JPH0533224B2 - - Google Patents

Info

Publication number
JPH0533224B2
JPH0533224B2 JP59065955A JP6595584A JPH0533224B2 JP H0533224 B2 JPH0533224 B2 JP H0533224B2 JP 59065955 A JP59065955 A JP 59065955A JP 6595584 A JP6595584 A JP 6595584A JP H0533224 B2 JPH0533224 B2 JP H0533224B2
Authority
JP
Japan
Prior art keywords
catalyst
reactor
melamine
perforated plate
solid acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59065955A
Other languages
Japanese (ja)
Other versions
JPS60209575A (en
Inventor
Kiho Sonoda
Yasumasa Hasuike
Misao Fukuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6595584A priority Critical patent/JPS60209575A/en
Publication of JPS60209575A publication Critical patent/JPS60209575A/en
Publication of JPH0533224B2 publication Critical patent/JPH0533224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

【発明の詳細な説明】 本発明はメラミンの製造法に関するものであ
る。 アンモニア雰囲気中で粒状または粉状の固体酸
触媒の存在下、流動層反応により尿素および/ま
たはその熱分解生成物からメラミンを合成する方
法は知られている。従来、合成において使用され
た固体酸触媒は経時的に尿素のメラミンへの転化
率および製品メラミンの品質を低下させるとう欠
点を有しており、この劣化した触媒は水蒸気を含
む酸素と高温で接触させ、付着有機物を燃焼除去
して再生し使用されていた(特開昭54−22385
号)。ところで、流動層反応器においては、反応
器下部から導入するガスの反応器への分散を良好
にし、また触媒の反応器下部への沈積を防ぐため
に、反応器下部に多孔板が設置されている。 しかしながら、実際には反応の経過につれて多
孔板の下に触媒が落下し蓄積する。この落下し蓄
積した回収触媒は、一部が塊状化しており、その
ままでは再生使用も不可能である。 本発明者等はこの多孔板下部に蓄積した回収触
媒の再利用について鋭意研究したところ、驚くべ
きことに多孔板の下部に蓄積した回収触媒から塊
状物を除去すれば、得られた粒状または粉状固体
酸触媒は何ら再生処理することなく、そのまま反
応触媒として使用することができることを見出
し、本発明を完成した。 すなわち、本発明は尿素および/またはその熱
分解生成物から粒状または粉状の固体酸触媒の存
在下、反応器下部に多孔板を備えた流動層反応器
を用いてメラミンを合成する方法に於いて、反応
器の多孔板の下部に蓄積した回収触媒から、塊状
物を除去した粒状または粉状固体酸触媒の全部ま
たは一部を反応器に供給することを特徴とするも
のである。 以下、本発明を図面により説明する。 第1図は本発明の反応器を模式的に示す図であ
る。反応器1には固体酸触媒5が装入されてい
る。本発明で用いる固体酸触媒としては、活性ア
ルミナ、シリカゲル、シリカアルミナ、シリカマ
グネシア、マグネシア、クロミア、クロミアアル
ミナ、シリカジルコニア、アルミナボリア、チタ
ニアボリア、ゼオライト、酸性白土、モンモリロ
ナイト、カオリナイト、ベントナイト、珪藻土リ
ン酸、シリカリン酸等が用いられる。触媒の形状
は粒状または粉状であればよい。 この固体触媒は反応器下部ノズル8から導入さ
れるアンモニア、炭酸ガスから成る混合ガスによ
り流動化される。反応器下部でガス導入口もとの
まゝ上部に設置された多孔板2は触媒が反応器下
部へ落下することを防ぐ為のものであるが、ガス
流通の為の微細な穴が多数設けられている。メラ
ミン合成に際しての反応器内部温度は300〜400℃
が好適である。尿素および/またはその熱分解生
成物がライン7から反応器に導入される。尿素お
よび/またはその熱分解物は、通常、尿素を溶融
し流動状態にしたものが使用される。反応器内で
尿素はメラミンへ転化し反応器上部からサイクロ
ンで触媒と分離されて取り出される。 反応器内で流動している触媒の大部分は多孔板
2の上部に存在しているが、反応の経過に伴い一
部の触媒が多孔板の穴を通して反応器下部6に蓄
積して回収される。蓄積した回収触媒は部分的に
固つた塊状物を含有している。本発明の方法では
この蓄積した回収触媒を取り出し、塊状物を除去
して得られた粒状または粉状固体酸の全部または
一部を反応触媒として循環使用する。回収触媒か
ら塊状物を除去する手段としては通常の篩分けの
手段で良い。また除去する塊状物は反応条件下に
於て流動状態を形成しない粒径が3〜4mm以上の
粗粒を篩分けして除去する。 塊状物を除去した粒状または粉状の固体酸触媒
の再使用は、新しく実施する反応の反応触媒とし
て反応器に加えられる触媒の5〜40重量部、好ま
しくは10〜25重量部程度である。 また、多孔板の下部に回収される触媒を連続ま
たは間欠的に取出し、回収触媒から塊状物を除去
し、新規触媒と合わして反応系に不足する触媒量
を連続的に補給しながら反応を実施することもで
きる。 本発明の方法によれば、従来、反応器下部多孔
板の下に蓄積し回収された触媒から、塊状物を単
に物理的に除去したものが何ら再生処理すること
なく、新しい触媒あるいは再生処理した触媒と全
く同等の性能を発現するので、経時的に劣化した
触媒全てを再生処理する必要がなくなり、メラミ
ン製造工程が簡略化され、また触媒原単位が向上
するという効果をもたらす。 次に実施例により本発明の方法を更に詳しく説
明する。 実施例 1 内径8m高さ17mの流動層反応器1に径0.1〜
0.5mmのγ−アルミナ触媒250tを充填し、アンモ
ニア70容量%、炭酸ガス30容量%からなる混合ガ
スを毎時32000m3通じて流動化させ390℃の反応温
度で毎時13tの溶融尿素を反応器に供給し1ケ月
間連続運転を行なつた。運転を止めて反応器多孔
板下の反応器下部に触媒が50t蓄積していた。触
媒の一部は固つていた。この下部に蓄積した触媒
を取り出し6メツシユの篩で振つて塊状物を除い
た。塊状物が除かれた触媒量は26tであつた。こ
の触媒を10t反応器の触媒層に供給した。メラミ
ン合成反応を再開し同様の条件で反応させたとこ
ろ新規の触媒を用いた場合と全く同等の性能を有
することが確認された。尿素のメラミンへの転化
率および製品メラミンの樹脂化速度の経時変化を
第1表に示す。参考例1は全量新規触媒を用いた
場合を示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing melamine. A method of synthesizing melamine from urea and/or its thermal decomposition products by a fluidized bed reaction in the presence of a granular or powdered solid acid catalyst in an ammonia atmosphere is known. Traditionally, solid acid catalysts used in synthesis have the disadvantage of decreasing the conversion rate of urea to melamine and the quality of the product melamine over time, and this deteriorated catalyst is exposed to oxygen containing water vapor at high temperatures. It was recycled and used by burning off the attached organic matter (Japanese Patent Application Laid-Open No. 1983-22385).
issue). By the way, in a fluidized bed reactor, a perforated plate is installed at the bottom of the reactor in order to improve the dispersion of the gas introduced from the bottom of the reactor into the reactor and to prevent the catalyst from depositing at the bottom of the reactor. . However, in reality, as the reaction progresses, the catalyst falls and accumulates under the porous plate. Part of the recovered catalyst that has fallen and accumulated has become agglomerated, and it is impossible to reuse it as it is. The present inventors conducted intensive research on the reuse of the recovered catalyst accumulated at the bottom of the perforated plate, and surprisingly found that if the lumps were removed from the recovered catalyst accumulated at the bottom of the perforated plate, the resulting granules or powder The present invention was completed based on the discovery that the solid acid catalyst can be used as a reaction catalyst as it is without any regeneration treatment. That is, the present invention is a method for synthesizing melamine from urea and/or its thermal decomposition products in the presence of a granular or powdery solid acid catalyst using a fluidized bed reactor equipped with a perforated plate at the bottom of the reactor. The method is characterized in that all or part of the granular or powdery solid acid catalyst from which lumps have been removed is supplied to the reactor from the recovered catalyst accumulated in the lower part of the porous plate of the reactor. Hereinafter, the present invention will be explained with reference to the drawings. FIG. 1 is a diagram schematically showing a reactor of the present invention. A solid acid catalyst 5 is charged into the reactor 1 . The solid acid catalyst used in the present invention includes activated alumina, silica gel, silica alumina, silica magnesia, magnesia, chromia, chromia alumina, silica zirconia, alumina boria, titania boria, zeolite, acid clay, montmorillonite, kaolinite, bentonite, diatomaceous earth phosphorus. Acid, silica phosphoric acid, etc. are used. The shape of the catalyst may be granular or powder. This solid catalyst is fluidized by a mixed gas consisting of ammonia and carbon dioxide introduced from the lower nozzle 8 of the reactor. The perforated plate 2 installed above the gas inlet at the bottom of the reactor is intended to prevent the catalyst from falling to the bottom of the reactor, but it also has many fine holes for gas circulation. There is. The internal temperature of the reactor during melamine synthesis is 300-400℃
is suitable. Urea and/or its pyrolysis products are introduced into the reactor via line 7. Urea and/or its thermal decomposition products are usually used in the form of molten urea in a fluidized state. In the reactor, urea is converted to melamine, which is separated from the catalyst by a cyclone and taken out from the top of the reactor. Most of the catalyst flowing in the reactor is present in the upper part of the perforated plate 2, but as the reaction progresses, some of the catalyst passes through the holes in the perforated plate and accumulates in the lower part 6 of the reactor and is collected. Ru. The accumulated recovered catalyst contains partially solidified agglomerates. In the method of the present invention, the accumulated recovered catalyst is taken out, the lumps are removed, and all or part of the granular or powdery solid acid obtained is recycled and used as a reaction catalyst. As a means for removing lumps from the recovered catalyst, ordinary sieving may be used. The lumps to be removed are removed by sieving coarse particles having a particle size of 3 to 4 mm or more that do not form a fluidized state under the reaction conditions. The granular or powdered solid acid catalyst from which lumps have been removed can be reused in an amount of about 5 to 40 parts by weight, preferably 10 to 25 parts by weight, of the catalyst added to the reactor as a reaction catalyst for a newly conducted reaction. In addition, the catalyst recovered at the bottom of the perforated plate is taken out continuously or intermittently, lumps are removed from the recovered catalyst, and the reaction is carried out while continuously replenishing the insufficient amount of catalyst in the reaction system by combining it with new catalyst. You can also. According to the method of the present invention, lumps are simply physically removed from the catalyst that has conventionally been accumulated and recovered under the perforated plate at the bottom of the reactor. Since it exhibits exactly the same performance as a catalyst, there is no need to regenerate all the catalysts that have deteriorated over time, which simplifies the melamine production process and improves the catalyst consumption rate. Next, the method of the present invention will be explained in more detail with reference to Examples. Example 1 A fluidized bed reactor 1 with an inner diameter of 8 m and a height of 17 m has a diameter of 0.1~
Filled with 250 tons of 0.5 mm γ-alumina catalyst, a mixed gas consisting of 70% by volume of ammonia and 30 % by volume of carbon dioxide was fluidized through 32,000 m3 per hour, and 13 tons of molten urea per hour was fed into the reactor at a reaction temperature of 390°C. It was supplied and operated continuously for one month. Operation was stopped and 50 tons of catalyst had accumulated at the bottom of the reactor under the reactor's perforated plate. Part of the catalyst was solidified. The catalyst accumulated in the lower part was taken out and sieved through a 6-mesh sieve to remove lumps. The amount of catalyst from which lumps were removed was 26 tons. This catalyst was supplied to the catalyst bed of a 10t reactor. When the melamine synthesis reaction was restarted under the same conditions, it was confirmed that the melamine synthesis reaction had exactly the same performance as when using the new catalyst. Table 1 shows changes over time in the conversion rate of urea to melamine and the rate of resinization of the product melamine. Reference Example 1 shows the case where the new catalyst was used entirely. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るメラミン製造用反応器
の1例を断面図で示す。図中、各符号はそれぞれ
次を示す。 1……反応器、2……多孔板、3……サイクロ
ン、4……スパージヤー、5……触媒流動層、6
……反応器下部、7……尿素供給ライン、8……
反応器下部ノヅル、9……加熱コイル、10……
反応器出口ライン。
FIG. 1 shows a cross-sectional view of an example of a reactor for producing melamine according to the present invention. In the figure, each symbol indicates the following. 1... Reactor, 2... Perforated plate, 3... Cyclone, 4... Spargeer, 5... Catalyst fluidized bed, 6
... lower part of the reactor, 7 ... urea supply line, 8 ...
Reactor lower nozzle, 9... Heating coil, 10...
Reactor outlet line.

Claims (1)

【特許請求の範囲】[Claims] 1 尿素および/またはその熱分解生成物から粒
状または粉状の固体酸触媒の存在下、反応器下部
に多孔板を備えた流動層反応器を用いてメラミン
を合成する方法に於いて、反応器の多孔板の下部
に回収された固体酸触媒から塊状物を除去して再
使用することを特徴とするメラミンの製造方法。
1. In a method for synthesizing melamine from urea and/or its thermal decomposition products in the presence of a granular or powdery solid acid catalyst using a fluidized bed reactor equipped with a perforated plate at the bottom of the reactor, the reactor A method for producing melamine, which comprises removing lumps from a solid acid catalyst collected at the bottom of a perforated plate and reusing the solid acid catalyst.
JP6595584A 1984-04-04 1984-04-04 Preparation of melamine Granted JPS60209575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6595584A JPS60209575A (en) 1984-04-04 1984-04-04 Preparation of melamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6595584A JPS60209575A (en) 1984-04-04 1984-04-04 Preparation of melamine

Publications (2)

Publication Number Publication Date
JPS60209575A JPS60209575A (en) 1985-10-22
JPH0533224B2 true JPH0533224B2 (en) 1993-05-19

Family

ID=13301912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6595584A Granted JPS60209575A (en) 1984-04-04 1984-04-04 Preparation of melamine

Country Status (1)

Country Link
JP (1) JPS60209575A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867341A (en) * 1981-09-26 1983-04-21 バスフ アクチエンゲゼルシヤフト Improvement of melamine quality by reactivating catalyst used in melamine synthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867341A (en) * 1981-09-26 1983-04-21 バスフ アクチエンゲゼルシヤフト Improvement of melamine quality by reactivating catalyst used in melamine synthesis

Also Published As

Publication number Publication date
JPS60209575A (en) 1985-10-22

Similar Documents

Publication Publication Date Title
US2455419A (en) Synthesis of hydrocarbons and regeneration of synthesis catalyst
JP2000204050A (en) Production of hydrocarbon from synthetic gas
US2654659A (en) Distribution for inlet gas
JP2005522566A (en) Hydrocarbon synthesis method using alkali-promoted iron catalyst
US2891094A (en) New catalyst for reducing nitrobenzene and the process of reducing nitrobenzene thereover
US2760961A (en) Preparation of melamine
KR20220094149A (en) Direct decomposition device and direct decomposition method for hydrocarbon
US2467803A (en) Synthesis of hydrocarbons
EP0018695B1 (en) Method for the preparation of melamine
JPS6284031A (en) Method of carrying out chemical equilibrium reaction
US5972827A (en) Catalytic oxychlorination of hydrocarbons to produce chlorocarbons
JPH0533224B2 (en)
US3290309A (en) Synthesis of melamine
JP4221060B2 (en) Gas phase catalytic oxidation of n-butane to maleic anhydride, including in situ catalyst calcination / activation
JPS5921658A (en) Continuous manufacture of tetrachlorophthalonitrile
US2553398A (en) Method of effecting catalytic conversion
JPS5855329A (en) Manufacture of silicon tetrachloride
JPH03181435A (en) Production of dimethyl ether
JP3117710B2 (en) Production of melamine from urea
KR101602685B1 (en) Continuous process and apparatus for producing carbon nanotubes
US2765222A (en) Production of gas mixtures containing carbon monoxide and hydrogen
JP4981222B2 (en) Method for producing ε-caprolactam
US3216801A (en) Process for producing hydrogen
US3054796A (en) Melamine process
US3525590A (en) Process and apparatus for the preparation of ammonia and chlorine from ammonium chloride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term