JPH053295A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH053295A
JPH053295A JP3149076A JP14907691A JPH053295A JP H053295 A JPH053295 A JP H053295A JP 3149076 A JP3149076 A JP 3149076A JP 14907691 A JP14907691 A JP 14907691A JP H053295 A JPH053295 A JP H053295A
Authority
JP
Japan
Prior art keywords
type
substrate
integrated circuit
potential
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3149076A
Other languages
Japanese (ja)
Inventor
Masahito Mutou
聖人 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP3149076A priority Critical patent/JPH053295A/en
Publication of JPH053295A publication Critical patent/JPH053295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To stabilize substrate potential of a semiconductor integrated circuit having an MOSFET and to stabilize operation of the MOSFET. CONSTITUTION:N-channel and P-channel MOSFET are formed on an upper surface of a P-type silicon substrate 1 provided with a P<+>-type diffusion layer 3 whose conductivity is improved by introducing P-type impurities to a lower side, and voltage change due to movement of carrier is restrained by the P<+>-type diffusion layer 3; thereby, substrate potential is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】従来の半導体集積回路は、図2に示すよ
うに、P型シリコン基板1の上面にN型ウェル2を形成
し、N型ウェル2及びN型ウェル2以外の領域のP型シ
リコン基板1の表面にゲート酸化膜4を介してゲート電
極5を設け、ゲート電極5に整合してP型シリコン基板
1に設けたN型のソース・ドレイン領域6及びN型ウェ
ル2に設けたP型のソース・ドレイン領域7によりNチ
ャネルMOSFET及びPチャネルMOSFETを形成
する。また、P型シリコン基板1に設けたP+ 型拡散層
8に接地電位GNDを印加しN型ウェル2に設けたN+
型拡散層9に電源電位Vccを印加し、P型シリコン基板
1の裏面に金等の金属によるメタライズ層で形成した電
極10を設けている。
2. Description of the Related Art In a conventional semiconductor integrated circuit, as shown in FIG. 2, an N-type well 2 is formed on an upper surface of a P-type silicon substrate 1, and an N-type well 2 and a P-type region other than the N-type well 2 are formed. The gate electrode 5 is provided on the surface of the silicon substrate 1 via the gate oxide film 4, and the gate electrode 5 is provided in the N-type source / drain regions 6 and the N-type well 2 provided on the P-type silicon substrate 1 in alignment with the gate electrode 5. An N channel MOSFET and a P channel MOSFET are formed by the P type source / drain region 7. Further, the ground potential GND is applied to the P + type diffusion layer 8 provided on the P type silicon substrate 1 and the N + provided on the N type well 2 is applied.
A power supply potential V cc is applied to the mold diffusion layer 9, and an electrode 10 formed of a metallized layer made of metal such as gold is provided on the back surface of the P-type silicon substrate 1.

【0003】ここで、P型シリコン基板1の電位を安定
させるためには、基板コンタクト用のP+ 型拡散層8を
広範囲に多数分布して形成する必要があり、又、N型ウ
ェル2の電位を安定させるためにはN型ウェル2中にウ
ェルコンタクト用のN+ 型拡散層9を多数形成する必要
がある。また電極10は全ての回路素子を形成したの
ち、P型シリコン基板1の下面を裏面研摩して、薄くし
た後に、金属層を蒸着させる必要があり、この電極10
はP型シリコン基板1の下面の電位を安定にすること
で、P型シリコン基板1の電位を安定にしている。
Here, in order to stabilize the potential of the P-type silicon substrate 1, it is necessary to form a large number of P + -type diffusion layers 8 for contacting the substrate in a wide range, and to form the N-type well 2. In order to stabilize the potential, it is necessary to form a large number of N + type diffusion layers 9 for well contacts in the N type well 2. In addition, after forming all the circuit elements in the electrode 10, it is necessary to polish the lower surface of the P-type silicon substrate 1 on the back surface to make it thin, and then vapor-deposit a metal layer.
Stabilizes the potential of the lower surface of the P-type silicon substrate 1, thereby stabilizing the potential of the P-type silicon substrate 1.

【0004】P型シリコン基板1の電位,N型ウェル2
の電位が安定することにより電界効果トランジスタのバ
ックゲートの電位が安定し、電界効果トランジスタが安
定動作する。
P-type silicon substrate 1 potential, N-type well 2
The potential of the back gate of the field effect transistor is stabilized by the stable potential of the field effect transistor, and the field effect transistor operates stably.

【0005】[0005]

【発明が解決しようとする課題】この従来の半導体集積
回路では、基板コンタクト層及びウェルコンタクト層の
分布により、基板電位に片寄りが生じやすく、このた
め、基板電位が変動した部分では、基板表面に形成され
ている電界効果トランジスタのバックゲートの電位が、
変動し電界効果トランジスタの特性が悪くなるという問
題があり、特に、基板電位が大きく変動した部分では基
板中に存在する寄生接合型トランジスタがサイリスタを
形成し電源電流が著しく増加するため、半導体集積回路
の機能を損なうだけでなく回路の破壊の原因の一つにも
なるという問題点があった。
In this conventional semiconductor integrated circuit, due to the distribution of the substrate contact layer and the well contact layer, deviation of the substrate potential is likely to occur. Therefore, in the portion where the substrate potential fluctuates, the surface of the substrate is changed. The potential of the back gate of the field effect transistor formed in
There is a problem that the characteristics of the field effect transistor fluctuate due to fluctuations, and in particular, in the portion where the substrate potential fluctuates significantly, the parasitic junction type transistor existing in the substrate forms a thyristor and the power supply current increases significantly, so that the semiconductor integrated circuit There is a problem that not only the function of is damaged but also one of the causes of the destruction of the circuit.

【0006】又、裏面電極により基板電位を安定させる
ためには、全ての回路素子を拡散により形成したのち裏
面研磨を行い、薄くしたのち、金等を蒸着させる必要が
あり、基板の応力に対する強度が弱くなり、又、金等の
高価な金属を用いるため、高価になり、特に、高速動作
を必要とする半導体集積回路にしか、用いることができ
ないといった問題点があった。
Further, in order to stabilize the substrate potential by the back surface electrode, it is necessary to form all the circuit elements by diffusion and then polish the back surface to thin the film and then evaporate gold or the like. However, since it is weak and expensive metal such as gold is used, it becomes expensive, and in particular, it can be used only for a semiconductor integrated circuit that requires high-speed operation.

【0007】[0007]

【課題を解決するための手段】本発明の半導体集積回路
は、半導体基板の上面に設けたMOSFETを有する半
導体集積回路において、前記半導体基板の下面に前記半
導体基板と同じ導電型の不純物を導入して導電率を高め
た不純物拡散層を有する。
A semiconductor integrated circuit of the present invention is a semiconductor integrated circuit having a MOSFET provided on an upper surface of a semiconductor substrate, wherein impurities of the same conductivity type as those of the semiconductor substrate are introduced into the lower surface of the semiconductor substrate. And an impurity diffusion layer whose conductivity is increased.

【0008】[0008]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0009】図1は本発明の一実施例を示す半導体チッ
プの断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the present invention.

【0010】図1に示すように、P型シリコン基板1の
上面に設けたN型ウェル2と、P型シリコン基板1の下
面にホウ素イオンをイオン注入して設けたP+ 型拡散層
3と、N型ウェル2及びN型ウェル2以外の領域のP型
シリコン基板1の表面の夫々にゲート酸化膜4を介して
設けたゲート電極5と、ゲート電極5の夫々に整合して
P型シリコン基板1に設けたN型のソース・ドレイン領
域6及びN型ウェル2に設けたP型のソース・ドレイン
領域7と、P型シリコン基板1に設けて接地電位GND
を印加するP+ 型拡散層8と、N型ウェル2に設けた電
源電位Vccを印加するN+ 型拡散層9とを有して構成さ
れる。なお、P+ 型拡散層3はP型シリコン基板の上面
に素子を形成する前に形成する。
As shown in FIG. 1, an N-type well 2 provided on the upper surface of a P-type silicon substrate 1 and a P + -type diffusion layer 3 provided by ion-implanting boron ions on the lower surface of the P-type silicon substrate 1. , The N-type well 2 and the gate electrode 5 provided on the surface of the P-type silicon substrate 1 in the region other than the N-type well 2 via the gate oxide film 4, and the P-type silicon in alignment with each of the gate electrodes 5. The N-type source / drain region 6 provided on the substrate 1, the P-type source / drain region 7 provided on the N-type well 2, and the ground potential GND provided on the P-type silicon substrate 1.
A P + -type diffusion layer 8 that applies a configured and an N + -type diffusion layer 9 for applying a power source potential V cc provided the N-type well 2. The P + type diffusion layer 3 is formed on the upper surface of the P type silicon substrate before forming the element.

【0011】ここで、P型シリコン基板1の不純物濃度
は小さく、このため、抵抗が高く、キャリアの移動によ
り電圧変動を生じる。しかし、P型シリコン基板1の下
に設けられたP+ 型拡散層3の不純物濃度は、P型シリ
コン基板1の不純物濃度より大きいため抵抗は低く、こ
のP+ 型拡散層3を通してキャリアの移動が生じ、キャ
リアの移動による電圧変動は減少する。このため、P型
シリコン基板1の電位は、安定する。よって、電界効果
トランジスタのバックゲートの電位が安定するため、電
界効果トランジスタも安定動作する。
Here, the impurity concentration of the P-type silicon substrate 1 is low, and therefore, the resistance is high and the voltage changes due to the movement of carriers. However, since the impurity concentration of the P + type diffusion layer 3 provided below the P type silicon substrate 1 is higher than the impurity concentration of the P type silicon substrate 1, the resistance is low, and carriers move through this P + type diffusion layer 3. Occurs, and voltage fluctuation due to carrier movement is reduced. Therefore, the potential of the P-type silicon substrate 1 becomes stable. Therefore, the potential of the back gate of the field effect transistor becomes stable, and the field effect transistor also operates stably.

【0012】[0012]

【発明の効果】以上説明したように本発明は、半導体基
板の裏面に基板の不純物濃度より高い不純物濃度をもつ
層をイオン注入により形成することで基板電位が安定
し、電界効果トランジスタを安定に動作させられるとい
う効果を有する。
As described above, according to the present invention, by forming a layer having an impurity concentration higher than that of the substrate by ion implantation on the back surface of the semiconductor substrate, the substrate potential is stabilized and the field effect transistor is stabilized. It has the effect of being operated.

【0013】又、基板上面に回路素子を形成する前に、
裏面全面にイオン注入を行うことができるため半導体集
積回路の回路構成に関係なく、また、特性に悪影響を与
える事なく一括処理できるという効果がある。
Before forming a circuit element on the upper surface of the substrate,
Since the entire back surface can be ion-implanted, there is an effect that batch processing can be performed regardless of the circuit configuration of the semiconductor integrated circuit and without adversely affecting the characteristics.

【0014】又、バックメタライズ層を形成しなくても
基板電位が安定するため、バックメタライズ層を作成す
る工程が削減でき、金等の高価な金属も使用しないた
め、安価であり、一般の半導体集積回路にも用いること
ができるという効果がある。
Further, since the substrate potential is stabilized without forming the back metallization layer, the step of forming the back metallization layer can be reduced, and expensive metals such as gold are not used, so that the cost is low and general semiconductors are used. It has the effect that it can also be used in integrated circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す半導体チップの断面図
である。
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the present invention.

【図2】従来の半導体集積回路の一例を示す半導体チッ
プの断面図である。
FIG. 2 is a sectional view of a semiconductor chip showing an example of a conventional semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 N型ウェル 3,8 P+ 型拡散層 4 ゲート酸化膜 5 ゲート電極 6,7 ソース・ドレイン領域 9 N+ 型拡散層 10 電極1 P-type silicon substrate 2 N-type well 3,8 P + type diffusion layer 4 Gate oxide film 5 Gate electrode 6,7 Source / drain region 9 N + type diffusion layer 10 Electrode

Claims (1)

【特許請求の範囲】 【請求項1】 半導体基板の上面に設けたMOSFET
を有する半導体集積回路において、前記半導体基板の下
面に前記半導体基板と同じ導電型の不純物を導入して導
電率を高めた不純物拡散層を有することを特徴とする半
導体集積回路。
Claims: 1. A MOSFET provided on the upper surface of a semiconductor substrate.
In the semiconductor integrated circuit having the above-mentioned, there is provided an impurity diffusion layer on the lower surface of the semiconductor substrate, in which an impurity of the same conductivity type as that of the semiconductor substrate is introduced to increase the conductivity.
JP3149076A 1991-06-21 1991-06-21 Semiconductor integrated circuit Pending JPH053295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3149076A JPH053295A (en) 1991-06-21 1991-06-21 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3149076A JPH053295A (en) 1991-06-21 1991-06-21 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH053295A true JPH053295A (en) 1993-01-08

Family

ID=15467170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3149076A Pending JPH053295A (en) 1991-06-21 1991-06-21 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH053295A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512940A (en) * 1993-03-19 1996-04-30 Olympus Optical Co., Ltd. Image processing apparatus, endoscope image sensing and processing apparatus, and image processing method for performing different displays depending upon subject quantity
US5550582A (en) * 1993-03-19 1996-08-27 Olympus Optical Co., Ltd. Endoscope-image processing apparatus for performing image processing of emphasis in endoscope image by pigment concentration distribution
JPH1168106A (en) * 1997-06-13 1999-03-09 Robert Bosch Gmbh Transistor constituent element, and its manufacture
US6481002B2 (en) 2000-02-17 2002-11-12 Kabushiki Kaisha Toshiba System and method for compressing LSI mask writing data
JP2009302194A (en) * 2008-06-11 2009-12-24 Sony Corp Semiconductor device with power supply interception transistor
JP2010098219A (en) * 2008-10-20 2010-04-30 Toshiba Corp Backside-illuminated solid-state image pickup device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512940A (en) * 1993-03-19 1996-04-30 Olympus Optical Co., Ltd. Image processing apparatus, endoscope image sensing and processing apparatus, and image processing method for performing different displays depending upon subject quantity
US5550582A (en) * 1993-03-19 1996-08-27 Olympus Optical Co., Ltd. Endoscope-image processing apparatus for performing image processing of emphasis in endoscope image by pigment concentration distribution
US5675378A (en) * 1993-03-19 1997-10-07 Olympus Optical Co., Ltd. Endoscope-image processing apparatus for performing image processing of emphasis in endoscope image by pigment concentration distribution
JPH1168106A (en) * 1997-06-13 1999-03-09 Robert Bosch Gmbh Transistor constituent element, and its manufacture
US6481002B2 (en) 2000-02-17 2002-11-12 Kabushiki Kaisha Toshiba System and method for compressing LSI mask writing data
JP2009302194A (en) * 2008-06-11 2009-12-24 Sony Corp Semiconductor device with power supply interception transistor
US8008733B2 (en) 2008-06-11 2011-08-30 Sony Corporation Semiconductor device having a power cutoff transistor
JP2010098219A (en) * 2008-10-20 2010-04-30 Toshiba Corp Backside-illuminated solid-state image pickup device

Similar Documents

Publication Publication Date Title
EP0225821B1 (en) Semiconductor device having a silicon on insulator structure
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US20020005559A1 (en) Lateral semiconductor device
JPS6237545B2 (en)
JPH05145083A (en) Quantum field-effect element
US3883372A (en) Method of making a planar graded channel MOS transistor
US7867866B2 (en) SOI FET with source-side body doping
US5014108A (en) MESFET for dielectrically isolated integrated circuits
US3631312A (en) High-voltage mos transistor method and apparatus
KR920022534A (en) Static type semiconductor memory device, field effect transistor and manufacturing method thereof
CA1130473A (en) Mosfet substrate sensitivity control
JPH053295A (en) Semiconductor integrated circuit
JPS6386465A (en) Method of forming capacitor on substrate
JPH02203566A (en) Mos type semiconductor device
US3585463A (en) Complementary enhancement-type mos transistors
US5077586A (en) Vdmos/logic integrated circuit comprising a diode
JPS61150280A (en) Vertical mos transistor
US3719864A (en) Semiconductor device with two mos transistors of non-symmetrical type
JPH04146628A (en) Thin film semiconductor device
JPH06236998A (en) Semiconductor integrated circuit
JPH03145163A (en) Thyristor
US5411910A (en) Method for improving characteristics of parasitic PN diodes in static random access memory cell
KR950003238B1 (en) Logic element structure using multi-electrode
JP2821135B2 (en) Semiconductor integrated circuit device
JPS6045070A (en) Field effect transistor