JPH05332775A - Photo interference angular velocity meter - Google Patents

Photo interference angular velocity meter

Info

Publication number
JPH05332775A
JPH05332775A JP4138112A JP13811292A JPH05332775A JP H05332775 A JPH05332775 A JP H05332775A JP 4138112 A JP4138112 A JP 4138112A JP 13811292 A JP13811292 A JP 13811292A JP H05332775 A JPH05332775 A JP H05332775A
Authority
JP
Japan
Prior art keywords
phase modulation
rectangular wave
period
output
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4138112A
Other languages
Japanese (ja)
Other versions
JP2514531B2 (en
Inventor
Kenichi Okada
健一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP13811292A priority Critical patent/JP2514531B2/en
Publication of JPH05332775A publication Critical patent/JPH05332775A/en
Application granted granted Critical
Publication of JP2514531B2 publication Critical patent/JP2514531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To maintain the stability of input and output scale factors, and a frequency response characteristic against a temperature fluctuation by alternately or intermittently applying a rectangular wave phase modulation as alternate phase modulation to right-turn and left-turn light propagating through an optical passage. CONSTITUTION:A phase modulator 16 performs phase modulation A=pi/4 (rad) for light-turn and left-turn light during the period I, and phase modulation A (rad) in the period II following the period I, alternately with the first rectangular wave modulation signal. Furthermore, phase modulation Bnot equal to A (rad) is applied to both of the light with the second rectangular wave modulation signal in the modulator 16 during the period III, and then phase modulation - B (rad) is applied during the succeeding period IV. This phase modulation with the second rectangular wave modulation signal is inserted alternately or intermittently, together with the phase modulation with the first rectangular wave modulation signal. This selection of phase modulation is performed by a clock CK8. As a result, even if a loss in an optical system fluctuates due to a change in ambient temperature or the like, the scale factors of input and output and a frequency characteristic can be kept stable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はループ状光学路の軸心
まわりに印加される角速度を、その光学路を伝搬する右
回り光と左回り光との位相差を検出して測定する光干渉
角速度計、特に上記両光の位相差に矩形波状のバイアシ
ングを与えるものに関し、特に温度変動に対し、入出力
スケールファクタ又は周波数応答特性の安定性を改善し
ようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical interference for measuring the angular velocity applied around the axis of a loop-shaped optical path by detecting the phase difference between the clockwise light and the counterclockwise light propagating in the optical path. The present invention relates to an angular velocimeter, and more particularly to one that imparts rectangular wave-like biasing to the phase difference between the two lights, and particularly to improve the stability of the input / output scale factor or frequency response characteristic with respect to temperature fluctuations.

【0002】[0002]

【従来の技術】従来の光干渉角速度計(以下FOGと称
す)を図3を参照して説明する。光源11からの光I
は、光カプラ12、偏光子13、光カプラ14を順次経
て、例えば複数回ループ状に巻いた光ファイバコイルで
構成された光学路15の両端から投入される。光学路1
5を伝搬する左回り及び右回りの両光は、光学路15の
片端と光カプラ14との間に配置した位相変調器16に
より位相変調される。位相変調を受けた両光は、光カプ
ラ14で結合されて干渉し、光カプラ12により受光器
17へ分岐されて光電変換される。図に示す光集積回路
18は、例えばニオブ酸鉛LiNbO3 の光学結晶にチ
タンTiなどを蒸着し熱拡散して作製されたもので、光
カプラ14、位相変調器16などを集積化してある。
2. Description of the Related Art A conventional optical interference angular velocity meter (hereinafter referred to as FOG) will be described with reference to FIG. Light I from the light source 11
Is sequentially introduced through the optical coupler 12, the polarizer 13, and the optical coupler 14, and is input from both ends of an optical path 15 constituted by, for example, an optical fiber coil wound a plurality of times in a loop. Optical path 1
Both the left-handed and right-handed lights propagating through 5 are phase-modulated by a phase modulator 16 arranged between one end of the optical path 15 and the optical coupler 14. The two lights subjected to the phase modulation are combined by the optical coupler 14 and interfere with each other, and are branched to the light receiver 17 by the optical coupler 12 and photoelectrically converted. The optical integrated circuit 18 shown in the figure is manufactured by vapor-depositing titanium Ti or the like on an optical crystal of lead niobate LiNbO 3 and thermally diffusing it, and has an optical coupler 14, a phase modulator 16 and the like integrated therein.

【0003】光学路15にその周方向の角速度が印加さ
れてない状態においては、光学路15中における両光間
の位相差は、理想的にはゼロであるが、光学路15の円
周回りに角速度Ωが印加されると、この角速度Ωによっ
ていわゆるサニャック(sagnac)効果が生じ、両
光間に位相差ΔΦs が生じる。この位相差ΔΦs は、次
式で表される。
In a state where the angular velocity in the circumferential direction is not applied to the optical path 15, the phase difference between both lights in the optical path 15 is ideally zero, but the circumference of the optical path 15 is rounded. When the angular velocity Ω is applied to the light source, a so-called Sagnac effect is generated by the angular velocity Ω, and a phase difference ΔΦs is generated between the two lights. This phase difference ΔΦs is expressed by the following equation.

【0004】 ΔΦs =4πRLΩ/(Cλ) (1) ここで C:光速 λ:真空中における光の波長 R:光ファイバコイル15の半径 L:光ファイバコイル15の光ファイバ長 位相変調器16は光学路15における光の伝搬時間τの
幅を持った正及び負のπ/4(rad)の矩形波状位相
変調が位相変調器16を通過する両光に対して交互に与
えられる。尚伝搬時間τは、光学路15の屈折率をnと
するとτ=nL/Cで表される。その結果両光間の位相
差バイアシングΔΦb は図4に示すように、正及び負の
π/2(rad)の矩形波状位相差が現れる。図4に右
回り光と左回り光との位相差ΔΦに対する両光の干渉光
の強度I0 の特性を曲線19として示す。位相変調の
正、負の各半サイクルI1 ,II1 は、光学路15に入力
角速度が印加されてない状態、即ちサニャック位相差Δ
Φs がゼロの状態での位相差バイアシングを示し、その
時の干渉光の出力をそれぞれI1 ′,II1 ′に示す。位
相変調の正,負の各半サイクルI2 ,II2 は、光学路1
5に入力角速度が印加された状態、即ちサニャック位相
差ΔΦs が発生した状態での位相差バイアシングを示
し、その時の干渉光の出力をI2 ′,II2 ′に示す。こ
れらの干渉光は受光器17で光電変換された後、A/D
変換器21に入力される。
ΔΦs = 4πRLΩ / (Cλ) (1) where C: speed of light λ: wavelength of light in vacuum R: radius of optical fiber coil 15 L: optical fiber length of optical fiber coil 15 phase modulator 16 is optical Positive and negative π / 4 (rad) rectangular wave phase modulations having a width of light propagation time τ in the path 15 are alternately applied to both lights passing through the phase modulator 16. The propagation time τ is represented by τ = nL / C, where n is the refractive index of the optical path 15. As a result, in the phase difference biasing ΔΦb between the two lights, as shown in FIG. 4, positive and negative π / 2 (rad) rectangular wave phase differences appear. In FIG. 4, a curve 19 shows the characteristic of the intensity I 0 of the interference light of both lights with respect to the phase difference ΔΦ between the clockwise light and the counterclockwise light. The positive and negative half cycles I 1 and II 1 of the phase modulation are in a state where the input angular velocity is not applied to the optical path 15, that is, the Sagnac phase difference Δ.
Phase difference biasing when Φs is zero is shown, and the outputs of the interference light at that time are shown as I 1 ′ and II 1 ′, respectively. Each of the positive and negative half-cycles I 2 and II 2 of the phase modulation has an optical path 1
5 shows the phase difference biasing in the state where the input angular velocity is applied, that is, the state where the Sagnac phase difference ΔΦs occurs, and the outputs of the interference light at that time are shown by I 2 ′ and II 2 ′. These interference lights are photoelectrically converted by the light receiver 17 and then converted into A / D.
It is input to the converter 21.

【0005】A/D変換器21は、クロック回路22か
らのクロック信号CK1 によって干渉光I1 ′,I
I1 ′,I2 ′,II2 ′,・・・の光電変換信号をデジ
タル量として変換する。A/D変換器21の出力は、ロ
ジック回路23によって位相変調の各サイクル毎にK・
(In ′−IIn ′)を計算する。その結果、入力角速度
がゼロの場合、K・(I1 ′−II1 ′)=0となり、入
力角速度が印加された場合、K・(I2 ′−II2 ′)≠
0となる。この関係式を以下に示す。
The A / D converter 21 receives the interference light I 1 ′, I 1 in response to the clock signal CK 1 from the clock circuit 22.
The photoelectric conversion signals of I 1 ′, I 2 ′, II 2 ′, ... Are converted as digital quantities. The output of the A / D converter 21 is output by K.
Calculate (In'-IIn '). As a result, when the input angular velocity is zero, K · (I 1 ′ −II 1 ′) = 0, and when the input angular velocity is applied, K · (I 2 ′ −II 2 ′) ≠
It becomes 0. This relational expression is shown below.

【0006】 K・In ′=(Po /2)・K・(1−sinΔΦ) (2) K・IIn ′=(Po /2)・K・(1+sinΔΦ) (3) ∴K・(In ′−IIn ′)=−Po ・K・sinΔΦ (4) ここでKは、受光器17、A/D変換器21及び第3ロ
ジック回路23の利得を示す。
K · In ′ = (Po / 2) · K · (1-sinΔΦ) (2) K · IIn ′ = (Po / 2) · K · (1 + sinΔΦ) (3) ∴K · (In′− IIn ') =-Po * K * sin [Delta] [Phi] (4) Here, K represents the gain of the photodetector 17, the A / D converter 21, and the third logic circuit 23.

【0007】ここで両光間の位相差ΔΦは、サニャック
位相差ΔΦs とみなす事ができるためK・(In ′−II
n ′)を計算することにより感度良く入力角速度を検知
する事ができる。ロジック回路23の出力は、そのまま
FOGの出力として出力端子24へ出力し、またD/A
変換器25によってアナログ量に変換して出力端子26
へ出力することもできる。位相変調器16は位相変調駆
動回路27により駆動され、光源11は光源駆動回路2
8により駆動される。ロジック回路23、D/A変換器
25、位相変調駆動回路27にそれぞれその動作のため
にクロック回路22からクロックCK2 ,CK3 ,CK
4 が供給されている。
Since the phase difference ΔΦ between the two lights can be regarded as the Sagnac phase difference ΔΦs, K · (In′-II)
By calculating n '), the input angular velocity can be detected with high sensitivity. The output of the logic circuit 23 is directly output to the output terminal 24 as the output of the FOG, and the D / A
An analog quantity is converted by the converter 25 and output terminal 26
You can also output to. The phase modulator 16 is driven by the phase modulation drive circuit 27, and the light source 11 is driven by the light source drive circuit 2
Driven by 8. The logic circuit 23, the D / A converter 25, and the phase modulation drive circuit 27 are supplied from the clock circuit 22 to the clocks CK 2 , CK 3 , and CK for their operations.
4 are being supplied.

【0008】図5は、ロジック回路23からの出力によ
って図6Aに示す階段状ランプ波形を発生させ、その階
段状ランプ波形を位相変調器29にフィードバックする
事により光学路15に生じる位相差ΔΦs を打ち消す零
位法のクローズドループタイプFOGを示す。この場合
の入力角速度の計測は、一般に階段状ランプ波形の繰り
返し周波数を計数して行われる。
In FIG. 5, the step difference ramp waveform shown in FIG. 6A is generated by the output from the logic circuit 23, and the phase difference ΔΦs generated in the optical path 15 is generated by feeding back the step difference ramp waveform to the phase modulator 29. 3 shows a zero loop closed loop type FOG that cancels. In this case, the input angular velocity is generally measured by counting the repetition frequency of the stepped ramp waveform.

【0009】先ず積分回路31でロジック回路23から
のK・(In ′−IIn ′)の出力を積分する。積分回路
31からの出力はリセット回路32によって図6Aに示
す階段状ランプ波形の一段の高さΔΦf が決められ、さ
らにその階段状ランプ波形の最大位相ΦR が2π(ra
d)のところでリセットされる。リセット回路32にお
けるこの階段状ランプ波形のデジタル量は、次段のD/
A変換器33で図6Aに示すようなアナログ量に変換さ
れて位相変調器29へ入力される。階段状ランプ波形の
一段の幅は、光の伝搬時間τと同じであり、その結果図
6Aに示すようにτ時間ずれた右回り光34と左回り光
39とが光カプラ14で干渉するため、両光間のフィー
ドバック位相差は、図6Bに示すようにΔΦf と(ΔΦ
f −2π)の二つの状態が生じる。この系の場合、
(4)式における両光間の位相差ΔΦは、 ΔΦ=ΔΦs −ΔΦf 、ΔΦ=ΔΦs −ΔΦf +2π (5) で表される。
First, the integrating circuit 31 integrates the output of K (In'-IIn ') from the logic circuit 23. The output from the integrating circuit 31 is determined by the reset circuit 32 to have a step height ΔΦ f shown in FIG. 6A, and the maximum phase Φ R of the step ramp waveform is 2π (ra.
It is reset at d). The digital amount of this stepped ramp waveform in the reset circuit 32 is D /
The A converter 33 converts the analog quantity as shown in FIG. 6A and inputs the analog quantity to the phase modulator 29. The width of one step of the stepped ramp waveform is the same as the propagation time τ of light, and as a result, as shown in FIG. 6A, the clockwise light 34 and the counterclockwise light 39, which are deviated by τ time, interfere with each other in the optical coupler 14. , The feedback phase difference between the two lights is ΔΦ f and (ΔΦ f
Two states of f- 2π) occur. For this system,
(4) a phase difference .DELTA..PHI between both light in the expression, ΔΦ = ΔΦs -ΔΦ f, is represented by ΔΦ = ΔΦs -ΔΦ f + 2π ( 5).

【0010】(5)式よりΔΦf =ΔΦs と成るように
階段状ランプ波形を制御してやれば、(4)式は常時零
となり零位法のクローズドループが達成できる。ここで
階段状ランプ波形の階段の数をN、周期をTとすると、
繰り返し周波数fは、次式で表される。 f=1/T=1/(Nτ)=C・ΔΦf /(2πnL) (6) 零位法が達成されている場合は、先にも述べたとおりΔ
Φf =ΔΦs が成り立ち、(1)式を(6)式に代入す
ると次式が得られる。
If the step ramp waveform is controlled so that ΔΦ f = ΔΦ s is obtained from the equation (5), the equation (4) is always zero and the closed loop of the null method can be achieved. Here, if the number of steps of the stepped ramp waveform is N and the cycle is T,
The repetition frequency f is expressed by the following equation. f = 1 / T = 1 / (Nτ) = CΔΦ f / (2πnL) (6) When the null method is achieved, as described above, Δ
Φ f = ΔΦ s holds, and the following formula is obtained by substituting the formula (1) into the formula (6).

【0011】 f=2RΩ/(nλ) (7) 以上に示すように階段状ランプ波形の繰り返し周波数f
を計測すれば入力された角速度を検知する事ができる。
リセット回路32の出力はFOG出力として出力端子3
6へ出力される。積分回路31、リセット回路32、D
/A変換器33へそれぞれその動作のためにクロックC
5 ,CK6 ,CK7 がクロック回路22から供給され
る。
F = 2RΩ / (nλ) (7) As shown above, the repetition frequency f of the stepped ramp waveform
By measuring, the input angular velocity can be detected.
The output of the reset circuit 32 is the output terminal 3 as the FOG output.
6 is output. Integration circuit 31, reset circuit 32, D
To the A / A converter 33 and clock C for the respective operations.
K 5 , CK 6 , and CK 7 are supplied from the clock circuit 22.

【0012】一方クローズドループの伝達関数G(S)
は、次式で表される。 G(S)=(2R/nλ)・(1/(1+STs )) (8) ここで Ts=To /(KT ) KT :一巡伝達関数の利得(KT ∝Po ) To :積分回路31の時定数 (8)式の一巡伝達関数の利得KT は、受光器17に到
達する光量Po と比例関係にある。即ち受光器17に到
達する光量の大小は、クローズドループの周波数応答と
1:1の関係にある。
On the other hand, the closed loop transfer function G (S)
Is expressed by the following equation. G (S) = (2R / nλ) · (1 / (1 + STs)) (8) where Ts = To / (K T) K T: loop transfer function gain (K T αPo) To: integrator 31 The gain K T of the open loop transfer function of the time constant (8) is proportional to the amount of light Po reaching the light receiver 17. That is, the amount of light reaching the light receiver 17 has a 1: 1 relationship with the frequency response of the closed loop.

【0013】[0013]

【発明が解決しようとする課題】一般にFOGの光学系
は、−20℃〜+70℃の温度変化で30%近く変動す
ることが考えられる。即ち受光器17に到達する光量P
o が同量変化する。したがって図3で示したオープンル
ープタイプのFOGの場合、(4)式に示すようにPo
が入出力のスケールファクタを構成しているためこのま
までは、FOGのスケールファクタがPoの変動量と同
量の30%変動することになる。また図5に示したクロ
ーズドループタイプのFOGの場合、Po の30%の変
化は(7)式に示すようにFOGの出力には、影響を与
えないが(8)式に示すように周波数特性に1:1で影
響してくる。
Generally, it is considered that the optical system of the FOG fluctuates by nearly 30% with a temperature change of -20 ° C to + 70 ° C. That is, the light amount P reaching the light receiver 17
o changes by the same amount. Therefore, in the case of the open loop type FOG shown in FIG.
Since this constitutes the input / output scale factor, the scale factor of FOG fluctuates by 30%, which is the same amount as the fluctuation amount of Po. Further, in the case of the closed loop type FOG shown in FIG. 5, a change of 30% in Po does not affect the output of the FOG as shown in the equation (7), but the frequency characteristic as shown in the equation (8). Will be affected by 1: 1.

【0014】そこでこの発明の目的はオープンループタ
イプのFOGの入出力スケールファクタの温度安定性を
改善し、クローズドループタイプのFOGの周波数特性
の温度安定性を改善した光干渉角速度計を提供すること
にある。
Therefore, an object of the present invention is to provide an optical interference angular velocity meter in which the temperature stability of the input / output scale factor of the open loop type FOG is improved and the temperature stability of the frequency characteristic of the closed loop type FOG is improved. It is in.

【0015】[0015]

【課題を解決するための手段】この発明によれば、位相
変調手段により、第I期間にA=2nπ±π/4(ra
d)の位相変調を与え、それに続く第II期間に−A(r
ad)の位相変調を与える交番位相変調の第1矩形波状
位相変調に対し、第III 期間にB≠A(rad)の位相
変調を与え、それに続く第IV期間が−B(rad)の位
相変調を与える交番位相変調の第2矩形波状位相変調を
交互に、または、間欠的に挿入した位相差バイアシング
が与えられ、前記第1矩形波状位相変調時の受光器の出
力と、前記第2矩形波状位相変調時の受光器の出力とか
ら出力の変動を検出し、その変動を補正するようにされ
る。
According to the present invention, the phase modulation means causes A = 2nπ ± π / 4 (ra
d) phase modulation is applied, and −A (r
In addition to the first rectangular wave phase modulation of the alternating phase modulation which gives the phase modulation of (ad), the phase modulation of B ≠ A (rad) is given in the third period, and the phase modulation of −B (rad) is given in the following fourth period. The second rectangular wave-like phase modulation of alternating phase modulation that gives the output of the photodetector at the time of the first rectangular wave-like phase modulation and the second rectangular wave-like wave modulation is given alternately or intermittently. The fluctuation of the output is detected from the output of the light receiver at the time of phase modulation, and the fluctuation is corrected.

【0016】このため補正手段としては請求項2の発明
によれば第I期間における受光器からの出力と第III 期
間における受光器からの出力との差ΔV1 、または第II
期間における受光器からの出力と第IV期間における受光
器からの出力との差ΔV2 またはΔV1 とΔV2 の平均
値が一定となるように受光器に到達する光量または受光
器またはそれ以降の電気回路の利得を自動調整する制御
手段が用いられる。
Therefore, as the correction means, according to the invention of claim 2, the difference ΔV 1 between the output from the photoreceiver in the I period and the output from the photoreceiver in the III period, or the IIth period.
Difference between the output from the photoreceiver during the period IV and the output from the photoreceiver during the fourth period ΔV 2 or the amount of light reaching the photoreceiver such that the average value of ΔV 1 and ΔV 2 becomes constant, or A control means for automatically adjusting the gain of the electric circuit is used.

【0017】あるいは前記補正手段は請求項3の発明に
よれば、前記ΔV1 または前記ΔV 2 、あるいは前記Δ
1 とΔV2 の平均値を光干渉角速度計の伝達関数利得
情報とし、これと基準信号との比率を求め、その比率を
光干渉角速度計の入出力スケールファクタに乗算する手
段が用いられる。
Alternatively, the correction means is the same as the invention according to claim 3.
According to the above,1Or the above ΔV 2, Or the above Δ
V1And ΔV2The average value of the transfer function gain of the optical interference gyro
As information, calculate the ratio between this and the reference signal, and calculate the ratio.
Hand to multiply input / output scale factor of optical interference gyro
Steps are used.

【0018】[0018]

【実施例】図1にこの発明による光干渉角速度計の実施
例を示し、図3、図5と対応する部分に同一符号を付け
てある。図3の場合と同様に位相変調器16で第1矩形
波変調信号により右回り(CW)光、左回り(CCW)
光に対し、第I期間でA=π/4(rad)の位相変調
が、それに続く第II期間で−A(rad)の位相変調が
交互に行われる。この発明では更に、第2矩形波状変調
信号により位相変調器16で両光に対し、第III 期間で
B≠A(rad)の位相変調が与えられ、それに続く第
IV期間で−B(rad)の位相変調が与えられる。この
第2矩形波状変調信号による位相変調は、第1矩形波状
変調信号による位相変調と交互に、または間欠的に挿入
される。この切り換えはクロックCK8 により行われ
る。
FIG. 1 shows an embodiment of an optical interference angular velocity meter according to the present invention, in which parts corresponding to those in FIGS. 3 and 5 are designated by the same reference numerals. As in the case of FIG. 3, the phase modulator 16 uses the first rectangular wave modulation signal to rotate clockwise (CW) light and counterclockwise (CCW).
For light, A = π / 4 (rad) phase modulation is alternately performed in the I-th period, and −A (rad) phase modulation is alternately performed in the subsequent II-th period. In the present invention, further, the phase modulator 16 applies the phase modulation of B ≠ A (rad) to both lights by the second rectangular wave modulation signal in the third period III, and the subsequent phase modulation is performed.
In the IV period, −B (rad) phase modulation is applied. The phase modulation by the second rectangular wave modulation signal is inserted alternately or intermittently with the phase modulation by the first rectangular wave modulation signal. This switching is performed by the clock CK 8 .

【0019】図2においてIn ,IIn (n=1,2,・
・・)の各半サイクルは、第1矩形波状位相変調を示
し、その時の両光間の位相差バイアシングは、正及び負
のπ/2(rad)の矩形波状位相差として現れる。II
Im,IVm (m=1,2,・・・)の各サイクルは、第2
矩形波状位相変調を示し、その時の両光間の位相差バイ
アスΔΦb2は、正及び負の(π/2+Φa )(rad)
の矩形波状位相差として現れる。これらの各半サイクル
In ,IIn ,IIIm,IVm における干渉光の各出力をそれ
ぞれIn ′,IIn ′,IIIm′,IVm ′で示す。これらの
干渉光は、受光器17で光電変換された後、A/D変換
器21に入力される。
In FIG. 2, In, IIn (n = 1, 2, ...
Each half cycle of ..) indicates the first rectangular wave phase modulation, and the phase difference biasing between the two lights at that time appears as a rectangular wave phase difference of positive and negative π / 2 (rad). II
Each cycle of Im, IVm (m = 1, 2, ...)
It shows rectangular wave phase modulation, and the phase difference bias ΔΦ b2 between both lights at that time is positive and negative (π / 2 + Φ a) (rad).
Appears as a rectangular wave phase difference of. The respective outputs of the interference light in these half cycles In, IIn, IIIm, IVm are indicated by In ', IIn', IIIm ', IVm', respectively. These interference lights are photoelectrically converted by the light receiver 17 and then input to the A / D converter 21.

【0020】A/D変換器21は、クロック回路22か
らのクロック信号(CK1 )によって干渉光I1 ′,II
1 ′,III1′,IV1 ′,I2 ′,II2 ′・・・・の光電
変換信号をデジタル量として変換する。A/D変換器2
1の出力は、ロジック回路23によって位相変調の各サ
イクル毎にK・(In ′−IIn ′)とK・(IIIm′−IV
m ′)との何れかを計算する。これらの計算結果は
(4)式で示したようにFOGの出力として利用され
る。一方ロジック回路37は、クロック回路22からの
クロック信号CK9 によって隣りあった第1矩形波状位
相変調時と第2矩形波状位相変調時との各A/D変換器
21の出力データから次のいずれかの計算を行う。
The A / D converter 21 receives the interference light I 1 ′, II according to the clock signal (CK 1 ) from the clock circuit 22.
The photoelectric conversion signals of 1 ', III 1 ', IV 1 ', I 2 ', II 2 '... A / D converter 2
The output of 1 is K (In'-IIn ') and K (IIIm'-IV) for each cycle of phase modulation by the logic circuit 23.
m ') and either. These calculation results are used as the output of the FOG as shown in the equation (4). On the other hand, the logic circuit 37 outputs one of the following from the output data of each A / D converter 21 during the first rectangular wave phase modulation and the second rectangular wave phase modulation, which are adjacent to each other by the clock signal CK 9 from the clock circuit 22. Do the calculation.

【0021】 K・{(I1 ′+II1 ′)−(III1′+IV1 ′)} =Po ・K。・sinΦa (9) K・(I1 ′−III1′)又はK・(II1 ′+IV1 ′) =(Po /2)・K・sinΦa (10) (9)式または、(10)式のデジタル量はD/A変換
器38によってアナログ量Vs に変換され、差動増幅器
39に入力され、そこで基準信号発生器40からの基準
電圧VR と比較される。
K · {(I 1 ′ + II 1 ′) − (III 1 ′ + IV 1 ′)} = Po · K. · SinΦa (9) K · ( I 1 '-III 1') or K · (II 1 '+ IV 1') = (Po / 2) · K · sinΦa (10) (9) formula or, (10) Is converted into an analog amount Vs by the D / A converter 38 and input to the differential amplifier 39, where it is compared with the reference voltage V R from the reference signal generator 40.

【0022】 Ve =VR −Vs =VR −Po ・Ko ・sinΦa (11) ここで Ko =K・KDADA:D/A変換器38の利得 この差動増幅器39の出力Ve は、電気フィルタ41に
印加される。電気フィルタ41は、例えば積分器のよう
なもので、その出力は、光源11の光量を制御する光源
駆動回路28に印加され、光源11の光量Iが制御され
る。ここで初期段階においてVR =Po ・Ko ・sin
Φa (ここで位相Φa は、前述した通り既知でありまた
一定値である)に設定されていたとすると、光量Po 、
電気回路利得Ko および位相Φa が一定で有れば、Ve
は零となる。ここで周囲温度が変わって例えばFOG光
学系の損失が増加し受光器17に到達する光量I0 が減
少したとする。その結果、Ve は、(11)式より正の
電圧が生じる。この正の電圧は、次の電気フィルタ41
に印加され、正の積分電圧を発生するとする。光源駆動
回路28は、この正の積分電圧によって光源11の光量
が増加するように調整されているとすると、電気フィル
タ41の入力、即ち差動増幅器38の出力Ve が常に零
となるように制御される。
[0022] Ve = V R -Vs = V R -Po · Ko · sinΦa (11) where Ko = K · K DA K DA : Output Ve gain differential amplifier 39 of the D / A converter 38, It is applied to the electric filter 41. The electric filter 41 is, for example, an integrator, and its output is applied to the light source drive circuit 28 that controls the light amount of the light source 11, and the light amount I of the light source 11 is controlled. Here, in the initial stage, V R = Po · Ko · sin
If it is set to Φa (here, the phase Φa is a known value and a constant value as described above), the light quantity Po,
If the electric circuit gain Ko and the phase Φa are constant, Ve
Is zero. Here, it is assumed that the ambient temperature changes and, for example, the loss of the FOG optical system increases and the light amount I 0 reaching the light receiver 17 decreases. As a result, Ve produces a positive voltage according to the equation (11). This positive voltage is applied to the next electric filter 41.
To generate a positive integrated voltage. The light source drive circuit 28 is controlled so that the input of the electric filter 41, that is, the output Ve of the differential amplifier 38 is always zero, if the light amount of the light source 11 is adjusted by the positive integrated voltage. To be done.

【0023】その結果、周囲温度等の変化によりFOG
光学系の損失が変動しても図3で示したオープンループ
タイプのFOGでは、(4)式における振幅即ち入出力
のスケールファクタを、常時安定に保つことが出来、ま
た図5で示したクローズドループタイプのFOGでは、
(8)式におけるクローズドループの周波数特性を安定
に保つことが出来る。図1において破線で示した積分回
路31、リセット回路32、D/A変換器33は、図5
に示したクローズドループタイプFOGの同一番号のも
のと同じ機能である。又電気フィルタ41の出力を光源
駆動回路にフィードバックする代わりに、図1に破線で
示すように受光器17の出力側に挿入された自動利得制
御回路42にフィードバックし、自動利得制御回路42
の利得、即ち(4)式および(8)式における回路利得
Kを制御してもよい。
As a result, the FOG changes due to changes in the ambient temperature.
Even if the loss of the optical system fluctuates, in the open-loop type FOG shown in FIG. 3, the amplitude in the equation (4), that is, the input / output scale factor can always be kept stable, and the closed loop shown in FIG. In loop type FOG,
It is possible to keep the frequency characteristics of the closed loop in the equation (8) stable. The integrating circuit 31, the reset circuit 32, and the D / A converter 33, which are indicated by broken lines in FIG.
The function is the same as that of the closed loop type FOG having the same number. Further, instead of feeding back the output of the electric filter 41 to the light source drive circuit, the output is fed back to the automatic gain control circuit 42 inserted on the output side of the light receiver 17 as shown by the broken line in FIG.
Gain, that is, the circuit gain K in the equations (4) and (8) may be controlled.

【0024】Φa としては、光干渉角速度計の測定精度
により決める。つまり測定分解能の2倍程度以上のなる
べく小さい値がよい。小さ過ぎると正しく変動を検出で
きず、大き過ぎても、第1矩形波状位相変調と第2矩形
波状位相変調との境で急に出力が変化するがこれに回路
が追従しないと正しく変動を検出できないからである。
Φa is determined by the measurement accuracy of the optical interference angular velocity meter. That is, a value as small as possible, which is about twice the measurement resolution or more, is preferable. If it is too small, the fluctuation cannot be detected correctly, and even if it is too large, the output suddenly changes at the boundary between the first rectangular wave phase modulation and the second rectangular wave phase modulation, but if the circuit does not follow this, the fluctuation is correctly detected. Because you can't.

【0025】又基準信号発生器40及び電気フィルタ4
1の演算機能をロジック回路37で持たせることも容易
に可能である。その場合、回路37に含めた電気フィル
タ41の出力Vc がD/A変換され、アナログ量として
光源駆動回路28にフィードバックされる。又ロジック
回路37のデジタル出力D3 または、D/A変換された
出力Vs の基準量からの変動率を求め、その変動率に応
じて(4)式で示したFOG出力を例えばコンピュータ
やDSP(デジタル信号プロセッサ)を使って数値補正
しても良い。つまり、ΔV1 またはΔV2 、あるいはΔ
1 とΔV2 の平均値を光干渉角速度計の伝達関数利得
情報とし、この情報と基準信号との比率を求め、その比
率を光干渉角速度計の入出力スケールファクタに乗算し
てもよい。光カプラ14、位相変調器16,29はそれ
ぞれ光ファイバを用いて構成したものを用いてもよい。
The reference signal generator 40 and the electric filter 4 are also provided.
It is also possible to easily provide the logic circuit 37 with one calculation function. In that case, the output Vc of the electric filter 41 included in the circuit 37 is D / A converted and fed back to the light source drive circuit 28 as an analog amount. Further, the variation rate of the digital output D 3 of the logic circuit 37 or the D / A converted output Vs from the reference amount is obtained, and the FOG output represented by the equation (4) is calculated according to the variation rate, for example, by a computer or a DSP ( Numerical correction may be performed using a digital signal processor). That is, ΔV 1 or ΔV 2 , or Δ
The average value of V 1 and ΔV 2 may be used as the transfer function gain information of the optical interference angular velocity meter, the ratio between this information and the reference signal may be obtained, and the ratio may be multiplied by the input / output scale factor of the optical interference angular velocity meter. The optical coupler 14 and the phase modulators 16 and 29 may be configured using optical fibers.

【0026】[0026]

【発明の効果】以上述べたようにこの発明によれば、光
学路における光の伝搬時間をτとしたとき、光学路の左
回り、右回りの両光に対し、1周期が2τである第1矩
形波状位相変調で、最初の半サイクル(τ時間)の第I
期間にA=π/4(rad)の位相変調を与え、それに
続く第II期間に−A(rad)の位相変調を与え、1周
期が2τである第2矩形波状位相変調で最初の半サイク
ル(τ時間)の第III 期間にB≠A(rad)の位相変
調を与え、それに続く第IV期間に−B(rad)の位相
変調を与え、第1矩形波状位相変調と交互にまたは、間
欠的に挿入して位相差バイアシングを与え、第1矩形波
状位相変調の第I期間における受光器からの出力と第2
矩形波状位相変調の第III 期間における受光器からの出
力との電圧の差ΔV1 または第1矩形波状位相変調の第
II期間における受光器からの出力と第2矩形波状位相変
調の第IV期間における受光器からの出力との電圧の差Δ
2またはΔV1 とΔV2 との平均値が一定となるよう
に受光器に到達する光量または受光器またはそれ以降の
電気回路の利得を自動調整する制御回路を設けたのでオ
ープンループタイプのFOGの入出力スケールファクタ
の温度安定性が改善され、又クローズドループタイプの
FOGの周波数特性の温度安定性が改善される。
As described above, according to the present invention, when the propagation time of light in the optical path is τ, one period is 2τ for both left-handed and right-handed light in the optical path. 1 rectangular wave phase modulation, the first half cycle (τ time) I
The phase modulation of A = π / 4 (rad) is applied to the period, the phase modulation of −A (rad) is applied to the subsequent period II, and the first half cycle is the second rectangular wave phase modulation in which one cycle is 2τ. A phase modulation of B ≠ A (rad) is applied in the third period (τ time), and a phase modulation of −B (rad) is applied in the subsequent IV period, alternately or intermittently with the first rectangular wave phase modulation. The phase difference biasing, the output from the photodetector in the I-th period of the first rectangular wave phase modulation and the second
The voltage difference ΔV 1 from the output from the light receiver in the third period of the rectangular wave phase modulation or the first rectangular wave phase modulation
The voltage difference Δ between the output from the photoreceiver in the II period and the output from the photoreceiver in the IV period of the second rectangular wave phase modulation Δ
Since a control circuit for automatically adjusting the amount of light reaching the light receiver or the gain of the light receiver or the electric circuit thereafter is provided so that the average value of V 2 or ΔV 1 and ΔV 2 becomes constant, an open loop type FOG is provided. The temperature stability of the input / output scale factor is improved, and the temperature stability of the frequency characteristic of the closed loop type FOG is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の実施例における位相差バイアシングとそ
の干渉光強度との関係を示す図。
FIG. 2 is a diagram showing a relationship between phase difference biasing and its interference light intensity in the embodiment of FIG.

【図3】従来のオープンループ光干渉角速度計を示すブ
ロック図。
FIG. 3 is a block diagram showing a conventional open loop optical interference gyro.

【図4】図3の光干渉角速度計における位相差バイアシ
ングと干渉光強度を示す図。
4 is a diagram showing phase difference biasing and interference light intensity in the optical interference angular velocity meter of FIG.

【図5】従来のクローズドループ光干渉角速度計を示す
ブロック図。
FIG. 5 is a block diagram showing a conventional closed loop optical interference angular velocity meter.

【図6】図5の光干渉角速度計におけるフィードバック
位相変調信号と両光間のフィードバック位相差を示す
図。
6 is a diagram showing a feedback phase modulation signal and a feedback phase difference between both lights in the optical interference gyro of FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一周する光学路と、その光学
路に対して右回り光及び左回り光を通す分岐手段と、そ
の光学路を伝搬してきた右回り光及び左回り光を干渉さ
せる干渉手段と、前記分岐手段と前記光学路の一端との
間にこれらと縦続的に配置されて右回り光及び左回り光
に位相変化を与える位相変調手段と、前記干渉光の光強
度を電気信号として検出する受光器とを有する光干渉角
速度計において、 前記光学路における光の伝搬時間をτとした時、1周期
が2τであり、最初の半サイクル(τ時間)の第I期間
にA(rad)の位相変調を与え、それに続く第II期間
に−A(rad)の位相変調を与える交番位相変調であ
る第1矩形波状位相変調に対し、 1周期が2τであり、最初の半サイクル(τ時間)の第
III 期間にB(rad)の位相変調を与え、それに続く
第IV期間に−B(rad)の位相変調を与える交番位相
変調である第2矩形波状位相変調を交互にまたは、間欠
的に挿入した位相差バイアシング手段と、 前記第1矩形波状位相変調時の前記受光器出力と前記第
2矩形波状位相変調時の前記受光器出力とを用いて出力
変動を検出してその変動を補正する補正手段と、 を設けたことを特徴とした光干渉角速度計。
1. An optical path that makes at least one round, branching means for passing clockwise light and counterclockwise light to the optical path, and interference means for interfering the clockwise light and counterclockwise light propagating through the optical path. A phase modulating means for providing a phase change to the clockwise light and the counterclockwise light, which is arranged in cascade between the branching means and one end of the optical path, and the light intensity of the interference light as an electric signal. In an optical interference gyro having a photodetector for detecting, when the propagation time of light in the optical path is τ, one cycle is 2τ, and A (rad is included in the first period I of the first half cycle (τ time). ) Phase modulation, followed by −A (rad) phase modulation in the second period II, which is an alternating phase modulation, which is the first rectangular wave phase modulation, one cycle is 2τ, and the first half cycle (τ Time)
The second rectangular wave-like phase modulation, which is an alternating phase modulation that gives B (rad) phase modulation in the III period and −B (rad) phase modulation in the subsequent IV period, is inserted alternately or intermittently. Phase difference biasing means, correction means for detecting an output fluctuation by using the photodetector output during the first rectangular wave phase modulation and the photodetector output during the second rectangular wave phase modulation, and correcting the fluctuation. And an optical interference angular velocity meter.
【請求項2】 前記補正手段は前記第1矩形波状位相変
調の第I期間における前記受光器からの出力と、前記第
2矩形波状位相変調の第III 期間における前記受光器か
らの出力との差ΔV1 または前記第1矩形波状位相変調
の第II期間における前記受光器からの出力と、前記第2
矩形波状位相変調の第IV期間における前記受光器からの
出力の差ΔV2 または前記ΔV1 とΔV2 との平均値が
一定となるように前記受光器に到達する光量または前記
受光器またはそれ以降の電気回路の利得を自動調整する
制御手段であることを特徴とする請求項1記載の光干渉
角速度計。
2. The difference between the output from the photoreceiver in the I period of the first rectangular wave phase modulation and the output from the photoreceiver in the III period of the second rectangular wave phase modulation. ΔV 1 or the output from the photodetector in the second period II of the first rectangular wave phase modulation,
The amount of light reaching the photoreceiver or the photoreceiver or thereafter such that the difference ΔV 2 of the outputs from the photoreceiver or the average value of the ΔV 1 and ΔV 2 in the IV period of the rectangular wave phase modulation becomes constant. The optical interference angular velocity meter according to claim 1, which is control means for automatically adjusting the gain of the electric circuit.
【請求項3】 前記補正手段は前記第1矩形波状位相変
調の第I期間における前記受光器からの出力と、前記第
2矩形波状位相変調の第III 期間における前記受光器か
らの出力との差ΔV1 または前記第1矩形波状位相変調
の第II期間における前記受光器からの出力と前記第2矩
形波状位相変調の第IV期間における前記受光器からの出
力との差ΔV2 または前記ΔV1 とΔV2 の平均値を光
干渉角速度計の伝達関数利得情報として出力し、その伝
達関数利得情報と基準信号との比率を求め、その比率を
光干渉角速度計の入出力スケールファクタに乗算する手
段であることを特徴とする請求項1記載の光干渉角速度
計。
3. The difference between the output from the photoreceiver in the I period of the first rectangular wave phase modulation and the output from the photoreceiver in the III period of the second rectangular wave phase modulation. ΔV 1 or the difference ΔV 2 or ΔV 1 between the output from the light receiver in the second period II of the first rectangular wave phase modulation and the output from the light receiver in the fourth period IV of the second rectangular wave phase modulation The means for outputting the average value of ΔV 2 as transfer function gain information of the optical interference gyro, obtaining the ratio between the transfer function gain information and the reference signal, and multiplying the ratio by the input / output scale factor of the optical interference gyro. The optical interference angular velocity meter according to claim 1, wherein
【請求項4】 前記A(rad)が2nπ±(約π/
4)(n=0,±1,±2,±3・・・・)で、前記B
(rad)が前記A(rad)と異なることを特徴とす
る請求項1乃至3の何れかに記載の光干渉角速度計。
4. The A (rad) is 2nπ ± (about π /
4) (n = 0, ± 1, ± 2, ± 3 ...
(Rad) is different from said A (rad), The optical interference angular velocity meter in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
JP13811292A 1992-05-29 1992-05-29 Optical interference gyro Expired - Fee Related JP2514531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13811292A JP2514531B2 (en) 1992-05-29 1992-05-29 Optical interference gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13811292A JP2514531B2 (en) 1992-05-29 1992-05-29 Optical interference gyro

Publications (2)

Publication Number Publication Date
JPH05332775A true JPH05332775A (en) 1993-12-14
JP2514531B2 JP2514531B2 (en) 1996-07-10

Family

ID=15214240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13811292A Expired - Fee Related JP2514531B2 (en) 1992-05-29 1992-05-29 Optical interference gyro

Country Status (1)

Country Link
JP (1) JP2514531B2 (en)

Also Published As

Publication number Publication date
JP2514531B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
JP2510460B2 (en) Method and device for measuring rotational speed
JP2878441B2 (en) Fiber optic measurement device, gyrometer, central navigation, and stabilization system
JPH047931B2 (en)
US4948252A (en) Sub-tau phase modulation in a fiber-optic rotation sensor
US5349441A (en) Fiber optic gyroscope refractive index induced error compensation
US5412471A (en) Optical gyro with expanded detectable range of input rotation angular velocity and optical waveguide-type phase modulator used in the same
US5018859A (en) Fiber optic gyroscope balanced plural serrodyne modulators phase difference control
US5684589A (en) Loop controller for fiber optic gyro with distributed data processing
JPH04130212A (en) Optical fiber interferometer for measurement of rotational speed
US5031988A (en) Fiber optic gyro
JP2514531B2 (en) Optical interference gyro
JP3343767B2 (en) Fiber optic gyro
JPH11108669A (en) Optical fiber gyro
JPS6212811A (en) Angular speed meter using optical interference
US20040246487A1 (en) Optical fibre gyro
RU2160885C1 (en) Method of stabilization of scale factor of fiber-optical gyroscope
JP3343766B2 (en) Fiber optic gyro
JP2000146596A (en) Resonance point following system and ring resonance- type optical fiber gyro using the same
JP3245796B2 (en) Fiber optic gyro
EP0412468B1 (en) Synthetic serrodyne controller for fiber optic gyroscope
JP2557658B2 (en) Optical interference gyro
JP2548072B2 (en) Optical interference gyro
JP2514532B2 (en) Optical interference gyro
JP3493487B2 (en) Optical interference angular velocity meter
RU2527141C1 (en) Method of expanding measurement range of angular velocities of closed feedback loop fibre-optic gyroscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees