JPH0533300B2 - - Google Patents

Info

Publication number
JPH0533300B2
JPH0533300B2 JP23327683A JP23327683A JPH0533300B2 JP H0533300 B2 JPH0533300 B2 JP H0533300B2 JP 23327683 A JP23327683 A JP 23327683A JP 23327683 A JP23327683 A JP 23327683A JP H0533300 B2 JPH0533300 B2 JP H0533300B2
Authority
JP
Japan
Prior art keywords
carbide particles
casting
particles
roll
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23327683A
Other languages
Japanese (ja)
Other versions
JPS60125350A (en
Inventor
Toshiaki Morichika
Toshio Tani
Atsushi Funakoshi
Hitoshi Nishimura
Kazuyuki Takubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23327683A priority Critical patent/JPS60125350A/en
Publication of JPS60125350A publication Critical patent/JPS60125350A/en
Publication of JPH0533300B2 publication Critical patent/JPH0533300B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【発明の詳細な説明】 本発明は、金属とタングステン炭化物粒子とか
らなる複合組織を有する圧延用鋳造ロールに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rolling casting roll having a composite structure consisting of metal and tungsten carbide particles.

金属基地と該基地中に均一緻密に分散するタン
グステン炭化物粒子とからなる複合組織を有する
金属−炭化物粒子複合材料は、タングステン炭化
物粒子による高耐摩耗性と、該粒子同士を結合す
る金属基地による強度・靭性とを兼備する。この
複合材料の製造法としては、鋳造法を利用し、金
属溶湯と炭化物粒子の固液混合物を鋳型内に鋳込
み、溶湯と炭化物粒子の比重差により、第6図に
示すように炭化物粒子Pを溶湯M内で沈降凝集さ
せ、溶湯の凝固完了をまつてその鋳造体を鋳型1
から取出し、炭化物粒子が比重分離された上部の
金属相部分Bを切断除去すれば下部のA部分を金
属Mと炭化物粒子とからなる複合鋳物として採取
することができる。
A metal-carbide particle composite material with a composite structure consisting of a metal base and tungsten carbide particles uniformly and densely dispersed in the base has high wear resistance due to the tungsten carbide particles and strength due to the metal base that binds the particles together.・Has both toughness and toughness. The manufacturing method for this composite material uses a casting method, in which a solid-liquid mixture of molten metal and carbide particles is cast into a mold, and due to the difference in specific gravity between the molten metal and carbide particles, carbide particles P are formed as shown in Figure 6. The molten metal is allowed to settle and coagulate within the molten metal M, and after the molten metal has solidified, the cast body is placed in the mold 1.
If the upper metal phase portion B, in which carbide particles have been separated by specific gravity, is cut and removed, the lower portion A can be obtained as a composite casting consisting of metal M and carbide particles.

この複合鋳物を圧延用ロールとして使用する場
合の具備すべき特性として耐摩耗性と耐肌荒れ性
の2つが挙げられる。すなわち、耐摩耗性はロー
ル寿命などに直接関連する特性であり、耐摩耗性
が悪いと、連続耐用期間が短く、摩損表面の手直
し(改削加工)作業およびそれに伴うロール取替
と圧延ライン操業中断の頻度が高くなり、かつロ
ールのトータル寿命も短くなる。また、ロール表
面の摩耗は圧延製品寸法精度の低下の原因ともな
る。一方、耐肌荒れ性も圧延製品々質やロール寿
命などを大きく左右する特性である。ロール表面
に肌荒れが生じると、その凹凸が被圧延材表面に
ロールマークとして転写され被圧延材の品質を著
く損うことになり、これを防ぐには頻繁にロール
表面の改削加工を施こさねばならないので、改削
加工のためのロール取替・ラインの中断、改削加
工コスト負担の増大、ロールのトータル寿命の低
下などを余儀なくされる。
When this composite casting is used as a rolling roll, there are two properties that should be provided: wear resistance and surface roughness resistance. In other words, wear resistance is a property directly related to roll life, etc. If the wear resistance is poor, the continuous service life will be short, and it will be necessary to rework (recut) the worn surface, replace the rolls, and operate the rolling line. Interruptions become more frequent and the total lifespan of the roll becomes shorter. Further, wear on the roll surface also causes a decrease in the dimensional accuracy of the rolled product. On the other hand, roughening resistance is also a property that greatly influences the quality of rolled products and roll life. If roughness occurs on the roll surface, the unevenness will be transferred to the surface of the rolled material as roll marks, significantly impairing the quality of the rolled material.To prevent this, the roll surface must be frequently modified. As a result, it is inevitable to replace the rolls and interrupt the line for reshaping, increase the cost of reshaping, and shorten the total life of the rolls.

本発明は、上記に鑑み、耐摩耗性および耐肌荒
れ性にすぐれ、圧延ロールとして最適の材質を有
する複合鋳造ロールを提供するものであり、その
特徴とするところは、鋳鉄もしくは合金鋳鉄の金
属基地とタングステン炭化物粒子とからなる複合
組織における該炭化物粒子の80%以上が53〜88μ
mの粒径を有し、かつ複合組織に占める炭化物粒
子の容積比率が50〜75%の範囲にあることであ
る。
In view of the above, the present invention provides a composite cast roll having excellent wear resistance and surface roughness resistance, and having the optimum material for a rolling roll.The present invention is characterized by a metal base of cast iron or alloy cast iron. More than 80% of the carbide particles in the composite structure consisting of and tungsten carbide particles are 53 to 88μ
m, and the volume ratio of carbide particles in the composite structure is in the range of 50 to 75%.

以下、本発明について詳しく説明する。 The present invention will be explained in detail below.

複合組織を構成するタングステン炭化物粒子の
粒径および組織中に占める容積比率は耐摩耗性お
よび鋳造組織の健全性(特に鋳造欠陥であるミク
ロポロシテイ発生の有無)に関連する。具体例を
挙げると、第1図は粒径による耐摩耗性を比摩耗
量で比較したもので、供試材Aは粒子の平均粒径
が63μm、供試耐Bのそれは44μmである(いづ
れも基地金属はニツケルグレン鋳鉄、炭化物は
W2C。炭化物粒子の容積比率は60%である)。比
摩耗量は大越式迅速摩耗試験による値である(但
し、相手材:SUJ−2、無潤滑、摩耗距離:200
mm、速度:3.4m/s、最終荷重:18.6Kgf)。図
から、細粒の炭化物粒子を含む供試材B(平均粒
径44μm)の比摩耗量は8.0×10-8mm2/Kgfである
のに対し、粗粒の炭化物粒子を含む供試材A
(63μm)の比摩耗量は3.7×10-8mm2/Kgfと、前
者の半分以下であり、粒径の大きい方が耐摩耗性
のよいことが判る。
The particle size of the tungsten carbide particles constituting the composite structure and the volume ratio occupied in the structure are related to wear resistance and the soundness of the cast structure (particularly the presence or absence of microporosity, which is a casting defect). To give a specific example, Fig. 1 compares the wear resistance according to particle size in terms of specific wear amount, and the average particle size of test material A is 63 μm, and that of test material B is 44 μm. The base metal is nickel grain cast iron, and the carbide is
W2C . The volume ratio of carbide particles is 60%). The specific wear amount is the value obtained from the Okoshi type rapid wear test (however, mating material: SUJ-2, no lubrication, wear distance: 200
mm, speed: 3.4m/s, final load: 18.6Kgf). From the figure, the specific wear amount of specimen B (average particle size 44 μm) containing fine carbide particles is 8.0×10 -8 mm 2 /Kgf, while that of specimen B containing coarse carbide particles A
(63 μm) has a specific wear amount of 3.7×10 −8 mm 2 /Kgf, which is less than half of the former, and it can be seen that the larger the particle size, the better the wear resistance.

第2図は、複合組織の基地中に発生するミクロ
ポロシテイの大きさ・個数に対する炭化物粒子の
粒径の影響を示す。同図は前記供試材Aの複合
組織(粒子の平均粒径63μm)、同図は粒径
200μmの粗大炭化物を含む複合組織(供試材C)
であり、粗大炭化物粒子を含む供試材Cには大き
なピンホールHが発生している。この供試材Aお
よびCの個々のミクロポロシテイの大きさとその
個数を簡易的に計測しグラフ化すると第3図のと
おりであり、供試材A(平均粒子径63μm)には、
供試材C(同200μm)のような50μmをこえる粗
大なピンホールはなく、またミクロポロシテイの
総量(ミクロポロシテイの大きさの総和)は供試
材Cの約1/3とわずかで、組織の健全性にすぐれ
ていることが判る。
FIG. 2 shows the influence of the grain size of carbide particles on the size and number of microporosities generated in the matrix of the composite structure. The figure shows the composite structure of the sample material A (average grain size of 63 μm);
Composite structure containing 200μm coarse carbide (sample material C)
, and large pinholes H are generated in sample material C containing coarse carbide particles. A simple measurement and graph of the size and number of individual microporosities in sample materials A and C is shown in Figure 3.
There are no coarse pinholes larger than 50 μm like in sample material C (200 μm), and the total amount of microporosity (total size of microporosity) is only about 1/3 that of sample material C. It can be seen that the organization has excellent soundness.

第4図は、複合組織中に占める炭化物粒子の容
積比率(粒子充填率)の影響を耐摩耗性(比摩耗
量。測定法は前記と同じ)との関係で示したもの
であり、供試材Dの粒子容積比率は約60%、供試
材Eのそれは約20%である(いづれも、基地金属
はNiグレン鋳鉄、炭化物は平均粒径63μmのW2C
粒子)。炭化物粒子の容積比率が20%と低い供試
材Eの比摩耗量は約9.0×10-8mm2/Kgfであるの
に対し、容積比率が60%と比較的高い供試材Dの
比摩耗量は約3.7×10-8mm2/Kgfと前者の2倍以
上の耐摩耗性を示している。
Figure 4 shows the influence of the volume ratio of carbide particles in the composite structure (particle filling rate) in relation to the wear resistance (specific wear amount; the measurement method is the same as above). The particle volume ratio of material D is approximately 60%, and that of sample material E is approximately 20% (in both cases, the base metal is Ni grain cast iron, and the carbide is W 2 C with an average grain size of 63 μm).
particle). The specific wear amount of specimen E, in which the volume ratio of carbide particles is low at 20%, is approximately 9.0×10 -8 mm 2 /Kgf, whereas that of specimen D, in which the volume ratio of carbide particles is relatively high at 60%. The amount of wear was about 3.7×10 -8 mm 2 /Kgf, which is more than twice the wear resistance of the former.

上述のように、耐摩耗性については、粗粒の炭
化物粒子が望ましく、炭化物粒子があまり微細で
あると、耐摩耗性付与効果が弱い。圧延用ロール
として十分な摩耗抵抗を得るには、複合組織中の
炭化物粒子総数の80%以上が、粒径53μm以上で
あることが必要である。粒径が大きい程、耐摩耗
性は高くなるが、その反面粒子間隙の金属基地
に、凝固収縮に伴う鋳造欠陥として第2図に示す
ようにミクロポロシテイ(ピンホール)が多発し
易くなる。大きなミクロポロシテイはロール表面
の粗度に直接影響し、肌荒れと同様の弊害を招
く。微細なミクロポロシテイは、直ちに肌荒れと
同様の悪影響をなすものではないにしても、圧延
操業過程でそれを起点として肌荒れに発展し、あ
るいは熱疲労などによりそれを起点とするクラツ
クの発生・表面の欠損を誘発し肌荒れとなる。従
つて、ミクロポロシテイは、可能な限り少いこと
が望ましく、完全な防止は困難にしても粗大なミ
クロポロシテイの発生は確実に避けねばならな
い。このために、組織中の炭化物粒子の粒径は、
総粒子数の80%以上が88μmをこえない範囲にあ
ることを要する。
As mentioned above, for wear resistance, coarse carbide particles are desirable, and if the carbide particles are too fine, the effect of imparting wear resistance will be weak. In order to obtain sufficient wear resistance as a rolling roll, it is necessary that 80% or more of the total number of carbide particles in the composite structure have a particle size of 53 μm or more. The larger the particle size, the higher the wear resistance, but on the other hand, microporosity (pinholes) are more likely to occur in the metal base between the particles as casting defects due to solidification shrinkage, as shown in FIG. 2. Large microporosity directly affects the roughness of the roll surface, causing problems similar to rough skin. Although fine microporosity does not immediately have the same negative effect as rough skin, it can develop into rough skin during the rolling process, or cause cracks to occur and surface cracks can occur due to thermal fatigue, etc. It induces loss of skin and causes rough skin. Therefore, it is desirable that microporosities be as small as possible, and even if complete prevention is difficult, the occurrence of coarse microporosities must be reliably avoided. For this reason, the particle size of carbide particles in the structure is
It is required that 80% or more of the total number of particles be within a range not exceeding 88 μm.

一方、複合組織中に占める炭化物粒子の容積比
率は耐摩耗性および強度・靭性と関連し、炭化物
粒子が少いと、炭化物粒子の複合効果が弱く、耐
摩耗性が不足する。炭化物粒子が多い程、耐摩耗
性の向上をみるが、過度に多くなると、金属基地
容積の相対的減少に伴い脆弱化してしまう。圧延
用ロールとして望まれる耐摩耗性と、使用時の高
負荷・応力に耐える十分な強度・靭性とを満たす
ためには、複合組織中の炭化物粒子の占める容積
比率は50〜75%の範囲にあることが必要である。
On the other hand, the volume ratio of carbide particles in the composite structure is related to wear resistance and strength/toughness, and if there are few carbide particles, the composite effect of carbide particles will be weak and wear resistance will be insufficient. The more carbide particles there are, the better the wear resistance will be, but if there are too many carbide particles, the metal matrix will become brittle due to a relative decrease in volume. In order to meet the desired wear resistance for rolling rolls and sufficient strength and toughness to withstand high loads and stress during use, the volume ratio of carbide particles in the composite structure should be in the range of 50 to 75%. It is necessary that there be.

本発明鋳造ロールを構成する基地金属は、各種
鋳鉄、例えばダクタイル鋳鉄など、または各種低
合金・高合金鋳鉄、例えばニツケルグレン鋳鉄な
どであり、ロールの使用条件・所要性能に応じて
適宜選択される。一般に鉄系金属はタングステン
炭化物粒子に対する濡れ性がよいので、相互に混
合し易く、金属−粒子界面での強固な結合関係を
形成するのに有利である。加えて鋳鉄系は凝固温
度が低いので、炭化物粒子が混合された際の粒子
の吸熱による降温を補償するための過熱度を大き
くとることができ、従つて、粒子の沈降・凝集に
必要な十分な流動性を保持し易い点でも有利であ
る。また、鋳鉄系は、圧延ロール材として十分な
実績と信頼性を有する材料でもある。
The base metal constituting the casting roll of the present invention is various cast irons, such as ductile cast iron, or various low-alloy/high-alloy cast irons, such as nickel grain cast iron, and is appropriately selected depending on the usage conditions and required performance of the roll. . In general, iron-based metals have good wettability with tungsten carbide particles, so they are easy to mix with each other and are advantageous in forming a strong bond at the metal-particle interface. In addition, cast iron has a low solidification temperature, so it is possible to increase the degree of superheating to compensate for the temperature drop due to heat absorption by the particles when they are mixed with carbide particles. It is also advantageous in that it is easy to maintain fluidity. Furthermore, cast iron is a material that has a sufficient track record and reliability as a rolling roll material.

一方、タングステン炭化物は、WC(比重15.7)、
W2C(同17.2)、あるいはタングステンチタン複炭
化物などである。これらの炭化物は極めて硬質で
あり、すぐれた耐摩耗付与効果を有する。なお、
タングステンチタン複炭化物は種類により比重は
4.9〜17.2と異なるが、鋳造時の溶湯中での沈
降・凝集を生じさせるために、溶湯より比重の大
きいものが選らばれるべきことは言うまでもな
く、沈降促進のためには、比重10以上であること
が好ましい。
On the other hand, tungsten carbide is WC (specific gravity 15.7),
W 2 C (17.2) or tungsten titanium double carbide. These carbides are extremely hard and have excellent anti-wear effects. In addition,
The specific gravity of tungsten titanium double carbide varies depending on the type.
Although it is different from 4.9 to 17.2, it goes without saying that a material with a higher specific gravity than the molten metal should be selected in order to cause sedimentation and agglomeration in the molten metal during casting, and in order to promote sedimentation, a specific gravity of 10 or more is required. It is preferable.

本発明ロールは、中実円柱体として鋳造するこ
ともできるが、ロール類に要求される耐摩耗性は
外側表面の問題であるから、中実円柱体に代え
て、第7図に示すような中空円筒状鋳物として鋳
造し、その中空孔には安価な金属材料をコアーと
して鋳造などにより充填さればよい。こうすれば
高価なタングステン炭化物粒子の消費が節減され
るほか、コアーの金属材料によつて強度・靭性な
どが高められる利点がある。
The roll of the present invention can also be cast as a solid cylindrical body, but since the wear resistance required for rolls is a matter of the outer surface, instead of a solid cylindrical body, cast as shown in FIG. It may be cast as a hollow cylindrical casting, and the hollow hole may be filled with an inexpensive metal material as a core by casting or the like. This not only reduces the consumption of expensive tungsten carbide particles, but also has the advantage of increasing strength and toughness due to the metal material of the core.

本発明ロールの鋳造において、炭化物粒子の沈
降・凝集による健全な複合組織を形成するために
適正な溶湯温度・流動性が与れられるべきことは
言うまでもなく、そのための熱的条件の制御法と
して溶湯鋳込温度の調整、炭化物粒子の予熱使用
等のほか、溶湯と炭化物粒子の鋳込速度(単位時
間当りの鋳型内供給量)や両者の鋳込速度比の調
節なども効果的な方法である。
In casting the roll of the present invention, it goes without saying that appropriate molten metal temperature and fluidity should be provided in order to form a healthy composite structure through sedimentation and agglomeration of carbide particles. In addition to adjusting the casting temperature and preheating the carbide particles, effective methods include adjusting the casting speed of the molten metal and carbide particles (the amount supplied into the mold per unit time) and the ratio of the casting speeds of the two. .

本発明ロールの鋳造方案の具体例を示すと、第
5図において、1は鋳型、2は鋳型直上に配置さ
れた鋳込みホツパーであり、溶湯Mおよび炭化物
粒子Pはそれぞれ取鍋3および炭化物粉末投与治
具4から鋳込みポツパ2に供給され、固液混合物
として鋳型1内に鋳込まれる。鋳型1は円筒状外
壁部11の底部中央に円柱状中子12を有し、中
子の頂部の半球面中心に固液混合物を流下させ、
固液混合物を中子頂部中心から放射状に分散させ
ることにより、鋳型内の円周方向の各部に対し均
等に鋳込まれるようにしたものである。分散の均
等性を更に高めるには、鋳型1を水平回転台5上
に設置し適当な回転速度で回転させながら鋳込み
を行うことも効果的である。上記鋳型内に所要量
の溶湯および炭化物粒子を鋳込み、炭化物粒子の
沈降・凝集により鋳型内底部の中子12と外壁部
11とで画成される円筒状空間内に複合組織を形
成させ、凝固完了後、上部の金属相部分を切断除
去すると下部の複合組織部分を、第7図のような
中空円筒状の複合鋳物として得ることができる。
To show a specific example of the method of casting the roll of the present invention, in FIG. 5, 1 is a mold, 2 is a casting hopper placed directly above the mold, and the molten metal M and carbide particles P are placed in a ladle 3 and a carbide powder dispenser, respectively. It is supplied from the jig 4 to the casting pot 2 and cast into the mold 1 as a solid-liquid mixture. The mold 1 has a cylindrical core 12 at the center of the bottom of a cylindrical outer wall 11, and allows the solid-liquid mixture to flow down the center of the hemisphere at the top of the core.
By dispersing the solid-liquid mixture radially from the center of the top of the core, the solid-liquid mixture is uniformly poured into each part of the mold in the circumferential direction. In order to further improve the uniformity of dispersion, it is also effective to place the mold 1 on a horizontal rotary table 5 and perform casting while rotating it at an appropriate rotation speed. A required amount of molten metal and carbide particles are poured into the mold, and the carbide particles settle and coagulate to form a composite structure in the cylindrical space defined by the core 12 and the outer wall 11 at the inner bottom of the mold, and then solidify. After completion, the upper metallic phase portion is cut and removed, and the lower composite structure portion can be obtained as a hollow cylindrical composite casting as shown in FIG.

本発明の実施例について説明すると、第5図の
鋳造方案により、W2C粒子(平均粒径63μm)13
Kgと、Niグレン鋳鉄溶湯45Kgとを鋳型内に鋳造
し、円筒状複合鋳物を製造した。但し、鋳型1は
セラミツク鋳型であり、バツクサンド7にて枠体
8にセツトし、850℃に予熱して使用した。溶湯
鋳込温度は1550℃であり、W2C粒子は350℃に予
熱して溶湯中に投与した。また比較例として、粒
径200μmの粗粒W2C粒子を使用する以外は上記
と同一の鋳造条件で円筒状複合鋳物を得た。本発
明例の鋳物の複合組織におけるW2C粒子の容積
比率は66%、比較例のそれは63%である。
To explain an embodiment of the present invention, W 2 C particles (average particle size 63 μm) 13
kg and 45 kg of molten Ni grain cast iron were cast into a mold to produce a cylindrical composite casting. However, mold 1 was a ceramic mold, which was set in frame 8 with back sand 7 and preheated to 850°C before use. The molten metal casting temperature was 1550°C, and the W 2 C particles were preheated to 350°C and administered into the molten metal. As a comparative example, a cylindrical composite casting was obtained under the same casting conditions as above except that coarse W 2 C particles with a particle size of 200 μm were used. The volume ratio of W 2 C particles in the composite structure of the casting of the invention example is 66%, and that of the comparative example is 63%.

得られた各鋳物を解体し、断面を研摩後、カラ
ーチエツクを行つた結果、粗大W2C粒子(200μ
m)を使用した比較例では多数のミクロポロシテ
イが発現し、圧延用ロールとして使用し得ないの
に対し、本発明例では、粗大なミクロポロシテイ
はなく、緻密で健全な組織を有していることが観
察された。
After dismantling each of the obtained castings and polishing the cross section, we performed a color check and found that coarse W 2 C particles (200μ
In the comparative example using m), a large number of microporosity appeared and it could not be used as a rolling roll, whereas the inventive example had no coarse microporosity and had a dense and healthy structure. It was observed that

以上のように本発明鋳造ロールは、高耐摩耗性
を有するとともに、ミクロポロシテイが少く緻密
な組織を有するので耐肌荒れ性にすぐれ、また強
度・靭性に富むなど、圧延用ロールとして好適な
特性を兼備している。従つて、従来ロールに比し
連続耐用寿命、トータル寿命にすぐれ、ロール表
面改削加工頻度の減少とそれに伴う圧延ライン中
断頻度の低減、改削加工コストの大幅な節減など
の諸効果を奏する。
As described above, the cast roll of the present invention has high wear resistance, has a dense structure with little microporosity, has excellent surface roughening resistance, and has excellent properties such as strength and toughness, making it suitable as a rolling roll. It has the following. Therefore, compared to conventional rolls, it has a superior continuous service life and total life, and has various effects such as a reduction in the frequency of roll surface modification, a corresponding reduction in the frequency of rolling line interruptions, and a significant reduction in modification costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第4図は比摩耗量を示すグラフ、
第2図,は鋳物の複合組織を示す図面化用顕
微鏡写真(倍率42倍)、第3図はミクロポロシテ
イの分布態様を示すグラフ、第5図は鋳造方案
の例を示す縦断面図、は鋳型部分の平面図、第
6図は鋳型内での炭化物粒子の沈降・凝集状況を
模式的に示す縦断面図、第7図は複合鋳物の形状
を例示する斜視図である。 1:鋳型、2:鋳込みホツパー、M:金属、
P:タングステン炭化物粒子。
Figures 1 and 4 are graphs showing specific wear amount;
Fig. 2 is a micrograph for drawing (42x magnification) showing the composite structure of the casting, Fig. 3 is a graph showing the distribution of microporosity, Fig. 5 is a longitudinal cross-sectional view showing an example of a casting method, 6 is a plan view of the mold portion, FIG. 6 is a vertical cross-sectional view schematically showing how carbide particles settle and agglomerate within the mold, and FIG. 7 is a perspective view illustrating the shape of the composite casting. 1: Mold, 2: Casting hopper, M: Metal,
P: Tungsten carbide particles.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳鉄もしくは合金鋳鉄基地と基地中に均一に
混在するタングステン炭化物粒子とからなる複合
組織を有し、かつその複合組織における炭化物粒
子の粒径は、粒子総数の80%以上が53〜88μmの
範囲にあるとともに、全容積に占める炭化物粒子
の容積比率が50〜75%の範囲にあることを特徴と
する耐摩耗性および耐肌荒れ性にすぐれた圧延用
鋳造ロール。
1 It has a composite structure consisting of a cast iron or cast alloy cast iron base and tungsten carbide particles uniformly mixed in the base, and the grain size of the carbide particles in the composite structure is in the range of 53 to 88 μm in which 80% or more of the total number of particles A rolling casting roll having excellent wear resistance and surface roughening resistance, characterized in that the volume ratio of carbide particles to the total volume is in the range of 50 to 75%.
JP23327683A 1983-12-09 1983-12-09 Cast roll for rolling Granted JPS60125350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23327683A JPS60125350A (en) 1983-12-09 1983-12-09 Cast roll for rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23327683A JPS60125350A (en) 1983-12-09 1983-12-09 Cast roll for rolling

Publications (2)

Publication Number Publication Date
JPS60125350A JPS60125350A (en) 1985-07-04
JPH0533300B2 true JPH0533300B2 (en) 1993-05-19

Family

ID=16952550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23327683A Granted JPS60125350A (en) 1983-12-09 1983-12-09 Cast roll for rolling

Country Status (1)

Country Link
JP (1) JPS60125350A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118095B (en) * 2004-10-29 2007-06-29 Maricap Oy A pipe joint
CN101636235B (en) * 2007-02-20 2011-09-07 西门子公司 Cylinder and/or roller and a method for producing a cylinder and/or a roller

Also Published As

Publication number Publication date
JPS60125350A (en) 1985-07-04

Similar Documents

Publication Publication Date Title
US5051112A (en) Hard facing
US4971755A (en) Method for preparing powder metallurgical sintered product
US4707184A (en) Porous metal parts and method for making the same
KR980008370A (en) Hot rolling rolls with increased heat cracking and wear resistance
US5201917A (en) Plate with an abrasion-proof surface and process for the production thereof
KR20010113879A (en) Casting material for indefinite rollers with a sleeve part and method for producing the same
EP0525932A1 (en) Compound roll and method of producing same
KR910001357B1 (en) Method of forming wear-resistant layer
JPS58157944A (en) Compound cylinder and casted alloy therefor
JPH0533300B2 (en)
CN105543641B (en) Particle reinforced hot rolled seamless steel tube tandem mill composite roll and preparation method thereof
CA1336387C (en) Rod for applying hard surfacing to a surface and method of making same
JPS60124458A (en) Production of wear resistant composite casting
US2626458A (en) Process for making clad metal
JPS6036857B2 (en) Cylindrical, cylindrical wear-resistant castings and their manufacturing method
JPS6127165A (en) Production of wear-resistant composite casting
JPS60177945A (en) Centrifugal casting method of wear resistance casting
JP2002282910A (en) Crack resistance type abrasion-resistant centrifugal casting roll
JPS5933064A (en) Production of composite casting
JPS635184B2 (en)
JPH0364591B2 (en)
US1792580A (en) Method for producing light metal pistons running in cylinders of harder material
JPS6127164A (en) Vertical centrifugal casting method of roll for rolling
JP2002282909A (en) Abrasion-resistant centrifugal casting roll
JPH0152110B2 (en)