JPH05330963A - Coarbon material having oxidation resistance at high temperature - Google Patents

Coarbon material having oxidation resistance at high temperature

Info

Publication number
JPH05330963A
JPH05330963A JP4136401A JP13640192A JPH05330963A JP H05330963 A JPH05330963 A JP H05330963A JP 4136401 A JP4136401 A JP 4136401A JP 13640192 A JP13640192 A JP 13640192A JP H05330963 A JPH05330963 A JP H05330963A
Authority
JP
Japan
Prior art keywords
layer
carbon material
high temperature
tic
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4136401A
Other languages
Japanese (ja)
Inventor
Ken Ogura
謙 小椋
Tatsuo Morimoto
立男 森本
Masayuki Kondo
雅之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4136401A priority Critical patent/JPH05330963A/en
Publication of JPH05330963A publication Critical patent/JPH05330963A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a carbon material having oxidation resistance at high temperature by providing a titanium carbide layer and an alloy layer consisting of iridium and titanium on the surface of a carbon material. CONSTITUTION:The carbon material having oxidation resistance at high temperature consists of a carbon material 3, a layer 2 consisting essentially of TiC and an alloy layer of Ir and Ti. A layer 2 consisting essentially of TiC and having about 10mum thickness is formed on the carbon material 3 by chemical vapor deposition, etc. A Ti layer 5 and an Ir layer 6 are deposited in order thereon by high frequency magnetron spattering. Ir layer 6 and Ti layer 5 are each formed into about 2mum thickness and about 0.8mum thickness so as to have maximum 10wt.%, preferably 8+ or -0.5wt.% Ti content to prepare a laminated film consisting of 6 total layers and having about 8.4mum thickness. Then the coating is heated at about 1400 deg.C for about 10hr in Ar gas. Thereby, Ir is made to react with Ti to form the intermetallic compound Ir3Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温耐酸化性炭素材料に
関し、特に、宇宙往還機の耐熱構造材やガスタービンジ
ェットエンジンに使用される高温部材に有利に適用され
る炭素複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature oxidation resistant carbon material, and more particularly to a carbon composite material which is advantageously applied to a heat resistant structural material of a space shuttle and a high temperature member used for a gas turbine jet engine.

【0002】[0002]

【従来の技術】黒鉛あるいは炭素繊維強化炭素複合材料
(以下、C/C複合材と略す)の高温耐酸化被覆として
提案されている被覆構成を図3に示す。図3中、2は炭
化チタン(TiC)で、基材(黒鉛あるいはC/C複合
材)3の上に化学的、物理的蒸着法等により形成されて
いるものであり、4はイリジウム(Ir)で、化学的、
物理的蒸着法等により形成されているものである。この
層構成は酸素を遮蔽する機能に優れたIrを基材に密着
させるためのものである。Irは炭素との反応性が低い
ためIrと基材の密着性は悪いので、Irとの反応性を
有し密着性が良好で、かつ、黒鉛との密着性も良好なT
iCをIrと基材の中間に用いることにより、Irと基
材を密着させるようにしたものである。{参考文献: J
ames R. Strif., John G.Smeggil and Wayne L.Worrel
l, "Reaction of Iridium with Metal Carbides in the
Temperature Range of 1923K to 2400K" , J. of Am.C
eram.Soc., Vol. 73 No.4 (1990) p838〜845 }
2. Description of the Related Art FIG. 3 shows a coating structure proposed as a high temperature oxidation resistant coating of graphite or carbon fiber reinforced carbon composite material (hereinafter abbreviated as C / C composite material). In FIG. 3, reference numeral 2 is titanium carbide (TiC), which is formed on the base material (graphite or C / C composite material) 3 by a chemical or physical vapor deposition method, and 4 is iridium (Ir). ), Chemical,
It is formed by a physical vapor deposition method or the like. This layer structure is for adhering Ir excellent in the function of shielding oxygen to the base material. Since Ir has low reactivity with carbon and the adhesion between Ir and the substrate is poor, T has good reactivity with Ir and has good adhesion, and also has good adhesion with graphite.
By using iC between Ir and the base material, the Ir and the base material are brought into close contact with each other. {Reference: J
ames R. Strif., John G. Smeggil and Wayne L. Worrel
l, "Reaction of Iridium with Metal Carbides in the
Temperature Range of 1923K to 2400K ", J. Of Am.C
eram.Soc., Vol. 73 No.4 (1990) p838-845}

【0003】[0003]

【発明が解決しようとする課題】IrとTiCの組み合
わせによる炭素材料の従来の耐酸化被覆では、IrとT
iCの界面反応が避けられず、界面反応によりTiCは
分解し炭素が析出する。析出した炭素が層状に形成され
る場合、密着性の低下が予想され、また、反応層中に分
散した場合も、炭素は粒界に排出されて粒界に凝集し、
酸化の起点となり耐酸化性を低下させると考えられる。
いずれの場合も、炭素の析出は密着性または耐酸化性に
悪影響を及ぼす。したがって、IrとTiCの反応は耐
酸化性の低下を引き起こし、この反応速度が使用温度・
時間を制限する。従来の方法では10μmのIr膜はア
ルゴンガス中2300Kで3時間程度の耐久性が確認さ
れているが、大気中での耐久性は更に低いと予想され
る。
In the conventional oxidation resistant coating of carbon material by the combination of Ir and TiC, Ir and T
The interface reaction of iC is unavoidable, and TiC is decomposed by the interface reaction and carbon is deposited. When the deposited carbon is formed in a layered form, a decrease in adhesion is expected, and also when dispersed in the reaction layer, the carbon is discharged to the grain boundaries and aggregates at the grain boundaries,
It is considered to be the starting point of oxidation and reduce the oxidation resistance.
In either case, carbon deposition adversely affects adhesion or oxidation resistance. Therefore, the reaction between Ir and TiC causes a decrease in oxidation resistance, and this reaction rate is
Limit the time. By the conventional method, the durability of the Ir film of 10 μm in argon gas at 2300 K for about 3 hours was confirmed, but the durability in the atmosphere is expected to be lower.

【0004】本発明は上記技術水準に鑑み、IrとTi
Cの界面反応を抑制し耐久性の優れた高温耐酸化性炭素
材料を提供しようとするものである。
In view of the above state of the art, the present invention is based on Ir and Ti.
It is intended to provide a high temperature oxidation resistant carbon material which suppresses the interfacial reaction of C and has excellent durability.

【0005】[0005]

【課題を解決するための手段】本発明は (1)炭素材料、該炭素材料の表面に形成された炭化チ
タン層、該炭化チタン層の表面に形成されたイリジウム
とチタンからなる合金層よりなる高温耐酸化性炭素材
料。
Means for Solving the Problems The present invention comprises (1) a carbon material, a titanium carbide layer formed on the surface of the carbon material, and an alloy layer composed of iridium and titanium formed on the surface of the titanium carbide layer. High temperature oxidation resistant carbon material.

【0006】(2)イリジウムとチタンからなるチタン
含有量は多くても10wt%、好ましくは8±0.5w
t%である上記(1)記載の高温耐酸化性炭素材料。で
ある。
(2) The titanium content consisting of iridium and titanium is at most 10 wt%, preferably 8 ± 0.5 w
The high temperature oxidation resistant carbon material according to the above (1), wherein the carbon content is t%. Is.

【0007】本発明における炭素材料とは黒鉛あるいは
C/C複合材を意味する。
The carbon material in the present invention means graphite or C / C composite material.

【0008】[0008]

【作用】本発明では従来の耐酸化被覆では避けられなか
ったIrとTiCの反応を抑制するため、IrにTiを
多くとも10wt%加えた合金をIrに代わり使用する
ものである。Tiの添加量が増加するに伴ってIrの活
性は低下する。特に金属間化合物を形成する組成範囲、
Tiの含有量8±0.5wt%ではTiCに対し熱力学
的に安定になる。したがってIrへのTiの添加によ
り、IrとTiCの反応は抑制でき、反応に伴う耐酸化
性の低下も低減できる。
In the present invention, in order to suppress the reaction between Ir and TiC which cannot be avoided by the conventional oxidation resistant coating, an alloy containing Ir at most 10 wt% is used instead of Ir. The activity of Ir decreases as the amount of Ti added increases. In particular, a composition range for forming an intermetallic compound,
When the Ti content is 8 ± 0.5 wt%, it becomes thermodynamically stable with respect to TiC. Therefore, by adding Ti to Ir, the reaction between Ir and TiC can be suppressed, and the reduction in the oxidation resistance accompanying the reaction can be reduced.

【0009】また、表1に示すように、Tiの添加量が
10wt%以下であれば、Irの酸素遮蔽機能は損われ
ないが、10wt%を越えると、合金中のTiが内部酸
化を起こし急激に酸化が進行し、酸素遮蔽機能は損われ
る。
Further, as shown in Table 1, if the amount of addition of Ti is 10 wt% or less, the oxygen shielding function of Ir is not impaired, but if it exceeds 10 wt%, Ti in the alloy causes internal oxidation. Oxidation progresses rapidly and the oxygen shielding function is impaired.

【0010】[0010]

【表1】 [Table 1]

【0011】本発明になる高温耐酸化性炭素材料の構成
を図1によって説明する。図1中、3は炭素材料、2は
TiCを主成分とする層、1はIrとTiの合金層であ
る。合金層1のTi含有量は多くとも10wt%、好ま
しくは8±0.5wt%とする。この合金層1の被覆手
法としては合金の物理的・化学的蒸着、溶射等がある
が、IrとTiを各々、別に被覆し、熱処理により合金
化することも可能である。
The structure of the high temperature oxidation resistant carbon material according to the present invention will be described with reference to FIG. In FIG. 1, 3 is a carbon material, 2 is a layer containing TiC as a main component, and 1 is an alloy layer of Ir and Ti. The Ti content of the alloy layer 1 is at most 10 wt%, preferably 8 ± 0.5 wt%. The coating method of the alloy layer 1 includes physical and chemical vapor deposition of alloy, thermal spraying, and the like, but it is also possible to separately coat Ir and Ti and heat-treat to alloy them.

【0012】[0012]

【実施例】本発明の一実施例として等方性黒鉛上にTi
C層、更にその上にIrとTiの積層膜を作製した後、
熱処理によってIrとTiの積層膜から金属間化合物I
3 Ti層を形成した例を図2によって説明する。
EXAMPLE As an example of the present invention, Ti on isotropic graphite
After forming a C layer and a laminated film of Ir and Ti thereon,
From the laminated film of Ir and Ti by heat treatment, the intermetallic compound I
r 3An example of forming a Ti layer will be described with reference to FIG.

【0013】まず、等方性黒鉛3上に化学蒸着によって
TiC層2を10μm形成する。その上に、高周波マグ
ネトロンスパッタリングによってTi層5、Ir層6の
順に積層する。Ir層6,Ti層5の膜厚はTi含有量
が8±0.5wt%となるようにIr層6を2μm、T
i層5を0.8μmとして、全体で6層、厚さ8.4μ
mの積層膜を作製し、この被覆をArガス中において、
1400℃で10時間加熱することによってIrとTi
を反応させて金属間化合物Ir3 Tiを形成させた。
First, a TiC layer 2 of 10 μm is formed on the isotropic graphite 3 by chemical vapor deposition. A Ti layer 5 and an Ir layer 6 are stacked in that order by high frequency magnetron sputtering. The Ir layer 6 and the Ti layer 5 have a film thickness of 2 μm and T so that the Ti content is 8 ± 0.5 wt%.
i layer 5 is 0.8 μm, 6 layers in total, thickness 8.4 μm
m laminated film was prepared, and this coating was formed in Ar gas.
Ir and Ti by heating at 1400 ° C for 10 hours
Were reacted to form an intermetallic compound Ir 3 Ti.

【0014】この供試材についてアセチレン炎暴露試験
によって耐酸化性を評価した。なお、比較材として、1
0μmのTiC層の上にIr層を8.4μm形成したも
のについても同試験を行った。アセチレン炎により被覆
が損傷し、基材に著しい減肉が認められるまでの時間を
測定したところ、本発明の実施例による被覆は5分間の
暴露によっても被覆の著しい損傷は認められなかった
が、TiC層の上にIr層を形成した比較材では約2分
の暴露により基材は著しく減肉した。
Oxidation resistance of this test material was evaluated by an acetylene flame exposure test. As a comparative material, 1
The same test was carried out for the case where the Ir layer was formed on the 0 μm TiC layer by 8.4 μm. When the time until the coating was damaged by the acetylene flame and the substrate was significantly thinned was measured, the coating according to the example of the present invention showed no significant damage to the coating even after exposure for 5 minutes. In the comparative material in which the Ir layer was formed on the TiC layer, the base material was significantly thinned by the exposure for about 2 minutes.

【0015】[0015]

【発明の効果】従来技術によるIrとTiCの耐酸化被
覆では両者の反応が被覆の耐酸化性の低下を引き起こし
たが本発明によるIrに代わり、Ir−Ti合金を用い
た耐酸化被覆ではIrが本来もつ優れた酸素遮蔽機能を
著しく損なうことなく、TiCとの反応を抑制し、界面
反応による耐酸化性の低下を軽減できる効果を奏する。
In the oxidation resistant coating of Ir and TiC according to the prior art, the reaction between the two causes a decrease in the oxidation resistance of the coating. However, in the oxidation resistant coating using Ir-Ti alloy instead of Ir according to the present invention, Ir is used. It has the effect of suppressing the reaction with TiC and reducing the deterioration of the oxidation resistance due to the interfacial reaction, without significantly impairing the originally excellent oxygen-shielding function.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高温耐酸化性炭素材料の構成の説明
図。
FIG. 1 is an explanatory view of the constitution of a high temperature oxidation resistant carbon material of the present invention.

【図2】本発明の一実施例の説明図。FIG. 2 is an explanatory diagram of an embodiment of the present invention.

【図3】従来の高温耐酸化性炭素材料の一態様の説明
図。
FIG. 3 is an explanatory diagram of one embodiment of a conventional high temperature oxidation resistant carbon material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料、該炭素材料の表面に形成され
た炭化チタン層、該炭化チタン層の表面に形成されたイ
リジウムとチタンからなる合金層よりなる高温耐酸化性
炭素材料。
1. A high temperature oxidation resistant carbon material comprising a carbon material, a titanium carbide layer formed on the surface of the carbon material, and an alloy layer composed of iridium and titanium formed on the surface of the titanium carbide layer.
【請求項2】 イリジウムとチタンからなる合金層のチ
タン含有量は多くても10wt%である請求項1記載の
高温耐酸化性炭素材料。
2. The high temperature oxidation resistant carbon material according to claim 1, wherein the titanium content of the alloy layer composed of iridium and titanium is at most 10 wt%.
JP4136401A 1992-05-28 1992-05-28 Coarbon material having oxidation resistance at high temperature Withdrawn JPH05330963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4136401A JPH05330963A (en) 1992-05-28 1992-05-28 Coarbon material having oxidation resistance at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4136401A JPH05330963A (en) 1992-05-28 1992-05-28 Coarbon material having oxidation resistance at high temperature

Publications (1)

Publication Number Publication Date
JPH05330963A true JPH05330963A (en) 1993-12-14

Family

ID=15174308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4136401A Withdrawn JPH05330963A (en) 1992-05-28 1992-05-28 Coarbon material having oxidation resistance at high temperature

Country Status (1)

Country Link
JP (1) JPH05330963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014257A1 (en) * 2011-07-28 2013-01-31 Sgl Carbon Se Coated blast furnace bricks
CN107434435A (en) * 2017-08-02 2017-12-05 中南钻石有限公司 A kind of graphite enamel material and preparation method thereof
JP2018520086A (en) * 2015-07-10 2018-07-26 インテグリス・インコーポレーテッド Coating for glass mold and mold containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014257A1 (en) * 2011-07-28 2013-01-31 Sgl Carbon Se Coated blast furnace bricks
JP2018520086A (en) * 2015-07-10 2018-07-26 インテグリス・インコーポレーテッド Coating for glass mold and mold containing the same
CN107434435A (en) * 2017-08-02 2017-12-05 中南钻石有限公司 A kind of graphite enamel material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3370676B2 (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
US6296942B1 (en) Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer
US20020081396A1 (en) Silcion nitride components with protective coating
US4546052A (en) High-temperature protective layer
US10590527B2 (en) High-temperature protective layer for titanium aluminide alloys
US8039116B2 (en) Nb-Si based alloys having an Al-containing coating, articles, and processes
US4935193A (en) Method for producing a layer protective against oxidation
EP1260608A1 (en) Method of depositing a MCrAIY bond coating
JP3258663B2 (en) Diffusion barrier layer
US5721061A (en) Oxidation-resistant coating for niobium-base alloys
JPH05330963A (en) Coarbon material having oxidation resistance at high temperature
EP0922682A1 (en) Method of forming a joint between a ceramic substrate and a metal component
RU2212473C1 (en) Method for depositing of coatings on alloys
JPWO2002027067A1 (en) Heat resistant material of niobium-based alloy
CN113825857B (en) Method for forming aluminum oxide layer on surface of metal substrate
JPH05238856A (en) Method for forming coating film of metal carbide
JPH08232082A (en) Metallic member for high temperature operation
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
JP2000511236A (en) Structural component having superalloy substrate and layer structure provided thereon, and method of manufacturing the same
JPS5817265B2 (en) Method of manufacturing thermal radiant material
JPH0211753A (en) Tial-type composite member and its production
JPH05345969A (en) Al series alloy metallic material excellent in solderability and plating adhesion
JPH08295583A (en) Carbonaceous material with oxidation resistant coating for use at high temperature
JP3641500B2 (en) Gas turbine high temperature component and manufacturing method thereof
JPH04149082A (en) Carbon material having oxidation resistance at high temperature

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803