JPH05331633A - Vapor deposition device - Google Patents
Vapor deposition deviceInfo
- Publication number
- JPH05331633A JPH05331633A JP16015092A JP16015092A JPH05331633A JP H05331633 A JPH05331633 A JP H05331633A JP 16015092 A JP16015092 A JP 16015092A JP 16015092 A JP16015092 A JP 16015092A JP H05331633 A JPH05331633 A JP H05331633A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- electron beam
- hearth
- raw material
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、補助陽極を有する蒸着
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition apparatus having an auxiliary anode.
【0002】[0002]
【従来の技術】大電流、低電圧プラズマガンは、100
V程度の低い電圧で、大電流の電子ビームを供給するこ
とができ、供給される電子のエネルギーが100eV程
度と低いために反応ガスや蒸着原料物質を高密度で、イ
オン化、及び活性化することができる。2. Description of the Related Art A high current, low voltage plasma gun is 100
A high-current electron beam can be supplied at a voltage as low as V, and the energy of supplied electrons is as low as about 100 eV, so that the reaction gas and the vapor deposition material can be ionized and activated at high density. You can
【0003】すなわち、蒸着原料物質を高速で蒸発でき
るだけでなく、蒸発空間に蒸発原料物質の反応性の非常
に高いプラズマを形成でき、低温基板上でも高速度で、
しかも種々の特性に優れた性能を示す薄膜が高速で形成
できるという特徴をもつ(特開平2−240250号公
報参照)。That is, not only the evaporation source material can be evaporated at a high speed, but also a plasma having a very high reactivity of the evaporation source material can be formed in the evaporation space, so that the evaporation source material can be evaporated on the low temperature substrate at a high speed.
Moreover, it has a feature that a thin film showing excellent performance in various characteristics can be formed at high speed (see Japanese Patent Laid-Open No. 240250/1990).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、原料ハ
ースを固定したまま成膜を続けると、膜厚を含めた成膜
バッチ間(本明細書において、”成膜バッチ”とは、プ
ラズマガン電源を入れ、基板を導入して成膜を行い、プ
ラズマガン電源を止めるまでの1成膜処理のことをい
う)の薄膜特性は安定しているが、原料の有効利用面積
が小さくなるばかりでなく、原料の補給が容易にできな
い。すなわち、蒸着原料補給のために成膜を中止した
り、蒸着空間を大気に開放しなければならず、連続成膜
バッチ数に限りがあるという欠点を有していた。However, when film formation is continued with the raw material hearth fixed, the film formation batches including the film thickness (in this specification, "film formation batch" means the plasma gun power supply). The film characteristics of (1 film forming process from putting in, introducing the substrate to forming a film, and stopping the plasma gun power supply) are stable, but not only the effective use area of the raw material becomes smaller, Cannot easily replenish raw materials. That is, there is a drawback in that the number of continuous film forming batches is limited because it is necessary to stop the film forming to replenish the evaporation material and to open the evaporation space to the atmosphere.
【0005】一方、蒸着中に蒸着原料ハースを単純に動
かすことによって、蒸着原料の有効利用面積が広がり、
原料補給も容易となり、上記の問題点を解決できる反
面、成膜中、あるいは成膜バッチ間で、成膜速度や薄膜
特性が大きく変動してしまうという欠点を有していた。On the other hand, by simply moving the vapor deposition material hearth during vapor deposition, the effective use area of the vapor deposition material is expanded,
Although the supply of raw materials becomes easy and the above-mentioned problems can be solved, there is a drawback that the film forming rate and the thin film characteristics greatly change during film forming or between film forming batches.
【0006】すなわち、大電流電子ビームが高い電子密
度を持ち、蒸着原料ハースは、高密度のプラズマを形成
するためのアノード(陽極)としても機能するために、
この蒸着原料ハースを蒸着中に動かすと電子ビームやプ
ラズマの境界条件が大きく変動することになり、それに
伴って、電子ビームやプラズマの特性や空間分布が大き
く変動し、成膜速度や薄膜特性が大きく変動するという
欠点を有していた。本発明の目的は、従来技術の有して
いた前述の欠点を解消しようとするものである。That is, since the high current electron beam has a high electron density and the vapor deposition material hearth also functions as an anode for forming a high density plasma,
If this vapor deposition material hearth is moved during vapor deposition, the boundary conditions of the electron beam and plasma will fluctuate significantly, and along with that, the characteristics and spatial distribution of the electron beam and plasma will fluctuate significantly, and the film deposition rate and thin film characteristics will change. It had the drawback of large fluctuations. The object of the present invention is to eliminate the aforementioned drawbacks of the prior art.
【0007】[0007]
【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、電子ビームを発生す
ることによりプラズマ流を形成可能なプラズマガンと、
電子ビームのアノードとして機能し、蒸着中に移動可能
な蒸着原料ハースと、蒸着原料ハースと同電位で、電子
ビームによる蒸着原料の加熱、蒸発を妨げない位置に設
けられた補助陽極であって、蒸着中に蒸着原料ハースの
位置を変化させても、電子ビームとプラズマからみた実
効陽極面積が一定に保たれるような補助陽極とを有する
ことを特徴とする蒸着装置を提供するものである。かか
る本発明の蒸着装置は、成膜速度や薄膜特性の変動がな
く、蒸着原料の有効利用と原料補給が容易に行えるとい
う優れた効果を有するものである。The present invention has been made to solve the above-mentioned problems, and a plasma gun capable of forming a plasma flow by generating an electron beam,
A vapor deposition raw material hearth that functions as an electron beam anode and is movable during vapor deposition, and an auxiliary anode that has the same potential as the vapor deposition raw material hearth and is provided at a position that does not interfere with heating and vaporization of the vapor deposition raw material by the electron beam, (EN) A vapor deposition apparatus having an auxiliary anode capable of keeping a constant effective anode area as viewed from an electron beam and plasma even when the position of a vapor deposition material hearth is changed during vapor deposition. The vapor deposition apparatus of the present invention has an excellent effect that the vapor deposition raw material can be effectively used and the raw material can be easily replenished without changing the film forming rate and the thin film characteristic.
【0008】図1(a)は本発明の蒸着装置の一例の概
念的断面図、図1(b)は図1(a)の装置の蒸着室の
概念的平面図である。1はプラズマガン、3は蒸着原料
(以下、単に原料ともいう)、4は蒸着原料3を保持
し、電子ビームのアノードとして機能し、蒸着中に移動
可能な蒸着原料ハース(以下、単に、原料ハース、ある
いは、ハースともいう)、6は薄膜を形成する基体であ
る。FIG. 1 (a) is a conceptual cross-sectional view of an example of the vapor deposition apparatus of the present invention, and FIG. 1 (b) is a conceptual plan view of the vapor deposition chamber of the apparatus of FIG. 1 (a). Reference numeral 1 is a plasma gun, 3 is a vapor deposition raw material (hereinafter also simply referred to as raw material), 4 is a vapor deposition raw material hearth (hereinafter, simply referred to as raw material) that holds the vapor deposition raw material 3 and functions as an anode of an electron beam. Reference numeral 6 is a substrate for forming a thin film.
【0009】本発明の装置は、蒸着原料ハースと同電位
で、電子ビームによる蒸着原料の加熱、蒸発を妨げない
位置に設けられた補助陽極であって、蒸着中に蒸着原料
ハースの位置を変化させても、電子ビームとプラズマか
らみた実効陽極面積が一定に保たれるような補助陽極1
4を有することを特徴とするものである。図1の装置例
では、補助陽極14は、電子ビーム及びプラズマ流9と
原料ハース4の間に設けられ、原料3の加熱、蒸発を妨
げないように、補助陽極開口部15を有する。The apparatus of the present invention is an auxiliary anode provided at the same potential as the vapor deposition raw material hearth and at a position that does not hinder the heating and vaporization of the vapor deposition raw material by the electron beam, and changes the position of the vapor deposition raw material hearth during vapor deposition. Even if the auxiliary anode 1 is used, the effective anode area seen from the electron beam and the plasma is kept constant.
It is characterized by having 4. In the apparatus example of FIG. 1, the auxiliary anode 14 is provided between the electron beam and plasma stream 9 and the raw material hearth 4, and has an auxiliary anode opening 15 so as not to prevent heating and evaporation of the raw material 3.
【0010】電子ビーム、及びプラズマ流9からみて、
補助陽極14に隠れた原料ハース部分は電子ビーム、及
びプラズマに対して陽極とはならず、電子ビーム、及び
プラズマからみえる実効的な陽極としては、固定されて
いる補助陽極14と、補助陽極開口部15を通して電子
ビームが照射されている原料ハースの一部分のみに限定
される。したがって、原料ハースを蒸着中に動かして
も、電子ビーム、及びプラズマからみて、実効陽極面積
と陽極の相対位置が常に一定に保たれ、電子ビームやプ
ラズマの境界条件は変動しない。From the viewpoint of the electron beam and the plasma flow 9,
The material hearth portion hidden in the auxiliary anode 14 does not serve as an anode for the electron beam and plasma, and as an effective anode that can be seen from the electron beam and plasma, the fixed auxiliary anode 14 and the auxiliary anode opening are provided. It is limited to only a part of the raw hearth irradiated with the electron beam through the portion 15. Therefore, even if the raw hearth is moved during vapor deposition, the relative position of the effective anode area and the anode is always kept constant as seen from the electron beam and plasma, and the boundary conditions of the electron beam and plasma do not change.
【0011】ハースの裏側に設けられる磁石5は、電子
ビームを束縛し、蒸着原料3上に導くための磁力線を形
成する磁場形成手段の1つであり、磁力線の向きが上下
方向になるように配置され、蒸着原料3上の電子ビーム
スポット12に電子ビームを導けるような位置に設けら
れる。このような電子ビームに沿って、プラズマ流9が
形成される。The magnet 5 provided on the back side of the hearth is one of magnetic field forming means for binding the electron beam and forming a magnetic force line for guiding the electron beam onto the vapor deposition material 3, so that the direction of the magnetic force line is vertical. It is arranged and provided at a position where the electron beam can be guided to the electron beam spot 12 on the vapor deposition material 3. A plasma stream 9 is formed along such an electron beam.
【0012】ハース4や補助陽極14の形状は、特に限
定されず、図1のような四角形、円形、多角形など、所
望の形状とすることができる。ハース4の移動方法とし
ては、成膜中に任意の速度、移動方向で定速移動させる
方法と、成膜中はハースを停止させ、成膜バッチ終了後
に任意の距離だけ移動させる方法とがあり、どちらの方
法を選択してもよい。The shape of the hearth 4 and the auxiliary anode 14 is not particularly limited, and can be a desired shape such as a quadrangle, a circle or a polygon as shown in FIG. As the method for moving the hearth 4, there are a method of moving the hearth 4 at a constant speed and a moving direction at a constant speed during the film formation, and a method of stopping the hearth during the film formation and moving the hearth an arbitrary distance after the film formation batch is completed. Either method may be selected.
【0013】本発明に用いられる電子ビームの供給源で
あるプラズマガン1としては、アーク放電型プラズマガ
ンや、ホローカソード型プラズマガン等、電子ビームを
発生できるものであればよいが、なかでも非常に密度の
高い電子ビーム、及びそれにより高密度のプラズマを容
易に供給できるアーク放電型のプラズマガン1を用いる
のが好ましい。かかるアーク放電型プラズマガン1とし
ては、複合陰極型プラズマ発生装置、または、圧力勾配
型プラズマ発生装置、または、両者を組み合わせたプラ
ズマ発生装置が好ましい。このようなプラズマ発生装置
については、「真空」、第25巻、第10号(1982
年発行)に記載されている。The plasma gun 1 which is a source of the electron beam used in the present invention may be an arc discharge type plasma gun, a hollow cathode type plasma gun or the like as long as it can generate an electron beam. It is preferable to use an arc discharge type plasma gun 1 capable of easily supplying a high-density electron beam, and thereby a high-density plasma. The arc discharge type plasma gun 1 is preferably a composite cathode type plasma generator, a pressure gradient type plasma generator, or a plasma generator in which both are combined. Regarding such a plasma generator, "Vacuum", Vol. 25, No. 10 (1982).
Issued annually).
【0014】複合陰極型プラズマ発生装置とは、熱容量
の小さい補助陰極とLaB6 からなる主陰極とを有し、
該補助陰極に初期放電を集中させ、短時間で加熱し、そ
れを利用して主陰極LaB6 を加熱し、主陰極LaB6
が最終陰極としてアーク放電を行うようにしたプラズマ
発生装置である。例えば、図2のような装置が挙げられ
る。The composite cathode type plasma generator has an auxiliary cathode having a small heat capacity and a main cathode made of LaB6,
The initial discharge is concentrated on the auxiliary cathode and heated in a short time, and the main cathode LaB6 is heated by using it to heat the main cathode LaB6.
Is a plasma generator that performs arc discharge as the final cathode. For example, a device as shown in FIG.
【0015】補助陰極52としては、W、Ta、Moな
どの高融点金属のコイル、またはパイプ状のものが挙げ
られる。53は陰極を保護するためのW等からなる円
板、54はMo等からなる円筒、55はMo等からなる
円板状の熱シールド、56は冷却水、57はステンレス
等からなる陰極支持台、58はガス導入口である。As the auxiliary cathode 52, a coil made of a refractory metal such as W, Ta or Mo, or a pipe-shaped one can be used. Reference numeral 53 is a disk made of W or the like for protecting the cathode, 54 is a cylinder made of Mo or the like, 55 is a disk-shaped heat shield made of Mo or the like, 56 is cooling water, and 57 is a cathode support base made of stainless steel or the like. , 58 are gas inlets.
【0016】このような複合陰極型プラズマ発生装置に
おいては、熱容量の小さな補助陰極52を集中的に初期
放電で加熱し、初期陰極として動作させ、間接的にLa
B6の主陰極51を加熱し、最終的にはLaB6 の主陰
極51によるアーク放電へと移行させる方式であるの
で、補助陰極52が2500℃以上の高温になって寿命
に影響する以前にLaB6 の主陰極51が1500℃〜
1800℃に加熱され、大電子ビームが放出可能とな
り、補助陰極52のそれ以上の温度上昇が避けられると
いう点が大きな利点である。In such a composite cathode type plasma generator, the auxiliary cathode 52 having a small heat capacity is intensively heated by the initial discharge to operate as the initial cathode and indirectly La.
This is a method in which the main cathode 51 of B6 is heated, and finally the arc discharge is performed by the main cathode 51 of LaB6. Therefore, before the auxiliary cathode 52 reaches a high temperature of 2500 ° C. or higher and its life is affected, Main cathode 51 is 1500 ℃ ~
It is a great advantage that it is heated to 1800 ° C., a large electron beam can be emitted, and a further temperature rise of the auxiliary cathode 52 can be avoided.
【0017】また、圧力勾配型プラズマ発生装置とは、
陰極と陽極の間に中間電極を介在させ、陰極領域を数T
orr程度に、そして陽極領域を10-3Torr程度に
保って放電を行うものであり、陽極領域からのイオンの
逆流による陰極の損傷がない上に、中間電極のない放電
形式のものと比較して、放電電子ビームをつくりだすた
めのキャリアガスのガス効率が極めて高く、大電流放電
が可能であるという利点を有している。The pressure gradient type plasma generator is
An intermediate electrode is interposed between the cathode and the anode, and the cathode area is several Ts.
The discharge is carried out at about orr and the anode region is maintained at about 10 −3 Torr, and there is no damage to the cathode due to backflow of ions from the anode region, and in comparison with the discharge type without intermediate electrode. The gas efficiency of the carrier gas for producing the discharge electron beam is extremely high, and it has an advantage that a large current discharge is possible.
【0018】複合陰極型プラズマ発生装置と圧力勾配型
プラズマ発生装置とは、それぞれ上記のような利点を有
しており、両者を組み合わせたプラズマ発生装置、すな
わち、陰極として複合陰極を用いると共に中間電極も配
したプラズマ発生装置は、上記利点を同時に得ることが
できるので本発明のアーク放電プラズマガン1として大
変好ましい。The composite cathode type plasma generator and the pressure gradient type plasma generator have the above-mentioned advantages, respectively. A plasma generator in which both are combined, that is, a composite cathode is used as a cathode and an intermediate electrode is used. The plasma generator having the above arrangement is also preferable as the arc discharge plasma gun 1 of the present invention because it can obtain the above advantages at the same time.
【0019】図1を参照しながら、蒸着室10の構成を
以下に説明する。磁場形成手段の1つである空芯コイル
2によって、プラズマガンの軸方向に磁場を形成し、そ
の際形成する磁場の向きはプラズマガンからの電子ビー
ムの出射方向とする。また、プラズマガン1の軸を中心
とし、基体6と反対側に蒸着原料3と蒸着ハース4を配
置する。また、電子ビーム成分を含んだプラズマ流をハ
ース4方向に曲げる目的で蒸着ハース4の裏側に磁石5
を配置し、空芯コイル2と磁石5により形成した磁力線
に沿って電子ビームを屈曲させる。The structure of the vapor deposition chamber 10 will be described below with reference to FIG. A magnetic field is formed in the axial direction of the plasma gun by the air-core coil 2 which is one of the magnetic field forming means, and the direction of the magnetic field formed at this time is the emission direction of the electron beam from the plasma gun. Further, the vapor deposition material 3 and the vapor deposition hearth 4 are arranged on the side opposite to the substrate 6 with the axis of the plasma gun 1 as the center. A magnet 5 is provided on the back side of the vapor deposition hearth 4 for the purpose of bending the plasma flow containing the electron beam component in the direction of the hearth 4.
Are arranged, and the electron beam is bent along the lines of magnetic force formed by the air-core coil 2 and the magnet 5.
【0020】この場合、プラズマガン1から出た磁力線
がハース上に効率よく収束させるために、ハース側から
S極、N極となるように磁石5を配置し、プラズマガン
1に対して蒸着ハース4が陽極になるようにプラズマガ
ン電源7による電圧を印加して、プラズマ流9の中の主
に電子ビームによる電子ビームスポット12において蒸
着原料3を加熱蒸発させる。In this case, in order to efficiently focus the magnetic force lines emitted from the plasma gun 1 on the hearth, the magnets 5 are arranged so that the hearth has the S pole and the N pole, and the vaporization hearth is deposited on the plasma gun 1. A voltage from a plasma gun power source 7 is applied so that 4 becomes an anode, and the vapor deposition material 3 is heated and evaporated at an electron beam spot 12 mainly in the plasma stream 9 by an electron beam.
【0021】また、基体6は蒸着ハース4と対向するよ
うに配置する。このとき、基体を加熱ヒーター11によ
って加熱してもよく、基体バイアス電源8により、直
流、あるいはRFの基体バイアス電圧を印加してもよ
い。反応性蒸着を行う場合には、反応ガス13を導入す
る。The substrate 6 is arranged so as to face the vapor deposition hearth 4. At this time, the substrate may be heated by the heater 11 or the substrate bias power source 8 may apply a DC or RF substrate bias voltage. When performing the reactive deposition, the reaction gas 13 is introduced.
【0022】また、プラズマガン、蒸着原料ハース、及
び補助陽極の組み合わせを図1のように、基体と平行な
平面内に2組以上並べて設けて、より大きな基体に均一
に薄膜形成を行えるようにしてもよい。Further, as shown in FIG. 1, two or more sets of a plasma gun, a vapor deposition material hearth, and an auxiliary anode are arranged side by side in a plane parallel to the substrate so that a thin film can be uniformly formed on a larger substrate. May be.
【0023】[0023]
【作用】本発明では、蒸発空間に反応性の非常に高いプ
ラズマを形成でき、低温基板上でも高速度でしかも優れ
た特性を持つ薄膜が容易に形成できる。これに加え、成
膜速度や薄膜特性の変動がなく、蒸着原料の有効利用と
原料の供給が容易に行えるという作用も有する。すなわ
ち、原料ハース本体が電子ビームスポットを中心に往復
移動できるために、蒸着原料は、広い面積に渡って消費
される。このため、原料の有効利用面積が大きくなり、
蒸着原料補給の頻度が減少するだけでなく、電子ビーム
が照射されていない部分から成膜中でも容易に原料の補
給が可能となる。According to the present invention, extremely reactive plasma can be formed in the evaporation space, and a thin film having high speed and excellent characteristics can be easily formed even on a low temperature substrate. In addition to this, there is an effect that the deposition rate and the thin film characteristics do not fluctuate, and the vapor deposition raw material can be effectively used and the raw material can be easily supplied. That is, since the source hearth body can reciprocate around the electron beam spot, the vapor deposition source is consumed over a wide area. Therefore, the effective use area of the raw material becomes large,
Not only the frequency of replenishing the vapor deposition raw material is reduced, but also the raw material can be replenished easily from the portion not irradiated with the electron beam even during film formation.
【0024】さらに、本発明では、補助陽極部に隠れた
原料ハース部分は電子ビーム、及びプラズマに対して陽
極とはならず、電子ビーム、及びプラズマからみえる実
効的な陽極としては、固定されている補助陽極部と補助
陽極部の孔を通して電子ビームが照射されている原料ハ
ースの一部分のみに限定される。Further, in the present invention, the raw material hearth portion hidden in the auxiliary anode portion does not serve as an anode for the electron beam and plasma, but is fixed as an effective anode visible from the electron beam and plasma. It is limited to only a part of the raw hearth irradiated with the electron beam through the auxiliary anode part and the hole of the auxiliary anode part.
【0025】したがって、原料ハースを蒸着中に動かし
ても、電子ビーム、及びプラズマからみて、陽極面積と
相対位置が常に一定に保たれ、大電流放電に特に重要な
電子ビームやプラズマの境界条件の変動、すなわち、蒸
着速度や蒸着物質の活性度の変動が小さくなり、その結
果、膜厚分布や薄膜特性の変動が小さくなるという優れ
た作用を有する。Therefore, even if the source hearth is moved during vapor deposition, the anode area and relative position are always kept constant in terms of the electron beam and the plasma, and the boundary conditions of the electron beam and the plasma, which are particularly important for large current discharge, are satisfied. This has an excellent effect that fluctuations, that is, fluctuations in the vapor deposition rate and the activity of the vapor deposition material are reduced, and as a result, fluctuations in the film thickness distribution and thin film characteristics are reduced.
【0026】[0026]
[実施例]図2に示すような圧力勾配型のプラズマガ
ン、及び基板の進行方向と平行に並進運動ができる原料
ハースと、補助陽極14を配置した図1のような本発明
の蒸着装置を用い、蒸着原料として錫が7.5重量%添
加された酸化インジウムの焼結体を粉砕し使用した。成
膜基板としては、あらかじめ200℃に加熱されたノン
アルカリガラス(旭硝子製ANガラス)を用いた。[Embodiment] A pressure gradient type plasma gun as shown in FIG. 2, a raw material hearth capable of translational movement parallel to the traveling direction of a substrate, and an evaporation apparatus of the present invention as shown in FIG. As a vapor deposition material, a sintered body of indium oxide containing 7.5% by weight of tin was crushed and used. As the film formation substrate, non-alkali glass (AN glass manufactured by Asahi Glass) preheated to 200 ° C. was used.
【0027】まず、成膜室内を1×10-5Torr以下
に排気した後、アルゴンガスと酸素ガスの混合ガスを、
ガス圧が1×10-3Torrになるように導入し、放電
電流を250Aに固定し、高密度プラズマを発生させ
た。その後、上記ガラス基板を搬送速度45cm/分で
搬送し、膜厚2500ÅのITO膜を成膜した。First, the film forming chamber is evacuated to 1 × 10 -5 Torr or less, and then a mixed gas of argon gas and oxygen gas is added.
It was introduced so that the gas pressure was 1 × 10 −3 Torr, the discharge current was fixed at 250 A, and high density plasma was generated. Then, the glass substrate was conveyed at a conveying speed of 45 cm / min to form an ITO film having a film thickness of 2500 Å.
【0028】図3、図4に、ハースをガン寄りの位置に
停止して成膜した場合(□)、ハースを中央位置に停止
して成膜た場合(+)、ガンと反対位置に停止して成膜
した場合(◇)、のそれぞれにおける規格化膜厚分布と
規格化比抵抗分布(ハースがガン寄りの位置の場合の膜
厚と比抵抗に対する相対値を規格化膜厚及び規格化比抵
抗という、以下同じ)の変化を示す。それぞれの測定
は、基板の進行方向と垂直な幅方向60cmの範囲で行
った。In FIGS. 3 and 4, when the hearth is stopped near the gun for film formation (□), when the hearth is stopped at the center position for film formation (+), the hearth is stopped at a position opposite to the gun. Normalized film thickness distribution and standardized resistivity distribution for each of the cases (◇) (relative values for the film thickness and resistivity when the hearth is close to the gun are standardized and standardized) The change in the specific resistance, which is the same hereinafter), is shown. Each measurement was performed within a range of 60 cm in the width direction perpendicular to the traveling direction of the substrate.
【0029】比抵抗値190μΩcm〜150μΩcm
と良好な電気特性を示す薄膜が得られるだけでなく、図
3、図4に示されるように、ハースの停止位置による膜
厚分布と比抵抗分布の変動は、次に示す比較例と比較し
て半分以下であった。したがって、補助陽極を用いるこ
とによって原料ハースを動かしながら成膜した場合で
も、進行方向での薄膜の諸特性の変動は小さいだけでな
く、成膜中においても原料供給が容易となることがわか
る。Specific resistance value 190 μΩcm to 150 μΩcm
In addition to obtaining a thin film exhibiting excellent electrical characteristics, as shown in FIGS. 3 and 4, variations in the film thickness distribution and the specific resistance distribution depending on the stop position of the hearth are compared with those of the comparative example shown below. Was less than half. Therefore, it is understood that even when the film is formed while moving the raw hearth by using the auxiliary anode, not only the fluctuations in various characteristics of the thin film in the traveling direction are small, but also the raw material can be easily supplied during the film formation.
【0030】[比較例]図2に示すような圧力勾配型の
プラズマガンを配置した図1のような蒸着装置を用い、
蒸着原料として錫が7.5重量%添加された酸化インジ
ウムの焼結体を粉砕し使用した。ただしこの例では、補
助陽極14は用いずに、基板の進行方向と平行に並進運
動ができる原料ハースを用いた。成膜基板としては、あ
らかじめ200℃に加熱されたノンアルカリガラス(旭
硝子製ANガラス)を用いた。[Comparative Example] Using a vapor deposition apparatus as shown in FIG. 1 in which a pressure gradient type plasma gun as shown in FIG. 2 is arranged,
As a vapor deposition material, a sintered body of indium oxide containing 7.5% by weight of tin was crushed and used. However, in this example, the auxiliary heart anode 14 was not used, but the raw material hearth that was capable of translational movement parallel to the traveling direction of the substrate was used. As the film formation substrate, non-alkali glass (AN glass manufactured by Asahi Glass) preheated to 200 ° C. was used.
【0031】まず、成膜室内を1×10-5Torr以下
に排気した後、アルゴンガスと酸素ガスの混合ガスを、
ガス圧が1×10-3Torrになるように導入し、放電
電流を250Aに固定し、高密度プラズマを発生させ
た。その後、上記ガラス基板を搬送速度45cm/分で
搬送し、膜厚2500ÅのITO膜を成膜した。図5、
図6にハースをガン寄りの位置に停止して成膜した場合
(□)、ハースを中央位置に停止して成膜した場合
(+)、ガンと反対位置に停止して成膜した場合
(◇)、のそれぞれにおける規格化膜厚分布と規格化比
抵抗分布の変化を示す。それぞれの測定は、基板の進行
方向と垂直な幅方向60cmの範囲で行った。First, the film forming chamber is evacuated to 1 × 10 -5 Torr or less, and then a mixed gas of argon gas and oxygen gas is added.
It was introduced so that the gas pressure was 1 × 10 −3 Torr, the discharge current was fixed at 250 A, and high density plasma was generated. Then, the glass substrate was conveyed at a conveying speed of 45 cm / min to form an ITO film having a film thickness of 2500 Å. Figure 5,
In Fig. 6, when the hearth is stopped near the gun for film formation (□), when the hearth is stopped at the center position for film formation (+), and when the hearth is stopped at the opposite position for film formation ( The changes in the normalized film thickness distribution and the normalized specific resistance distribution for each of Each measurement was performed within a range of 60 cm in the width direction perpendicular to the traveling direction of the substrate.
【0032】比抵抗値190μΩcm〜160μΩcm
と良好な電気特性を示す薄膜が得られるが、図5、図6
に示されるように、ハースの停止位置によって、膜厚分
布や比抵抗の分布が大きく変動する。特に、ハースを並
進させながら成膜した場合には、この変動が基板の進行
方向での諸特性の大きな変動となって現れるものと予想
される。Specific resistance value 190 μΩcm to 160 μΩcm
And a thin film showing excellent electric characteristics can be obtained.
As shown in (3), the film thickness distribution and the specific resistance distribution fluctuate greatly depending on the stop position of the hearth. In particular, when a film is formed while the hearth is translated, it is expected that this variation will appear as a large variation in various characteristics in the traveling direction of the substrate.
【0033】[0033]
【発明の効果】本発明は、少なくとも一組のプラズマガ
ン、及び可動機構を有する原料ハースと該補助陽極を有
する蒸着装置において、低温基板上でも優れた特性を持
つ薄膜を容易に、しかも、成膜速度や薄膜特性の変動な
く高速で成膜できること、また、蒸着原料の有効利用と
原料の供給が容易に行えるという優れた効果を有する。INDUSTRIAL APPLICABILITY The present invention is capable of easily and easily forming a thin film having excellent characteristics even on a low temperature substrate in a vapor deposition apparatus having at least one set of plasma gun, a raw material hearth having a movable mechanism and the auxiliary anode. It has an excellent effect that a film can be formed at a high speed without a change in film speed and thin film characteristics, and that the vapor deposition material can be effectively used and the material can be easily supplied.
【0034】とくに、成膜バッチ間で蒸着容器の大気開
放を行わないインライン型の蒸着装置においては、蒸着
原料の供給のための大気開放頻度の減少(装置稼動率の
向上)の点から該補助陽極を有する装置は非常に好まし
い。すなわち、電子ビームの照射されていない原料ハー
ス部分より原料を補給すれば、成膜中でも容易に原料が
供給できるだけでなく、ハースの並進進運動方向に蒸着
室とは、真空バルブで仕切られた原料充填のための真空
室をもうければ、成膜終了後に蒸着室の真空状態を破ら
ずに容易に蒸着原料を供給できる。Particularly, in the case of an in-line type vapor deposition apparatus in which the vapor deposition container is not opened to the atmosphere between film forming batches, the auxiliary is used from the viewpoint of reducing the frequency of opening to the atmosphere for supplying the vapor deposition material (improving the operating rate of the apparatus). Devices with an anode are highly preferred. That is, if the raw material is replenished from the portion of the raw hearth which is not irradiated with the electron beam, the raw material can be easily supplied even during film formation, and the vapor deposition chamber is separated from the vapor deposition chamber in the translational movement direction of the hearth by the vacuum valve. If a vacuum chamber for filling is provided, the vapor deposition material can be easily supplied without breaking the vacuum state of the vapor deposition chamber after the film formation.
【0035】また、二組以上のプラズマガンと該補助陽
極を組み合わせることによって、1m×1m以上の大面
積に薄膜特性を低下させることなく成膜できるという効
果も有する。Further, by combining two or more sets of plasma guns and the auxiliary anode, it is possible to form a film in a large area of 1 m × 1 m or more without deteriorating thin film characteristics.
【図1】(a)本発明の蒸着装置の一例の概念的断面
図、(b)は(a)の装置の蒸着室の概念的平面図1A is a conceptual cross-sectional view of an example of a vapor deposition apparatus of the present invention, and FIG. 1B is a conceptual plan view of a vapor deposition chamber of the apparatus of FIG.
【図2】本発明で用いるアーク放電型のプラズマガンの
例の断面図FIG. 2 is a sectional view of an example of an arc discharge type plasma gun used in the present invention.
【図3】実施例におけるITO膜の膜厚分布を示すグラ
フFIG. 3 is a graph showing the film thickness distribution of the ITO film in the example.
【図4】実施例におけるITO膜の比抵抗分布を示すグ
ラフFIG. 4 is a graph showing the resistivity distribution of the ITO film in the example.
【図5】比較例におけるITO膜の膜厚分布を示すグラ
フFIG. 5 is a graph showing a film thickness distribution of an ITO film in a comparative example.
【図6】比較例におけるITO膜の比抵抗分布を示すグ
ラフFIG. 6 is a graph showing a specific resistance distribution of an ITO film in a comparative example.
1:プラズマガン 2:空芯コイル 3:蒸着原料 4:蒸着原料ハース 5:磁石 6:蒸着基体 7:プラズマガン電源 8:基板バイアス電源(直流、またはRF) 9:プラズマ流 10:蒸着室 11:加熱ヒーター 12:電子ビームスポット 13:反応ガス 14:補助陽極 15:補助陽極開口部 51:LaB6 主陰極 52:Taパイプの補助陰極 53:陰極を保護するためのW等からなる円板 54:Mo等からなる円筒 55:Mo等からなる円板状の熱シールド 56:冷却水 57:ステンレス等からなる陰極支持台 58:ガス導入口 1: Plasma gun 2: Air core coil 3: Vapor deposition material 4: Vapor deposition material hearth 5: Magnet 6: Vapor deposition substrate 7: Plasma gun power source 8: Substrate bias power source (DC or RF) 9: Plasma flow 10: Vapor deposition chamber 11 : Heater 12: Electron beam spot 13: Reaction gas 14: Auxiliary anode 15: Auxiliary anode opening 51: LaB6 main cathode 52: Ta pipe auxiliary cathode 53: Disk made of W for protecting the cathode 54: Cylinder 55 made of Mo or the like 55: Disc-shaped heat shield made of Mo or the like 56: Cooling water 57: Cathode support pedestal made of stainless steel 58: Gas inlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 室伏 光寿 山形県米沢市八幡平4丁目2837番10 株式 会社旭硝子ファインテクノ内 (72)発明者 鈴木 巧一 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsutoshi Murofushi 4-2837 Hachimantai, Yonezawa City, Yamagata Prefecture Asahi Glass Fine Techno Co., Ltd. Company Central Research Institute
Claims (3)
流を形成可能なプラズマガンと、電子ビームのアノード
として機能し、蒸着中に移動可能な蒸着原料ハースと、
蒸着原料ハースと同電位で、電子ビームによる蒸着原料
の加熱、蒸発を妨げない位置に設けられた補助陽極であ
って、蒸着中に蒸着原料ハースの位置を変化させても、
電子ビームとプラズマからみた実効陽極面積が一定に保
たれるような補助陽極とを有することを特徴とする蒸着
装置。1. A plasma gun capable of forming a plasma flow by generating an electron beam, and a vapor deposition material hearth that functions as an anode of the electron beam and is movable during vapor deposition.
An auxiliary anode that has the same potential as the vapor deposition raw material hearth, is provided at a position that does not prevent heating and evaporation of the vapor deposition raw material by the electron beam, and even if the position of the vapor deposition raw material hearth is changed during vapor deposition,
A vapor deposition apparatus comprising: an auxiliary anode that keeps an effective anode area as seen from an electron beam and plasma constant.
めの磁力線を形成する磁場形成手段を蒸着原料ハースの
裏側に設けたことを特徴とする請求項1の蒸着装置。2. A vapor deposition apparatus according to claim 1, wherein a magnetic field forming means for restraining the electron beam and forming magnetic force lines for guiding the electron beam onto the vapor deposition material is provided on the back side of the vapor deposition material hearth.
ス、及び補助陽極の組み合わせを2組以上有することを
特徴とする蒸着装置。3. A vapor deposition apparatus comprising two or more combinations of the plasma gun of claim 1, a vapor deposition material hearth, and an auxiliary anode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16015092A JPH05331633A (en) | 1992-05-27 | 1992-05-27 | Vapor deposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16015092A JPH05331633A (en) | 1992-05-27 | 1992-05-27 | Vapor deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05331633A true JPH05331633A (en) | 1993-12-14 |
Family
ID=15708958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16015092A Withdrawn JPH05331633A (en) | 1992-05-27 | 1992-05-27 | Vapor deposition device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05331633A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009062597A (en) * | 2007-09-07 | 2009-03-26 | Tsukishima Kikai Co Ltd | Vacuum film deposition system, method for vacuum-depositing resin film, and resin film |
JP2012041641A (en) * | 2011-11-29 | 2012-03-01 | Tsukishima Kikai Co Ltd | Vacuum film deposition system, method for vacuum-depositing resin film, and resin film |
-
1992
- 1992-05-27 JP JP16015092A patent/JPH05331633A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009062597A (en) * | 2007-09-07 | 2009-03-26 | Tsukishima Kikai Co Ltd | Vacuum film deposition system, method for vacuum-depositing resin film, and resin film |
JP2012041641A (en) * | 2011-11-29 | 2012-03-01 | Tsukishima Kikai Co Ltd | Vacuum film deposition system, method for vacuum-depositing resin film, and resin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0328033B1 (en) | Thin film forming apparatus and ion source utilizing plasma sputtering | |
JP2017031501A (en) | Remote arc discharge plasma supporting process | |
JPH02285072A (en) | Coating of surface of workpiece and workpiece thereof | |
JPS59208841A (en) | Vapor stream and ion stream generator | |
JPH05331633A (en) | Vapor deposition device | |
JP2849771B2 (en) | Sputter type ion source | |
JPH05295526A (en) | Vapor deposition method and vapor deposition device | |
JP3406769B2 (en) | Ion plating equipment | |
US20220051879A1 (en) | Electrode arrangement for a plasma source for performing plasma treatments | |
JPH01219161A (en) | Ion source | |
JP2566602B2 (en) | Ion source | |
JP2916972B2 (en) | Plasma generation method and apparatus | |
US11942311B2 (en) | Magnet arrangement for a plasma source for performing plasma treatments | |
JP4053210B2 (en) | Plasma processing method | |
JP2874548B2 (en) | Method for forming coating by arc discharge plasma | |
JPH0645871B2 (en) | Reactive ion plating method | |
JP4997596B2 (en) | Ion plating method | |
JPH07254315A (en) | Formation of film | |
JP2001143894A (en) | Plasma generator and apparatus for producing thin film | |
Zimmermann et al. | Gas Discharge Electron Sources–Powerful Tools for Thin-Film Technologies | |
JP2812249B2 (en) | Ion deposition thin film forming equipment | |
Sanders et al. | Arc Deposition | |
Chayahara et al. | Metal plasma source for PBII using arc-like discharge with hot cathode | |
JP2620474B2 (en) | Ion plating equipment | |
JP2835383B2 (en) | Sputter type ion source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990803 |