In 2 O 3 , SnO 2 and ITO (Indium-Tin Oxide; Indium-Tin Oxi) are respectively provided.
The transparent electrodes 12a and 12b made of a thin film such as de) are covered. On top of that, for example, silicon nitride, silicon carbide containing hydrogen, silicon oxide, boron nitride,
Insulating films 13a and 13b made of hydrogen-containing boron nitride, cerium oxide, aluminum oxide, zirconium oxide, titanium oxide, magnesium fluoride, etc. are formed, and polyvinyl alcohol, polyimide, polyamideimide are further formed thereon. Rubbing a liquid crystal by rubbing a thin film of a polymer such as polyester imide, polyparaxylene, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, or cellulose resin with gauze or acetate flocking cloth. Orientation control films 14a and 14b arranged in the direction
Are formed. Further, these insulating film and orientation control film are not necessarily two layers, and may be a single layer as long as they have both properties.
【0043】この2枚のガラス基板11a、11bはス
ペーサー16によって任意の間隔に保たれている。例え
ば所定の直径を持つシリカビーズ、アルミナビーズをス
ペーサーとしてガラス基板2枚で挟持し、周囲をシール
材、例えばエポキシ系接着材を用いて密封する方法があ
る。その他スペーサーとして高分子フィルムやガラスフ
ィバーを使用しても良い。この2枚がガラス基板の間に
強誘電性を示す液晶が封入され、強誘電性液晶層15が
形成される。The two glass substrates 11a and 11b are held by the spacer 16 at arbitrary intervals. For example, there is a method in which silica beads and alumina beads having a predetermined diameter are used as spacers and sandwiched between two glass substrates, and the periphery is sealed with a sealing material, for example, an epoxy adhesive material. Alternatively, a polymer film or glass fiber may be used as the spacer. A liquid crystal exhibiting ferroelectricity is enclosed between the two glass substrates to form a ferroelectric liquid crystal layer 15.
【0044】強誘電性液晶が封入された強誘電性液晶層
15は一般には厚さ0.5〜20μm、好ましくは1〜
5μmである。The ferroelectric liquid crystal layer 15 in which the ferroelectric liquid crystal is enclosed generally has a thickness of 0.5 to 20 μm, preferably 1 to 20 μm.
It is 5 μm.
【0045】実施例1 透明電極のついたガラス基板上にTi−Si(1:1)
の薄膜をスピンコートで形成し、そのうえに日立化成
(株)製のポリアミド酸LQ1802の1%NMP溶液
をスピンナで塗布し、270℃で1時間焼成した。この
基板をラビングし、同じ処理をしたもう1枚の基板とラ
ビング方向が平行で、且つ交差方向が左で交差角度6°
になる様に1.5μmのギャップを保って張り合わせ、
間隙に強誘電性液晶を注入、液晶素子を作成した。該セ
ルのプレチルト角は、クリスタルローテーション法によ
り測定したところ、16°であった。用いた液晶は、フ
ェニルピリミジンを主成分とする混合液晶で、コーン角
は室温で、15.4°、層の傾斜角10.3°、Psは
6.8nc/cm2 であった。chピッチは、左ねじれ
で、ピッチの長さは、ch相の中心温度で16μmであ
った。Example 1 Ti-Si (1: 1) was formed on a glass substrate having a transparent electrode.
Was formed by spin coating, and a 1% NMP solution of polyamic acid LQ1802 manufactured by Hitachi Chemical Co., Ltd. was applied thereon by a spinner and baked at 270 ° C. for 1 hour. This substrate was rubbed, and the rubbing direction was parallel to another substrate that had been subjected to the same treatment, the intersecting direction was left, and the intersecting angle was 6 °.
With a gap of 1.5 μm
A liquid crystal device was prepared by injecting a ferroelectric liquid crystal into the gap. The pretilt angle of the cell was 16 ° as measured by the crystal rotation method. The liquid crystal used was a mixed liquid crystal containing phenylpyrimidine as a main component, and the cone angle was 15.4 ° at room temperature, the layer tilt angle was 10.3 °, and the Ps was 6.8 nc / cm 2 . The ch pitch was left-handed and the pitch length was 16 μm at the center temperature of the ch phase.
【0046】該液晶素子を100℃で5時間保持した
後、1分間に1℃の速度で徐冷し、室温下で顕微鏡観察
を行なったところ、初期配向状態で均一にC1配向が保
たれ、ほぼ全面がユニフォーム状態であった。The liquid crystal element was kept at 100 ° C. for 5 hours, then gradually cooled at a rate of 1 ° C. for 1 minute, and observed under a microscope at room temperature. As a result, C1 orientation was uniformly maintained in the initial orientation state. Almost the entire surface was in a uniform state.
【0047】見かけのチルト角はユニフォーム2状態間
で11.0°であった。The apparent tilt angle was 11.0 ° between the two uniform states.
【0048】波高値24Vの矩形パルスを印加すると、
パルス幅16μsでユニフォーム間のスイッチングが起
こった。When a rectangular pulse having a peak value of 24 V is applied,
Switching between uniforms occurred with a pulse width of 16 μs.
【0049】比較例1 実施例1と全く同様に作成した液晶セルに、上記強誘電
性液晶を用いて、液晶素子を作成した。用いた液晶はフ
ェニルピリミジンを主成分とする混合液晶で、コーン角
は室温で14.3°、層の傾斜角は9.6°、Psは
4.3nc/cm2 、chピッチは右ねじれで、ピッチ
の長さはch相の中心温度で30μmであった。Comparative Example 1 A liquid crystal element was prepared by using the above-mentioned ferroelectric liquid crystal in a liquid crystal cell prepared exactly as in Example 1. The liquid crystal used was a mixed liquid crystal containing phenylpyrimidine as the main component, the cone angle was 14.3 ° at room temperature, the layer tilt angle was 9.6 °, Ps was 4.3 nc / cm 2 , and the ch pitch was right twist. The pitch length was 30 μm at the central temperature of the ch phase.
【0050】該液晶素子を100℃で5時間保持した
後、1分間に1℃の速度で徐冷し、室温下で顕微鏡観察
を行なったところ、初期配向状態で位置軸配向性が悪化
し、均一配向状態が失われており、垂直配向状態をとり
暗視野しか得られない部分も出現した。均一配向状態が
失われていたため、波高値24Vのパルスをパルス幅を
変えながら(1μs〜20ms)印加しても、明確に全
面スイッチングは得られなかった。The liquid crystal element was kept at 100 ° C. for 5 hours, then gradually cooled at a rate of 1 ° C. for 1 minute and observed under a microscope at room temperature. The uniform alignment state was lost, and there was a part where only the dark field was obtained with the vertical alignment state. Since the uniform orientation state was lost, even when a pulse having a peak value of 24 V was applied while changing the pulse width (1 μs to 20 ms), clear full-surface switching was not obtained.
【0051】実施例2 実施例1において交差方向が右で交差角度が6°になる
様にした他は、全く実施例1と同様に液晶セルを作成
し、間隙に、比較例1と同じ強誘電性液晶を注入、液晶
素子を作成した。Example 2 A liquid crystal cell was prepared in the same manner as in Example 1 except that the intersecting direction was right and the intersecting angle was 6 ° in Example 1, and the same strength as in Comparative Example 1 was provided in the gap. A liquid crystal element was prepared by injecting a dielectric liquid crystal.
【0052】該液晶素子を実施例1と全く同様に100
℃に保持、徐冷をし、室温下で顕微鏡観察を行なったと
ころ、初期配向状態で均一にC1配向が保たれていた。
約90%がスプレイ状態で残りの約10%がユニフォー
ム状態であった。見かけのチルト角はユニフォーム2状
態間で10.6°であった。The liquid crystal device was manufactured in the same manner as in Example 1, except that
When kept at 0 ° C., gradually cooled, and observed under a microscope at room temperature, the C1 orientation was uniformly maintained in the initial orientation state.
About 90% was in a spray state and the remaining about 10% was in a uniform state. The apparent tilt angle was 10.6 ° between the two uniform states.
【0053】波高値24Vの矩形パルスを印加すると、
パルス幅35μsでユニフォーム間のスイッチングが起
こった。When a rectangular pulse having a peak value of 24 V is applied,
Switching between uniforms occurred with a pulse width of 35 μs.
【0054】比較例2 実施例2と全く同様に作成したセルに、実施例1と同じ
強誘電性液晶を注入、液晶素子を作成した。Comparative Example 2 A liquid crystal element was prepared by injecting the same ferroelectric liquid crystal as in Example 1 into the cell prepared exactly as in Example 2.
【0055】該液晶素子を実施例1と全く同じ100℃
に保持、徐冷をし、室温下で顕微鏡観察を行なったとこ
ろ、初期配向状態で一軸配向性が悪化、均一配向が失わ
れ、約80%の部分が、暗視野しか得られない垂直配向
状態であった。均一配向状態が失われていたため、波高
値24Vのパルスをパルス幅を変えながら(1μs〜2
0ms)印加しても明確に全面スイッチングは得られな
かった。The liquid crystal element was set to 100 ° C. exactly as in Example 1.
After observing under a microscope at room temperature, the uniaxial orientation was deteriorated in the initial orientation state, uniform orientation was lost, and about 80% of the portion was in the vertical orientation state where only dark field was obtained. Met. Since the uniform alignment state was lost, a pulse with a peak value of 24 V was changed (1 μs to 2
Even if the voltage was applied for 0 ms, clear switching was not obtained on the entire surface.
【0056】以上、実施例1・2、比較例1・2から、
一軸性配向処理の交差方向と、該カイラルスメテッィク
液晶のコレステリックのらせんのねじれ方向が一致した
場合、均一配向性及びスイッチング性が良好になること
がわかった。As described above, from Examples 1 and 2 and Comparative Examples 1 and 2,
It has been found that when the cross direction of the uniaxial alignment treatment and the twist direction of the cholesteric helix of the chiral smectic liquid crystal match, the uniform alignment property and the switching property are improved.
【0057】実施例3 透明電極のついたガラス基板上に、Ti−Si(1:
1)の薄膜をスピンコートで形成し、そのうえに日立化
成(株)製のポリアミド酸LQ1802の1%NMP溶
液をスピンナで塗布し、270℃で1時間焼成した。こ
の基板をラビングし、同じ処理をしたもう1枚の基板と
ラビング方向が並行で、且つ、交差方向が負(左)で、
交差角度が6°になる様に1.5μmのギャップを保っ
て張り合わせ、間隙に強誘電性液晶を注入、液晶素子を
作成した。該セルのプレチルト角は、クリスタルローテ
ーション法により測定した結果、14.2°であった。
用いた液晶は、フェニルピリミジンを主成分とする混合
液晶で、コーン角は、室温で14°、層の傾斜角は9.
2°、Psの極性は負で、大きさは6nc/cm2であ
った。Example 3 On a glass substrate having a transparent electrode, Ti--Si (1:
The thin film of 1) was formed by spin coating, and a 1% NMP solution of polyamic acid LQ1802 manufactured by Hitachi Chemical Co., Ltd. was applied thereon by a spinner and baked at 270 ° C. for 1 hour. This substrate is rubbed, and the rubbing direction is parallel to another substrate that has been subjected to the same treatment, and the crossing direction is negative (left),
A liquid crystal element was prepared by laminating a gap of 1.5 μm so that the intersecting angle was 6 °, and injecting a ferroelectric liquid crystal into the gap. The pretilt angle of the cell was 14.2 ° as measured by the crystal rotation method.
The liquid crystal used was a mixed liquid crystal containing phenylpyrimidine as a main component, the cone angle was 14 ° at room temperature, and the tilt angle of the layer was 9.
The polarity of 2 ° and Ps was negative, and the size was 6 nc / cm 2 .
【0058】該液晶素子を100℃で5時間保持した
後、1分間に1℃の速度で徐冷し、室温下で顕微鏡観察
を行なったところ、初期配向状態でC1配向が保たれ約
99.5%がユニフォーム状態、残りの0.5%がスプ
レイ状態であった。The liquid crystal element was held at 100 ° C. for 5 hours, then gradually cooled at a rate of 1 ° C. for 1 minute, and observed under a microscope at room temperature. As a result, C1 orientation was maintained in the initial orientation, and about 99. 5% was in a uniform state and the remaining 0.5% was in a splayed state.
【0059】見かけのチルト角は、ユニフォーム2状態
間で11.2°であった。The apparent tilt angle was 11.2 ° between the two uniform states.
【0060】波高値24Vの矩形パルスを印加すると、
パルス幅20μsでユニフォーム間のスイッチングが起
こった。When a rectangular pulse having a peak value of 24 V is applied,
Switching between uniforms occurred with a pulse width of 20 μs.
【0061】比較例3 交差方向が正(右)で交差角度が6°になる様にした他
は、全く実施例3と同様に液晶セルを作成した。この液
晶セルに実施例3で用いた強誘電性液晶を注入し、液晶
素子を作成した。Comparative Example 3 The cross direction is positive (right) and the cross angle is 6 °
A liquid crystal cell was prepared in the same manner as in Example 3. This liquid
The ferroelectric liquid crystal used in Example 3 was injected into the crystal cell to give a liquid crystal.
The device was created.
【0062】この液晶素子を実施例と全く同様に100
℃に保持、徐冷、室温下で顕微鏡観察を行なったとこ
ろ、初期配向状態でC1配向は保たれていたが、約95
%がスプレイ状態、残りの5%がユニフォーム状態であ
った。This liquid crystal element was manufactured by the same method as that of the embodiment.
When kept at ℃, slowly cooled, and observed under a microscope at room temperature, the C1 orientation was maintained in the initial orientation state, but about 95
% Was in the spray state and the remaining 5% was in the uniform state.
【0063】見かけのチルト角は、ユニフォーム2状態
間で11.1°であった。この液晶素子に波高値24V
のパルスを印加したところ、スプレイ状態が安定のため
ユニフォーム2状態間のスイッチングが起こりにくくな
り、得られた閾値は75μsと実施例3よりかなり遅く
なった。The apparent tilt angle was 11.1 ° between the two uniform states. This liquid crystal element has a peak value of 24V
When the pulse was applied, the spray state was stable and switching between the uniform 2 states was hard to occur, and the obtained threshold value was 75 μs, which was much slower than that in Example 3.
【0064】実施例3、比較例3からわかる通り、Ps
の極性が負の場合、上下基板の交差角は、負の方向の方
が、ユニフォーム配向性、及びユニフォーム配向下での
スイッチング特性が良好であることがわかった。As can be seen from Example 3 and Comparative Example 3, Ps
It was found that when the polarity of No. 1 was negative, the negative crossing angle between the upper and lower substrates had better uniform orientation and switching characteristics under uniform orientation.
【0065】実施例4 比較例3と同様に作成したセルに、フェニルピリミジン
を主成分とする混合液晶でコーン角は室温で13.5
°、層の傾斜角は室温で10°、Psの極性は正で大き
さは、1.0nc/cm2 であった。Example 4 A cell prepared in the same manner as in Comparative Example 3 was mixed with a liquid crystal containing phenylpyrimidine as a main component and had a cone angle of 13.5 at room temperature.
°, the inclination angle of the layer was 10 ° at room temperature, the polarity of Ps was positive, and the size was 1.0 nc / cm 2 .
【0066】該液晶素子を実施例3と同様に100℃で
保持、徐冷、室温下で顕微鏡観察を行なったところ、初
期配向状態でC1配向が保たれ約95%がユニフォーム
状態、残りの約5%がスプレイ状態であった。The liquid crystal element was held at 100 ° C., gradually cooled and observed under a microscope at room temperature in the same manner as in Example 3. As a result, C1 orientation was maintained in the initial orientation state, and about 95% was in a uniform state, and the remaining 5% was in the spray state.
【0067】見かけのチルト角は、ユニフォーム2状態
間で10.7°であった。The apparent tilt angle was 10.7 ° between the two uniform states.
【0068】この液晶素子に波高値24Vの矩形パルス
を印加すると、パルス幅95μsでユニフォーム状態間
のスイッチングが起こった。When a rectangular pulse having a peak value of 24 V was applied to this liquid crystal element, switching between uniform states occurred with a pulse width of 95 μs.
【0069】比較例4 実施例3と同様に作成したセルに、実施例4で使用した
液晶を注入し、液晶素子を作成した。Comparative Example 4 The cell prepared in the same manner as in Example 3 was used in Example 4.
Liquid crystal was injected to prepare a liquid crystal element.
【0070】該液晶素子を実施例3と同様に保持し、徐
冷を行ない、室温下で顕微鏡観察を行なったところ、初
期配向状態でC1配向が保たれ約90%がスプレイ状
態、残りの10%がユニフォーム状態であった。The liquid crystal element was held in the same manner as in Example 3, gradually cooled, and observed under a microscope at room temperature. As a result, the C1 orientation was maintained in the initial orientation state, and about 90% was in the splay state, and the remaining 10 % Was in a uniform state.
【0071】見かけのチルト角は、ユニフォーム2状態
間で10.7°であった。The apparent tilt angle was 10.7 ° between the two uniform states.
【0072】この液晶素子に波高値24Vの矩形パルス
を印加したところ、スプレイ状態が安定のため、ユニフ
ォーム2状態間のスイッチングが起こりにくくなり、得
られた閾値は200μsと、実施例4よりかなり遅くな
った。When a rectangular pulse having a crest value of 24 V was applied to this liquid crystal element, the splay state was stable and switching between the two uniform states was less likely to occur, and the obtained threshold value was 200 μs, which is considerably slower than that in Example 4. became.
【0073】実施例4、比較例4からわかる通り、Ps
の極性が正の場合、上下基板の交差方向は正の方向の方
がユニフォーム配向性及びユニフォーム配向下でのスイ
ッチング特性が良好であることがわかった。As can be seen from Example 4 and Comparative Example 4, Ps
It was found that the positive orientation of the upper and lower substrates had a better uniform orientation and the switching characteristics under the uniform orientation when the polarity of was positive.
【0074】以上、実施例3・4、比較例3・4から、
上下基板の一軸配向処理の交差方向の極性と、カイラル
スメテッィク液晶の自発分極の極性の積が正になる関係
を有し、且つ、カイラルスメテッィク液晶液晶がΘ<α
+δで見かけのチルト角が、Θ>θa >Θ/2の関係
を有する液晶素子は、ユニフォーム配向性及びユニフォ
ーム配向下でのスイッチング特性が大変良好であるとい
うことがわかった。 実施例5 透明電極を設けたガラス基板上にTi−Si(1:1)
の薄膜をスピンコートで形成し、その上に、日立化成
(株)製のポリアミド酸LQ1802の1%NMP溶液
をスピンナで塗布し、270℃で1時間焼成した。この
基板をラビングし、同じ処理をしたもう1枚の基板とラ
ビング方向が平行且つ交差方向が負でクロス角度の大き
さが10°、即ちクロス角−10°(以下極性は数字の
前に「+」又は「−」で示す)になる様に1.5μmの
ギャップを保って貼り合わせ、間隙にカイラルスメクテ
ィック液晶を注入、液晶素子を作成した。該セルのプレ
チルト角は、前述のクリスタルローテーション法により
測定した結果17.1°であった。As described above, from Examples 3.4 and Comparative Examples 3.4,
The product of the polarity of the crossing direction of the uniaxial alignment treatment of the upper and lower substrates and the polarity of the spontaneous polarization of the chiral smectic liquid crystal is positive, and the chiral smectic liquid crystal liquid has Θ <α.
It has been found that the liquid crystal element having an apparent tilt angle of + δ of Θ>θa> Θ / 2 has very good uniform orientation and switching characteristics under uniform orientation. Example 5 Ti-Si (1: 1) on a glass substrate provided with a transparent electrode.
Was formed by spin coating, and a 1% NMP solution of polyamic acid LQ1802 manufactured by Hitachi Chemical Co., Ltd. was applied thereon by a spinner and baked at 270 ° C. for 1 hour. This substrate is rubbed, and the rubbing direction is parallel to another substrate that has been subjected to the same treatment, the crossing direction is negative, and the cross angle is 10 °, that is, the cross angle is -10 ° (hereinafter, the polarity is " +) Or “−”), a gap of 1.5 μm was kept, and a chiral smectic liquid crystal was injected into the gap to prepare a liquid crystal element. The pretilt angle of the cell was 17.1 ° as measured by the above-mentioned crystal rotation method.
【0075】本実施例に用いた液晶はフェニルピリミジ
ンを主成分とする混合液晶でカイラルスメクティック相
上限温度から30℃下の温度(以下「Tc−30℃」と
記す)において、コーン角Θは、15°、層の傾斜角
は、10.3°、Psの極性は負で大きさは5.9nc
/cm2 であった。Chピッチは。左ねじれでピッチ
の長さはCh相の中心温度で19μmであった。The liquid crystal used in this example is a mixed liquid crystal containing phenylpyrimidine as a main component, and at a temperature 30 ° C. below the maximum temperature of the chiral smectic phase (hereinafter referred to as “Tc-30 ° C.”), the cone angle Θ is 15 °, layer inclination angle 10.3 °, Ps polarity is negative and size is 5.9 nc
Was / cm 2 . Ch pitch is. With a left-handed twist, the pitch length was 19 μm at the center temperature of the Ch phase.
【0076】該液晶素子を100℃で5時間保持した
後、1分間に1℃の速度で徐冷し、室温下で顕微鏡観察
を行なったところ、初期配向状態でC1配向が保たれ、
ほぼ全面がユニフォーム状態であった。見かけのチルト
角αはユニフォーム2状態間で10.8°であった。The liquid crystal element was held at 100 ° C. for 5 hours, then gradually cooled at a rate of 1 ° C. for 1 minute and observed under a microscope at room temperature. As a result, C1 orientation was maintained in the initial orientation state.
Almost the entire surface was in a uniform state. The apparent tilt angle α was 10.8 ° between the two uniform states.
【0077】波高値15Vの矩形パルスを印加するとパ
ルス幅15μsでユニフォーム間のスイッチングが起こ
った。When a rectangular pulse having a peak value of 15 V was applied, switching between uniforms occurred with a pulse width of 15 μs.
【0078】比較例5 クロス角が−2°になる様にした他は全く実施例5と同
様に液晶セルを作成した。この液晶セルに実施例5で用
いたカイラルスメクティック液晶を注入し液晶素子を作
成した。Comparative Example 5 A liquid crystal cell was prepared in the same manner as in Example 5 except that the cross angle was -2 °. The liquid crystal element was prepared by injecting the chiral smectic liquid crystal used in Example 5 into this liquid crystal cell.
【0079】この液晶素子を実施例5と全く同様に10
0℃でエージング、徐冷した後室温において顕微鏡観察
したところ、初期配向状態でC1配向は保たれていた
が、約70%がスプレイ状態、残りの30%がユニフォ
ーム状態であった。この液晶素子に波高値15Vの矩形
パルスを印加したところ、スプレイ状態が安定のため、
ユニフォーム2状態間のスイッチングが起こりにくくな
り、得られたしきい値は31μsとなった。This liquid crystal device was manufactured in the same manner as in Example 5
Microscopic observation at room temperature after aging at 0 ° C. and slow cooling revealed that the C1 orientation was maintained in the initial orientation, but about 70% was in the splay state and the remaining 30% was in the uniform state. When a rectangular pulse with a peak value of 15 V was applied to this liquid crystal element, the spray state was stable,
Switching between the two states of uniform became less likely to occur, and the obtained threshold value was 31 μs.
【0080】比較例6〜10 それぞれクロス角を−6°、−4°、−2°、0°、+
6°とした他は全く実施例5と同様に液晶セルを作成
し、それぞれの液晶セルに実施例5で用いたカイラルス
メクティック液晶を注入し、液晶素子を作成、実施例5
と全く同様の実験を行なった。結果を下に示す。Comparative Examples 6-10 Cross angles of -6 °, -4 °, -2 °, 0 °, +, respectively.
A liquid crystal cell was prepared in the same manner as in Example 5 except that the angle was set to 6 °, and the chiral smectic liquid crystal used in Example 5 was injected into each liquid crystal cell to prepare a liquid crystal element.
An exactly the same experiment was performed. The results are shown below.
【0081】[0081]
【表1】 実施例5、比較例5〜10よりTc−30℃における|
Ps|が5.9nc/cm2 である場合、|クロス角|
≧4°で良好なユニフォーム配向性、及びユニフォーム
でのスイッチング特性を示すことがわかった。[Table 1] From Example 5 and Comparative Examples 5 to 10 at Tc-30 ° C |
When Ps | is 5.9 nc / cm 2 , | Cross angle |
It was found that when ≧ 4 °, good uniform orientation and switching characteristics in uniform were exhibited.
【0082】実施例6 比較例5と全く同様な方法(クロス角−2°)で液晶セ
ルを作成した。該セルに下記特性をもつ、フェニルピリ
ミジンを主成分とする液晶を注入、実施例5と全く同様
に100℃でエージング、徐冷し、室温で顕微鏡観察を
行なった。Example 6 A liquid crystal cell was prepared in the same manner as in Comparative Example 5 (cross angle −2 °). A liquid crystal containing phenylpyrimidine as a main component having the following characteristics was injected into the cell, aged at 100 ° C. and slowly cooled in the same manner as in Example 5, and observed under a microscope at room temperature.
【0083】コーン角:14.5°, Ps(Tc−30℃における):−0.9nc/cm2 δ :9.8° Chピッチ:左ねじれ 37μm(Ch中心温度) 初期配向状態で全面C1配向が保たれ、ほぼ全面がユニ
フォーム状態であった。見かけのチルト角はユニフォー
ム2状態間で10.3°であった。この液晶素子に波高
値25Vの矩形パルスを印加するとパルス幅45μsで
ユニフォーム間のスイッチングが起こった。Cone angle: 14.5 °, Ps (at Tc-30 ° C.): -0.9 nc / cm 2 δ: 9.8 ° Ch Pitch: Left twist 37 μm (Ch center temperature) C1 on the entire surface in the initial orientation state The orientation was maintained and almost the entire surface was in a uniform state. The apparent tilt angle was 10.3 ° between the two uniform states. When a rectangular pulse having a peak value of 25 V was applied to this liquid crystal element, switching between uniforms occurred with a pulse width of 45 μs.
【0084】比較例11〜16 クロス角をそれぞれ−10°、−6°、−4°、0°、
+4°、+6°とした他は、全く実施例5と同様に液晶
セルを作成し、実施例6で用いた液晶を注入し、液晶素
子を作成した。実施例5と全く同様の実験を行なった。
結果を下に示す。Comparative Examples 11 to 16 Cross angles were -10 °, -6 °, -4 °, 0 °,
A liquid crystal cell was prepared in the same manner as in Example 5 except that + 4 ° and + 6 ° were used, and the liquid crystal used in Example 6 was injected to prepare a liquid crystal element. The same experiment as in Example 5 was performed.
The results are shown below.
【0085】[0085]
【表2】 実施例6、比較例11〜16よりTc−30℃における
|Ps|が0.9nc/cm2 である場合、|クロス角
|<4°で良好なユニフォーム配向性、及びユニフォー
ムでのスイッチング特性を示すことがわかった。[Table 2] From Example 6 and Comparative Examples 11 to 16, when | Ps | at Tc−30 ° C. was 0.9 nc / cm 2 , | cross angle | <4 ° showed good uniform orientation and uniform switching characteristics. Turned out to show.
【0086】実施例7〜11 実施例5とほぼ同様な方法で作成したセルに、Psの異
なる液晶を注入しユニフォーム配向性を調べた。結果を
下に示す。Examples 7 to 11 Liquid crystals having different Ps were injected into the cells prepared by substantially the same method as in Example 5 to examine the uniform orientation. The results are shown below.
【0087】[0087]
【表3】 実施例7〜11からわかる通り、Tc−30℃における
|Ps|>2nc/cm2 の時、|クロス角|≧4°、
また、|Ps|<2nc/cm2 の時、|クロス角|<
4°でかつ、Chピッチのねじれ方向がクロスラビング
の交差方向と同じの時ユニフォーム配向性が向上するこ
とがわかった。[Table 3] As can be seen from Examples 7 to 11, when | Ps |> 2 nc / cm 2 at Tc−30 ° C., | cross angle | ≧ 4 °,
When | Ps | < 2 nc / cm 2 , | Cross angle | <
It was found that the uniform orientation is improved when the twist direction of the Ch pitch is 4 ° and the cross direction of the cross rubbing is the same.
【0088】[0088]
【発明の効果】本発明の液晶素子は、ユニフォーム配向
下でのスイッチング特性が良好で、該ユニフォーム配向
が安定して得られ、高コントラストで高品質の表示を行
うことができる。The liquid crystal device of the present invention has good switching characteristics under uniform orientation, the uniform orientation is stably obtained, and high-contrast and high-quality display can be performed.
【図1】本発明の液晶素子の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a liquid crystal element of the present invention.
【図2】C1及びC2の2種類の配向状態の説明図であ
る。FIG. 2 is an explanatory diagram of two kinds of alignment states of C1 and C2.
【図3】C1及びC2配向でのコーン角、プレチルト角
及び層傾斜角の関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship among a cone angle, a pretilt angle, and a layer tilt angle in C1 and C2 orientations.
11a、11b 基板 12a、12b 透明電極 13a、13b 絶縁膜 14a、14b 配向制御膜 15 強誘電性液晶 16 スペーサ 17a、17b 偏光板 21 液晶層 22 C1配向状態 23 C2配向状態 11a, 11b Substrate 12a, 12b Transparent electrode 13a, 13b Insulating film 14a, 14b Alignment control film 15 Ferroelectric liquid crystal 16 Spacer 17a, 17b Polarizing plate 21 Liquid crystal layer 22 C1 Alignment state 23 C2 Alignment state
フロントページの続き (72)発明者 水野 祐 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 朝岡 正信 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 寺田 匡宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内(72) Inventor Yu Mizuno 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Innovator Masanobu Asaoka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Masahiro Terada, Inventor 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (3)
晶を配向させるための一軸配向膜をそれぞれ有する一対
の基板間にカイラルスメクティック液晶を挟持してなる
液晶素子であって、上基板と下基板の配向膜の処理軸が
交差し、且つ下基板に対する上基板の処理軸の交差方向
が上記カイラルスメクティック液晶のコレステリック相
のらせんのねじれ方向と同じであり、上記カイラルスメ
クティック液晶がプレチルト角をα、コーン角をΘ、S
m* C層の傾斜角をδとした時、Θ<α+δで表わされ
る配向状態を有し、見かけのチルト角をθa とするとΘ
>θa >Θ/2であることを特徴とする液晶素子。1. A liquid crystal element comprising a chiral smectic liquid crystal sandwiched between a pair of substrates each having an electrode for applying a voltage to the liquid crystal and a uniaxial alignment film for aligning the liquid crystal, the upper substrate comprising: The processing axis of the alignment film of the lower substrate intersects, and the intersecting direction of the processing axis of the upper substrate with respect to the lower substrate is the same as the twist direction of the spiral of the cholesteric phase of the chiral smectic liquid crystal, and the chiral smectic liquid crystal has a pretilt angle. α, cone angle Θ, S
When the inclination angle of the m * C layer was [delta], has an orientation state represented by Θ <α + δ, when the tilt angle of the apparent and theta a theta
> Θ a > θ / 2, a liquid crystal element.
を配向させるための一軸配向膜をそれぞれ有する一対の
基板間にカイラルスメクティック液晶を挟持してなる液
晶素子であって上基板と下基板の配向膜の処理軸が交差
し、且つ上基板側から見て、下基板の処理軸に対して上
基板の処理軸が交差する方向が左側を負極性、右側を正
極性とした時上記カイラルスメクティック液晶の自発分
極の極性と上記交差方向の極性の積が正になる関係を有
し、上記カイラルスメクティック液晶が、プレチルト角
をα、コーン角をΘ、Sm* C層の傾斜角をδとした
時、Θ<α+δで表わされる配向状態を有し、見かけの
チルト角をθa とするとΘ>θa >Θ/2であることを
特徴とする液晶素子。2. A liquid crystal device comprising a pair of substrates each having an electrode for applying a voltage to the liquid crystal and a uniaxial alignment film for orienting the liquid crystal, wherein a chiral smectic liquid crystal is sandwiched between an upper substrate and a lower substrate. When the processing axis of the alignment film intersects and the processing axis of the upper substrate intersects with the processing axis of the lower substrate as viewed from the upper substrate side, the left side is negative and the right side is positive. The chiral smectic liquid crystal has a pretilt angle of α, a cone angle of Θ, and a tilt angle of the Sm * C layer of δ, where the product of the polarity of the spontaneous polarization of the smectic liquid crystal and the polarity of the crossing direction is positive. Then, the liquid crystal element has an orientation state represented by Θ <α + δ, and Θ> θ a > Θ / 2 when an apparent tilt angle is θ a .
を挟持して対向すると共にその対向面にそれぞれ上記液
晶に電圧を印加するための電極が形成され、さらに液晶
を配向するための一軸性配向処理が施された1対の基板
を備えた液晶素子であって、一軸配向処理軸が互いにあ
る角度(以下「クロス角」と記す)で交差し、該交差方
向が上基板側から見て下基板の方向に対して上基板の方
向が左側になる場合の極性を負、右側になる場合の極性
を正とした時に、該極性と挟持した液晶の自発分極(以
下「Ps」と記す)の極性の積が正になる関係を有し、
カイラルスメクティック相上限温度から30℃下の温度
におけるPsの大きさとクロス角の関係が |Ps|<2nc/cm2 の時に|クロス角|<6° |Ps|≧2nc/cm2 の時に|クロス角|≧6° であり、かつ下基板に対する上基板の処理軸の交差方向
が、上記カイラルスメクティック液晶のコレステリック
のらせんのねじれ方向と同じであり、上記液晶のコーン
角Θ、プレチルト角α、スメクティック相における液晶
層の傾斜角をδとすると、該液晶はΘ<α+δ、α>δ
で表わされる少なくとも2つの安定状態を示す配向状態
を有し、該少なくとも該2つの安定状態における光学軸
のなす角度の1/2であるθa が Θ>θa >Θ/2 の関係を満足することを特徴とする液晶素子。3. A chiral smectic liquid crystal, and an electrode for sandwiching the liquid crystal and facing each other and applying a voltage to the liquid crystal is formed on each of the facing surfaces, and a uniaxial alignment treatment for aligning the liquid crystal is further performed. A liquid crystal element comprising a pair of substrates provided, wherein uniaxial alignment treatment axes intersect with each other at an angle (hereinafter referred to as “cross angle”), and the intersecting direction of the lower substrate when viewed from the upper substrate side. When the polarity of the upper substrate on the left side of the direction is negative and the polarity on the right side is positive, the polarity of the spontaneous polarization (hereinafter referred to as “Ps”) of the sandwiched liquid crystal is defined. Has a positive product relation,
When the relationship between the magnitude of Ps and the cross angle at a temperature 30 ° C. below the chiral smectic phase upper limit is | Ps | < 2 nc / cm 2 , | cross angle | <6 ° | Ps | ≧ 2 nc / cm 2 | cross Angle | ≧ 6 °, and the intersecting direction of the processing axis of the upper substrate with respect to the lower substrate is the same as the twist direction of the cholesteric spiral of the chiral smectic liquid crystal, and the cone angle Θ, pretilt angle α, and smectic of the liquid crystal are When the tilt angle of the liquid crystal layer in the phase is δ, the liquid crystal has Θ <α + δ, α> δ
Which has at least two stable states, and θ a, which is ½ of the angle formed by the optical axes in the at least two stable states, satisfies the relation of θ> θ a > θ / 2. A liquid crystal element characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31112692A JP2663082B2 (en) | 1991-10-30 | 1992-10-28 | Liquid crystal element |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31013091 | 1991-10-30 | ||
JP3-310130 | 1991-10-30 | ||
JP4-105272 | 1992-04-01 | ||
JP10527292 | 1992-04-01 | ||
JP31112692A JP2663082B2 (en) | 1991-10-30 | 1992-10-28 | Liquid crystal element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05333342A true JPH05333342A (en) | 1993-12-17 |
JP2663082B2 JP2663082B2 (en) | 1997-10-15 |
Family
ID=27310438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31112692A Expired - Fee Related JP2663082B2 (en) | 1991-10-30 | 1992-10-28 | Liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2663082B2 (en) |
-
1992
- 1992-10-28 JP JP31112692A patent/JP2663082B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2663082B2 (en) | 1997-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940005123B1 (en) | Liquid crystal display device using liquid crystal device | |
US5543943A (en) | Chiral smectic device subjected to a simultaneous thermal and AC field treatment | |
JPH05273537A (en) | Ferroelectric liquid crystal display element and its production | |
JPS6377019A (en) | Ferroelectric liquid crystal element | |
EP0539992B1 (en) | Liquid crystal device | |
JP2612503B2 (en) | Liquid crystal element | |
JP2952122B2 (en) | Liquid crystal element and display device using the same | |
US5453861A (en) | Chiral smectic liquid crystal device and display apparatus | |
US5825447A (en) | Liquid crystal device with a bistable chiral smectic liquid crystal having a phase transition series lacking a cholesteric phase #16 | |
JPH0750272B2 (en) | Method for manufacturing ferroelectric smectic liquid crystal electro-optical device | |
JPS61255323A (en) | Liquid crystal display element and its production | |
JP2647828B2 (en) | Liquid crystal device manufacturing method | |
JP2663082B2 (en) | Liquid crystal element | |
JPH05203961A (en) | Ferroelectric liquid crystal element | |
JP2614347B2 (en) | Liquid crystal element and liquid crystal display | |
JP2983724B2 (en) | Alignment treatment method for ferroelectric liquid crystal devices | |
JP2994854B2 (en) | Liquid crystal composition and liquid crystal device using the same | |
US5844653A (en) | Liquid crystal mixture | |
JP3000504B2 (en) | Liquid crystal element | |
JP2704821B2 (en) | Liquid crystal element | |
JP2681779B2 (en) | Liquid crystal cell | |
JP3180171B2 (en) | Ferroelectric liquid crystal device | |
JP3062978B2 (en) | Ferroelectric liquid crystal device | |
JP3083016B2 (en) | Liquid crystal alignment treatment method and liquid crystal element manufacturing method | |
JP2582309B2 (en) | Liquid crystal element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970506 |
|
LAPS | Cancellation because of no payment of annual fees |