JPH0533269B2 - - Google Patents

Info

Publication number
JPH0533269B2
JPH0533269B2 JP60032738A JP3273885A JPH0533269B2 JP H0533269 B2 JPH0533269 B2 JP H0533269B2 JP 60032738 A JP60032738 A JP 60032738A JP 3273885 A JP3273885 A JP 3273885A JP H0533269 B2 JPH0533269 B2 JP H0533269B2
Authority
JP
Japan
Prior art keywords
weight
propylene
component
resin composition
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60032738A
Other languages
Japanese (ja)
Other versions
JPS61192752A (en
Inventor
Nobuyuki Inaba
Takeshi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP3273885A priority Critical patent/JPS61192752A/en
Publication of JPS61192752A publication Critical patent/JPS61192752A/en
Publication of JPH0533269B2 publication Critical patent/JPH0533269B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明はポリプロピレン共重合樹脂組成物に関
し、更に詳しくは、通常の改質処理を施して得ら
れた、優れた耐低温衝撃強度と高い剛性とを兼備
したポリプロピレン共重合樹脂組成物に関する。 〔発明の技術的背景とその問題点〕 ポリプロピレン樹脂は高い剛性を備えているも
のの、その反面、耐衝撃強度とりわけ耐低温衝撃
強度が低いという欠点をもつ。 この点を改良したものとして、プロピレンに
エチレンなどの他のα−オレフインを共重合させ
たもの、ポリプロピレンに、ポリブタジエン、
エチレン−プロピレンゴムなどのゴム状物質を配
合したもの、などが提案されかつ製造されてい
る。これらのものは、いずれもゴム成分を含有す
るため、耐衝撃強度はある程度改善されるが、逆
に、ポリプロピレンが本来有する剛性を低下させ
るという不都合が生ずる。 そのため、更に改良策として、上記又はの
樹脂組成物に対し、有機過酸化物、架橋助剤を配
合して改質処理を施すことが提案されている。 しかしながら、かかる改質処理によつても、ポ
リプロピレン樹脂の剛性を低下させることなく、
耐低温衝撃強度を充分高めることは容易ではない
という問題があつた。 〔発明の目的〕 本発明は、従来のかかる問題を解消し、上記し
た改質処理を施すことによつて、高い剛性を低下
させることなく、耐衝撃強度、特に耐低温衝撃強
度が著しく改善されたポリプロピレン共重合樹脂
組成物を提供することを目的とする。 〔発明の概要〕 本発明者らは、改質処理を施すことによつて耐
低温衝撃強度が飛躍的に向上するポリプロピレン
共重合樹脂組成物を見出すべく鋭意研究を重ねた
結果、所定の極限粘度を有するポリプロピレン共
重合樹脂及びゴム状物質を所定量配合して得られ
る樹脂組成物が上記目的を達することを見出し、
本発明を完成するに至つた。 すなわち、本発明は、 成分A:極限粘度が0.8〜3.0dl/gのプロピレン
−エチレン共重合体キシレン不溶部ポリマー50
〜90重量%、並びに 成分B:(b−1)エチレンプロピレンゴム及
び/又は(b−2)プロピレン−エチレン共重
合体キシレン可溶部ポリマーからなり、かつ、
成分Aの極限粘度の0.6〜1.5倍の極限粘度を有
するものを成分B中60重量%以上含有するゴム
状物質50〜10重量% からなる樹脂組成物100重量部に、有機過酸化物
0.01〜1.0重量部及び架橋助剤0.01〜5.0重量部を
加え、溶融混練して改質処理したポリプロピレン
共重合樹脂組成物である。 まず、成分Aはプロピレン−エチレン共重合体
のキシレン不溶部ポリマーで、極限粘度が0.8〜
3.0dl/g、好ましくは1.0〜2.8dl/gのものを使
用する。極限粘度が0.8dl/g未満の場合は後述
する改質処理を施しても得られるポリプロピレン
共重合樹脂組成物はその耐衝撃性の飛躍的な向上
は望めず、また、極限粘度が3.0dl/gを超える
と組成物の流動性が低下して成形性に難点が生ず
る。 極限粘度0.8〜3.0dl/gのプロピレン−エチレ
ン共重合体キシレン不溶部ポリマーAはプロピレ
ン−エチレン共重合体を140℃の熱キシレンで2
時間抽出し、50℃に冷却して更に2時間抽出する
ことにより、キシレンに不溶のポリマーとして容
易に得ることができる。なお、原料となるプロピ
レン−エチレン共重合体はチーグラー・ナツタ触
媒を用い、2段又は3段以上の多段重合法で製造
することができる。例えば1段目でプロピレンホ
モポリマーの重合を行い、次いでプロピレンモノ
マーを除去し若しくは除去せずに、2段目以降で
エチレンの存在下又はエチレンとプロピレンとの
共存下で重合反応を進めることにより製造するこ
とができる。各段の反応における圧力は数気圧〜
40気圧、温度は室温〜80℃でよい。また、重合反
応としては溶液重合、スラリー重合、気相重合又
はこれらの併用法などが適用できる。なお、必要
に応じて各段に水素を供給してもよい。 次いで、成分Bはゴム状物質であり、エチレン
プロピレンゴム(b−1)及び/又はプロピレン
−エチレン共重合体キシレン可溶部ポリマー(b
−2)からなる。成分Bは、成分Aの極限粘度の
0.6〜1.5倍の極限粘度を有する上記ポリマーが成
分B中60重量%以上含有されていることは必要で
ある。極限粘度が上記範囲に入らないもの、又
は、極限粘度が上記範囲内であつても含有量が60
重量%未満の場合には、得られたポリプロピレン
共重合樹脂組成物における耐衝撃性の改良が充分
ではない。 また、成分Bとしての、エチレンプロピレンゴ
ム(b−1)は、例えば、日本合成ゴム(株)製、
E07P,E02P,EP11P(以上、いずれも商品名)
などの市販品を用いればよく、これらの1種若し
くは2種以上を使用することができる。一方、プ
ロピレン−エチレン共重合体キシレン可溶部ポリ
マー(b−2)は、上記したように、プロピレン
−エチレン共重合体を140℃の熱キシレンで2時
間抽出し、50℃に冷却して更に2時間抽出した可
溶部分のポリマーである。すなわち、プロピレン
−エチレン共重合体はキシレン不溶部を成分Aと
して、キシレン可溶部を成分Bとして使用するこ
とができる。 本発明のポリプロピレン共重合樹脂組成物は、
上記成分Aと成分Bとからなる樹脂組成物を原料
とする。成分Aの配合量は50〜90重量%、好まし
くは、60〜80重量%であり、したがつて、成分B
の配合量は50〜10重量%、好ましくは40〜20重量
%である。成分Aの配合量が50重量%未満の場合
(成分Bの配合量が50重量%を超える場合)、樹脂
組成物中のゴム分が増加して剛性の低下を招来
し、一方、成分Aの配合量が90重量%を超える場
合(成分Bの配合量が10重量%未満の場合)、改
質処理を施しても耐衝撃性の改良が充分ではな
い。 上記樹脂組成物は、成分Aと成分Bとを上記の
割合で配合したのち、例えば、一軸混練機、バン
バリミキサー、スーパーミキサーなどを使用して
溶融混練することにより容易に製造することがで
きる。この樹脂組成物は、以下に述べる改質処理
を施すことによつて、その耐低温衝撃強度が飛躍
的に向上するという特長を有する。 すなわち、改質処理は、上記樹脂組成物に有機
過酸化物及び架橋助剤を配合したのち溶融混練す
ることによつて行われる。この改質処理工程に使
用される有機過酸化物及び架橋助剤としては、公
知のものを使用することができる。具体的には、
有機過酸化物として、例えば、1,3−ビス(t
−ブチルパーオキシイソプロピル)ベンゼン、ジ
クミルパーオキシド、ジ−t−ブチルパーオキシ
ド、2,5−ジメチル−2,5−ジ(t−ブチル
パーオキシ)ヘキシン−3,2,5−ジメチル−
2,5−ジ(t−ブチルパーオキシ)ヘキサンな
どが好ましく、架橋助剤としては、例えば、イオ
ウ;ジビニルベンゼンのようなジビニル化合物;
ジアリルフタレートのようなジアリル化合物;p
−キノンジオキシム、p,p′−ジベンゾイルキノ
ンジオキシムのようなオキシム化合物;フエニル
マレイミドのようなマレイミド化合物などが好ま
しいものとして挙げられる。 なお、これらの配合量は、上記樹脂組成物100
重量部に対し、有機過酸化物が0.01〜1.0重量部、
架橋助剤が0.01〜5.0重量部である。また、前者
と後者の間の配合比は1:1〜1:10となるよう
に設定することが好ましい。 実際の改質処理の操作としては、先ず、上記樹
脂組成物に前記した有機過酸化物及び架橋助剤を
それぞれ所定量配合し、全体を例えば一軸押出機
で溶融混練してペレツト化する。この溶融混練時
に適用する温度は180〜270℃、好ましくは190〜
250℃である。 かかる改質処理によつて本発明のポリプロピレ
ン共重合樹脂の耐衝撃強度は飛躍的に向上し、一
方、該ポリプロピレン共重合樹脂が本来的に具備
している高い剛性はこの改質処理によつても損わ
れることがないので、結果として、優れた耐低温
衝撃強度と高い剛性とを兼備したポリプロピレン
共重合樹脂組成物が得られるのである。 〔実施例〕 実施例1〜2及び比較例1〜3 プロピレン−エチレン共重合体及びエチレンプ
ロピレンゴムとして、それぞれ下記に示すものを
用意した。 プロピレン−エチレン共重合体 本実施例においては以下に述べる製造例により
調製した5種類のプロピレン−エチレン共重合体
(イ)〜(ホ)を使用した。 (1) プロピレン−エチレン共重合体(イ)の製造 三塩化チタン5.0g、ジエチルアルミニウムクロ
ライド50.0g,n−ヘプタン40を充分乾燥した
内容積100の撹拌器付オートクレーブに仕込ん
だ後、水素ガスを1.1Kg/cm2G(一段目水素圧)と
なるまで張込み、ついで、プロピレンガスを圧力
9.0Kg/cm2Gとなるまで供給し、65℃において90
分間重合反応を行つた。重合終了後、大半の残留
プロピレンを脱気しつつ57℃まで降温した。その
後、再び水素ガスを1.0Kg/cm2G(二段目水素圧)
となるまで供給し、エチレンを流量12N/分、
プロピレンを流量25N/分で同時に供給して30
分間重合させた。 重合反応終了後、ただちにn−ブタノール70ml
を加え未反応ガスをパージした。次いで、n−ヘ
プタンにより洗浄し、乾燥した。得られた重合体
のうち10gを沸騰キシレン1500mlに溶解させたの
ち、20℃に降温し4時間放置した。その後、この
ものを別乾燥し、キシレン不溶部ポリマー8.3g
(85重量%)を得た。一方、液にメタノールを
加えて再沈し、これを別乾燥することによりキ
シレン可溶部ポリマーとしてゴム状物質1.5g(15
重量%)を得た。このポリマー及びゴム状物質の
極限粘度はそれぞれ1.4dl/g及び4.0dl/gであ
つた。 (2) プロピレン−エチレン共重合体(ロ)〜(ホ)の製造 製造例(1)において、一段目及び二段目水素圧、
並びに、エチレン及びプロピレンの流量を下記第
1表の如く設定した点を除いては、上記製造例(1)
と全く同様にしてプロピレン−エチレン共重合体
(ロ)〜(ホ)を得たのち、そのキシレン不溶部ポリマー
とキシレン可溶部ポリマーであるゴム状物質との
分離を行つた。
[Technical Field of the Invention] The present invention relates to a polypropylene copolymer resin composition, and more specifically to a polypropylene copolymer resin that has both excellent low-temperature impact strength and high rigidity and is obtained through a conventional modification treatment. Regarding the composition. [Technical background of the invention and its problems] Although polypropylene resin has high rigidity, it has the disadvantage of low impact strength, particularly low-temperature impact strength. To improve this point, propylene is copolymerized with other α-olefins such as ethylene, polypropylene is copolymerized with polybutadiene,
Products containing rubber-like substances such as ethylene-propylene rubber have been proposed and manufactured. Since these materials all contain a rubber component, the impact resistance strength is improved to some extent, but on the contrary, the inherent rigidity of polypropylene is reduced, which is a disadvantage. Therefore, as a further improvement measure, it has been proposed that the above resin composition or the above resin composition be subjected to a modification treatment by blending an organic peroxide and a crosslinking aid. However, even with such modification treatment, the rigidity of polypropylene resin is not reduced.
There was a problem in that it was not easy to sufficiently increase the low-temperature impact strength. [Object of the Invention] The present invention solves the conventional problems, and by performing the above-mentioned modification treatment, the impact strength, especially the low temperature impact strength, is significantly improved without reducing the high rigidity. The object of the present invention is to provide a polypropylene copolymer resin composition. [Summary of the Invention] The present inventors have conducted intensive research to find a polypropylene copolymer resin composition whose low-temperature impact strength can be dramatically improved by performing a modification treatment. It has been discovered that a resin composition obtained by blending a predetermined amount of a polypropylene copolymer resin having the following and a rubber-like substance achieves the above object,
The present invention has now been completed. That is, the present invention comprises: Component A: propylene-ethylene copolymer with an intrinsic viscosity of 0.8 to 3.0 dl/g xylene-insoluble part polymer 50
~90% by weight, and component B: consisting of (b-1) ethylene propylene rubber and/or (b-2) propylene-ethylene copolymer xylene-soluble portion polymer, and
An organic peroxide is added to 100 parts by weight of a resin composition consisting of 50 to 10% by weight of a rubbery substance containing 60% by weight or more of a rubber-like substance in component B that has an intrinsic viscosity of 0.6 to 1.5 times that of component A.
This is a polypropylene copolymer resin composition obtained by adding 0.01 to 1.0 parts by weight and 0.01 to 5.0 parts by weight of a crosslinking aid, and then melt-kneading and modifying the composition. First, component A is a xylene-insoluble polymer of propylene-ethylene copolymer with an intrinsic viscosity of 0.8 to
3.0 dl/g, preferably 1.0 to 2.8 dl/g. If the intrinsic viscosity is less than 0.8 dl/g, the resulting polypropylene copolymer resin composition cannot be expected to dramatically improve its impact resistance even if it is subjected to the modification treatment described below, and the intrinsic viscosity is less than 3.0 dl/g. If it exceeds g, the fluidity of the composition decreases, causing difficulties in moldability. Polymer A is a propylene-ethylene copolymer with an intrinsic viscosity of 0.8 to 3.0 dl/g.
It can be easily obtained as a xylene-insoluble polymer by extracting for 1 hour, cooling to 50°C, and further extracting for 2 hours. The propylene-ethylene copolymer used as a raw material can be produced by a two-stage, three-stage or more multistage polymerization method using a Ziegler-Natsuta catalyst. For example, production is carried out by polymerizing a propylene homopolymer in the first stage, then proceeding with the polymerization reaction in the presence of ethylene or in the coexistence of ethylene and propylene in the second and subsequent stages, with or without removing the propylene monomer. can do. The pressure in each stage of reaction is several atmospheres ~
The pressure may be 40 atm and the temperature may be between room temperature and 80°C. Further, as the polymerization reaction, solution polymerization, slurry polymerization, gas phase polymerization, or a combination thereof can be applied. Note that hydrogen may be supplied to each stage as necessary. Next, component B is a rubber-like substance, and includes ethylene propylene rubber (b-1) and/or propylene-ethylene copolymer xylene soluble portion polymer (b-1).
-2). Component B has the intrinsic viscosity of component A.
It is necessary that component B contains at least 60% by weight of the above-mentioned polymer having an intrinsic viscosity of 0.6 to 1.5 times. Items whose intrinsic viscosity does not fall within the above range, or whose content is 60% even if the intrinsic viscosity is within the above range.
If the amount is less than % by weight, the impact resistance of the obtained polypropylene copolymer resin composition will not be sufficiently improved. In addition, the ethylene propylene rubber (b-1) as component B is, for example, manufactured by Japan Synthetic Rubber Co., Ltd.
E07P, E02P, EP11P (all of the above are product names)
Commercially available products such as these may be used, and one or more of these may be used. On the other hand, the propylene-ethylene copolymer xylene-soluble polymer (b-2) is obtained by extracting the propylene-ethylene copolymer with hot xylene at 140°C for 2 hours, cooling it to 50°C, and further producing the xylene-soluble polymer (b-2). This is the soluble portion of the polymer extracted for 2 hours. That is, in the propylene-ethylene copolymer, the xylene-insoluble part can be used as component A, and the xylene-soluble part can be used as component B. The polypropylene copolymer resin composition of the present invention is
A resin composition consisting of the above component A and component B is used as a raw material. The amount of component A is 50 to 90% by weight, preferably 60 to 80% by weight, and therefore component B
The blending amount is 50 to 10% by weight, preferably 40 to 20% by weight. When the amount of component A is less than 50% by weight (when the amount of component B is more than 50% by weight), the rubber content in the resin composition increases, resulting in a decrease in rigidity. When the blending amount exceeds 90% by weight (when the blending amount of component B is less than 10% by weight), impact resistance is not sufficiently improved even if the modification treatment is performed. The above resin composition can be easily produced by blending component A and component B in the above ratio and then melt-kneading the mixture using, for example, a single-screw kneader, a Banbury mixer, a super mixer, or the like. This resin composition has the feature that its low-temperature impact strength is dramatically improved by subjecting it to the modification treatment described below. That is, the modification treatment is performed by blending an organic peroxide and a crosslinking aid into the resin composition and then melt-kneading the resin composition. As the organic peroxide and crosslinking aid used in this modification process, known ones can be used. in particular,
As the organic peroxide, for example, 1,3-bis(t
-butylperoxyisopropyl)benzene, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,2,5-dimethyl-
2,5-di(t-butylperoxy)hexane and the like are preferred, and examples of crosslinking aids include sulfur; divinyl compounds such as divinylbenzene;
diallyl compounds such as diallyl phthalate; p
Preferred examples include oxime compounds such as -quinone dioxime and p,p'-dibenzoylquinone dioxime; and maleimide compounds such as phenylmaleimide. In addition, these compounding amounts are 100% of the above resin composition.
Organic peroxide is 0.01 to 1.0 parts by weight,
The crosslinking aid is 0.01 to 5.0 parts by weight. Moreover, it is preferable to set the blending ratio between the former and the latter to be 1:1 to 1:10. In the actual modification process, first, the above-described organic peroxide and crosslinking aid are added to the resin composition in predetermined amounts, and the whole is melt-kneaded using, for example, a single-screw extruder to form pellets. The temperature applied during this melt-kneading is 180-270℃, preferably 190-270℃.
The temperature is 250℃. Through this modification treatment, the impact strength of the polypropylene copolymer resin of the present invention is dramatically improved, and on the other hand, the high rigidity that the polypropylene copolymer resin inherently has is improved by this modification treatment. As a result, a polypropylene copolymer resin composition having both excellent low-temperature impact strength and high rigidity can be obtained. [Example] Examples 1 to 2 and Comparative Examples 1 to 3 The propylene-ethylene copolymer and ethylene propylene rubber shown below were prepared. Propylene-ethylene copolymer In this example, five types of propylene-ethylene copolymers prepared according to the production examples described below were used.
(a) to (e) were used. (1) Production of propylene-ethylene copolymer (a) After charging 5.0 g of titanium trichloride, 50.0 g of diethylaluminum chloride, and 40 g of n-heptane into a sufficiently dried autoclave with an internal volume of 100 and equipped with a stirrer, hydrogen gas was added. Fill the tank until it reaches 1.1Kg/cm 2 G (first stage hydrogen pressure), then pressurize propylene gas.
9.0Kg/cm 2 G at 65℃.
The polymerization reaction was carried out for minutes. After the polymerization was completed, the temperature was lowered to 57°C while degassing most of the remaining propylene. After that, hydrogen gas is added again to 1.0Kg/cm 2 G (second stage hydrogen pressure)
Supply ethylene at a flow rate of 12N/min until
30 by simultaneously supplying propylene at a flow rate of 25 N/min.
Polymerization was carried out for minutes. Immediately after the polymerization reaction, add 70 ml of n-butanol.
was added to purge unreacted gas. Then, it was washed with n-heptane and dried. After dissolving 10 g of the obtained polymer in 1500 ml of boiling xylene, the temperature was lowered to 20°C and left for 4 hours. After that, this material was dried separately, and 8.3g of xylene-insoluble polymer was added.
(85% by weight) was obtained. On the other hand, by adding methanol to the liquid and reprecipitating it, and drying this separately, 1.5 g (15
% by weight) was obtained. The intrinsic viscosities of the polymer and rubbery material were 1.4 dl/g and 4.0 dl/g, respectively. (2) Production of propylene-ethylene copolymers (b) to (e) In production example (1), the first and second stage hydrogen pressure,
Also, the above production example (1) except that the flow rates of ethylene and propylene were set as shown in Table 1 below.
Propylene-ethylene copolymer in exactly the same manner as
After obtaining (b) to (e), the xylene-insoluble part of the polymer and the rubber-like substance which is the xylene-soluble part of the polymer were separated.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明のポリ
プロピレン共重合樹脂組成物は、改質処理を施し
たことによつてその耐低温衝撃強度は飛躍的に向
上すると同時に、高い剛性を維持することができ
たものであるため、優れた耐低温衝撃強度と高い
剛性とを兼備したポリプロピレン共重合樹脂組成
物であり、自動車、或いは弱電分野における工業
用素材として極めて有用である。
As is clear from the above explanation, the polypropylene copolymer resin composition of the present invention can dramatically improve its low-temperature impact strength and maintain high rigidity by undergoing the modification treatment. Because of this, it is a polypropylene copolymer resin composition that has both excellent low-temperature impact strength and high rigidity, and is extremely useful as an industrial material in the automobile and light electrical fields.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 成分A:極限粘度が0.8〜3.0dll/gのプロ
ピレン−エチレン共重合体キシレン不溶部ポリ
マー50〜90重量%、並びに 成分B:(b−1)エチレンプロピレンゴム及
び/又は(b−2)プロピレン−エチレン共重
合体キシレン可溶部ポリマーからなり、かつ、
成分Aの極限粘度の0.6〜1.5倍の極限粘度を有
するものを成分B中60重量%以上含有するゴム
状物質50〜10重量% からなる樹脂組成物100重量部に、有機過酸化物
0.01〜1.0重量部及び架橋助剤0.01〜5.0重量部を
加え、溶融混練して改質処理したポリプロピレン
共重合樹脂組成物。
[Scope of Claims] 1 Component A: 50 to 90% by weight of a propylene-ethylene copolymer with an intrinsic viscosity of 0.8 to 3.0 dll/g, xylene-insoluble polymer, and Component B: (b-1) ethylene propylene rubber and/or or (b-2) consisting of a propylene-ethylene copolymer xylene soluble portion polymer, and
An organic peroxide is added to 100 parts by weight of a resin composition consisting of 50 to 10% by weight of a rubbery substance containing 60% by weight or more of a rubber-like substance in component B that has an intrinsic viscosity of 0.6 to 1.5 times that of component A.
A polypropylene copolymer resin composition obtained by adding 0.01 to 1.0 parts by weight and 0.01 to 5.0 parts by weight of a crosslinking aid, and then melt-kneading and modifying the composition.
JP3273885A 1985-02-22 1985-02-22 Polypropylene resin composition Granted JPS61192752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273885A JPS61192752A (en) 1985-02-22 1985-02-22 Polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273885A JPS61192752A (en) 1985-02-22 1985-02-22 Polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPS61192752A JPS61192752A (en) 1986-08-27
JPH0533269B2 true JPH0533269B2 (en) 1993-05-19

Family

ID=12367171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273885A Granted JPS61192752A (en) 1985-02-22 1985-02-22 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPS61192752A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598407B2 (en) * 1987-05-11 1997-04-09 三井東圧化学株式会社 Propylene-ethylene copolymer composition and method for producing the same
US5623013A (en) * 1994-12-16 1997-04-22 Ube Industries, Ltd. Xonotlite-reinforced organic polymer composition
CN110753726B (en) * 2017-06-26 2022-05-03 博里利斯股份公司 Polypropylene composition with excellent surface appearance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439453A (en) * 1977-09-05 1979-03-26 Hitachi Ltd Polypropylene resin composition
JPS5827731A (en) * 1981-08-12 1983-02-18 Mitsubishi Chem Ind Ltd Polyolefin composition and its preparation
JPS5852313A (en) * 1981-09-22 1983-03-28 Mitsui Toatsu Chem Inc Polypropylene resin composition having excellent surface property
JPS59223740A (en) * 1983-06-02 1984-12-15 Mitsui Petrochem Ind Ltd Production of polypropylene composition
JPS6015254A (en) * 1983-07-04 1985-01-25 株式会社日立製作所 Double spindle electric truck for railway rolling stock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439453A (en) * 1977-09-05 1979-03-26 Hitachi Ltd Polypropylene resin composition
JPS5827731A (en) * 1981-08-12 1983-02-18 Mitsubishi Chem Ind Ltd Polyolefin composition and its preparation
JPS5852313A (en) * 1981-09-22 1983-03-28 Mitsui Toatsu Chem Inc Polypropylene resin composition having excellent surface property
JPS59223740A (en) * 1983-06-02 1984-12-15 Mitsui Petrochem Ind Ltd Production of polypropylene composition
JPS6015254A (en) * 1983-07-04 1985-01-25 株式会社日立製作所 Double spindle electric truck for railway rolling stock

Also Published As

Publication number Publication date
JPS61192752A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
US8076416B2 (en) Thermoplastic vulcanizates and their use
US6288171B2 (en) Modification of thermoplastic vulcanizates using random propylene copolymers
EP1354901B1 (en) Propylene polymer composition with improved mechanical properties
US4889888A (en) Elastoplastic compositions and process for preparing them
US20080287597A1 (en) Modified Polypropylene Composition
JP2002519497A (en) Elastic blend comprising a crystalline propylene polymer and a crystallizable propylene polymer
JPH10502968A (en) Dynamic vulcanizable polyolefin composition
JP5659900B2 (en) Modified propylene polymer
JP3061816B2 (en) Plastic-elastic polyolefin composition and its production by dynamic vulcanization
CN115286873A (en) Thermoplastic vulcanizates containing broad molecular weight distribution polypropylenes
US10308796B2 (en) Composition for low temperature use containers
JPH051185A (en) Thermoplastic resin composition excellent in strength and its production
JPS587665B2 (en) Method for modifying propylene ethylene block copolymer
JPS6251288B2 (en)
JPH0533269B2 (en)
JPS6185462A (en) Production of polypropylene resin composition
US5480942A (en) Propylene polymers grafted with polyalkenylenes and process for their preparation
JPH0141178B2 (en)
JPH0339096B2 (en)
US20060155069A1 (en) Process for making lightly cross-linked thermoplastic polyolefin elastomers
JP3165732B2 (en) Method for producing propylene copolymer
EP0202588B1 (en) Crosslinked olefinic block copolymers
JP4185739B2 (en) Modified propylene polymer and process for producing the same
JPH0517640A (en) Thermoplastic elastomer composition
JPH06228386A (en) Polypropylene composition