JPH05329459A - Treatment of municipal waste incineration ash - Google Patents

Treatment of municipal waste incineration ash

Info

Publication number
JPH05329459A
JPH05329459A JP13911592A JP13911592A JPH05329459A JP H05329459 A JPH05329459 A JP H05329459A JP 13911592 A JP13911592 A JP 13911592A JP 13911592 A JP13911592 A JP 13911592A JP H05329459 A JPH05329459 A JP H05329459A
Authority
JP
Japan
Prior art keywords
municipal waste
waste incineration
raw material
incineration ash
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13911592A
Other languages
Japanese (ja)
Other versions
JP2646312B2 (en
Inventor
Yoji Nagaya
洋司 長屋
Toru Utsunomiya
透 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP13911592A priority Critical patent/JP2646312B2/en
Publication of JPH05329459A publication Critical patent/JPH05329459A/en
Application granted granted Critical
Publication of JP2646312B2 publication Critical patent/JP2646312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To propose the treating method which recycles municipal waste incineration ashes as building materials without throwing away the incineration ashes for reclamation and eliminates the need for a place for discarding the incineration ashes. CONSTITUTION:The municipal waste incineration ashes are incorporated into a cementitious mixture formed by incorporating line into the desulfurization slurry of the exhaust gases discharged from a power plant, etc., and fly ashes, by which the building materials are formed. As a result, the municipal waste incineration ashes are effectively utilized together with the industrial waste of the other cementitious mixture as the building materials, such as subbase course materials. The need for preparing the place for throwing away the incineration ashes and the treatment cost are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ごみ焼却炉で発生
するゴミフライアッシュ、ボトムアッシュの焼却灰を、
火力発電所から回収される廃棄物を主成分とする物質に
混合して再使用可能に処理する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to incineration ash of refuse fly ash and bottom ash generated in an incinerator for municipal solid waste.
The present invention relates to a method in which waste collected from a thermal power plant is mixed with a substance containing a main component and is treated so that it can be reused.

【0002】[0002]

【従来の技術】従来、上記のような都市ごみの焼却灰
は、そのまま埋設廃棄すると2次公害を発生するおそれ
があるので、囲まれた管理型の処分場に埋立処分され、
そこから生じる排水も無害に処理して放出されている。
また、火力発電所で発生する排煙中の有害成分とフライ
アッシュとを回収し、これに石灰または石灰石を含む懸
濁液を混合してセメント質混合物とし、これを建築用充
填物、レンガ等の建築材料、或いは道路基礎材料に利用
することも提案されている(特公昭57−10057号
公報)。
2. Description of the Related Art Conventionally, the incineration ash of the above-mentioned municipal waste may cause secondary pollution if it is directly buried and disposed of. Therefore, it is landfilled in an enclosed management type disposal site.
Wastewater generated there is also treated and released harmlessly.
Further, the harmful components in the flue gas generated in the thermal power plant and fly ash are recovered, and a suspension containing lime or limestone is mixed into this to obtain a cementitious mixture, which is a building filler, brick, etc. It has also been proposed to use it as a building material or a road basic material (Japanese Patent Publication No. 57-10057).

【0003】[0003]

【発明が解決しようとする課題】都市ごみの焼却灰を埋
設破棄する場合、投棄場所を次々に用意しなければなら
ない。都市ごみのこうした処理は地域的に行なわれるこ
とになるから、永年に亘って投棄を続けれる場所が地域
内に充分に存在する必要があるが、都市ごみが多量に発
生する都市部では投棄場所の手当ても満足に行なえな
い。また、都市ごみは有害物を含有して公害を起こす恐
れがあるために、そのままでの再使用は難しい。
[Problems to be Solved by the Invention] When the incineration ash of municipal solid waste is to be buried and discarded, it is necessary to successively prepare dumping sites. Since such treatment of municipal solid waste will be carried out locally, it is necessary to have sufficient places within the region where dumping can be continued for many years, but in urban areas where large amounts of municipal solid waste are generated, dumping sites are not possible. Can't be satisfied. In addition, since municipal waste contains harmful substances and may cause pollution, it is difficult to reuse it as it is.

【0004】本発明は、都市ごみ焼却灰を投棄すること
なく建設用資材として再使用でき、投棄場所が不要にな
る処理方法を提案することを目的とするものである。
It is an object of the present invention to propose a treatment method in which municipal waste incineration ash can be reused as a construction material without being discarded and a dumping place is unnecessary.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するために、水性懸濁液に30〜90重量%の固形物
を含有し、該固形物が0.25ないし70重量%のアル
カリ土類金属水酸化物と10ないし99.5重量%のフ
ライアッシュ及び0.25ないし70重量%のアルカリ
土類金属亜硫酸塩(この亜硫酸塩の一部はアルカリ土類
金属亜硫酸塩であってもよい)から成るセメント質混合
物に、都市ごみ焼却灰を混入し、建設材料とするように
した。上記セメント質混合物に25ないし75乾燥重量
%の都市ごみ焼却灰を混入することが好ましい。
In order to achieve the above object, the present invention comprises an aqueous suspension containing 30 to 90% by weight of solids, the solids being 0.25 to 70% by weight. Alkaline earth metal hydroxide, 10 to 99.5% by weight fly ash, and 0.25 to 70% by weight alkaline earth metal sulfite (a part of this sulfite being alkaline earth metal sulfite, Municipal waste incineration ash was mixed into a cementitious mixture consisting of It is preferable to mix 25 to 75% by dry weight of municipal waste incineration ash into the cementitious mixture.

【0006】[0006]

【作用】上記セメント質混合物に25ないし75乾燥重
量%の都市ごみ焼却灰を混入攪拌し、含水比を調整して
混合物としたものは、路盤材や盛土材と同様に突き固め
られると、その最大乾燥密度が上記セメント質混合物の
みを突き固めた場合よりも大きく、圧縮強さは経時的に
増大し、上記セメント質混合物のみの圧縮強さと略同程
度で有害物の溶出もなく、土木工事材料として一般土と
同様に使用ができる。
In the cementitious mixture, 25 to 75% by dry weight of municipal waste incineration ash is mixed and stirred to adjust the water content to form a mixture, which is crushed in the same manner as roadbed materials and embankment materials. The maximum dry density is greater than when only the cementitious mixture is tamped, the compressive strength increases over time, and the compressive strength of the cementitious mixture is almost the same, and no harmful substances elute, and civil engineering works It can be used as a material similar to general soil.

【0007】[0007]

【実施例】火力発電所の排出ガスを石灰石スラリー中に
導いて亜硫酸カルシウムと硫酸カルシウムを含むスラリ
ーを得、これにボイラー排出ガスと共に排出されるフラ
イアッシュを添加した後これの水分を調整し、石灰を混
入してセメント質混合物を得る。その組成の一例は次の
通りである。 水 20% CaSO3・1/2H2O+CaSO4・2H2O 25% 未反応石灰石(CaCO3) 12% フライアッシュ 40% 消石灰(Ca(OH)2) 3% このセメント質混合物に、都市ごみ焼却炉で発生するゴ
ミフライアッシュ、ボトムアッシュを混入すると、焼却
灰からの有害物の溶出がなく、焼却灰を埋設投棄せずに
建設材料例えば路盤材料として再使用が可能になる。
[Example] The exhaust gas of a thermal power plant is introduced into a limestone slurry to obtain a slurry containing calcium sulfite and calcium sulfate, and after adding fly ash discharged together with the boiler exhaust gas, the water content thereof is adjusted, Mix cement with lime to obtain a cementitious mixture. An example of the composition is as follows. Water 20% CaSO 3 1 / 2H 2 O + CaSO 4 2H 2 O 25% Unreacted limestone (CaCO 3 ) 12% Fly ash 40% Slaked lime (Ca (OH) 2 ) 3% This cementitious mixture is incinerated with municipal solid waste. When dust fly ash and bottom ash generated in the furnace are mixed, no harmful substances are eluted from the incineration ash, and the incineration ash can be reused as a construction material such as a roadbed material without being buried and discarded.

【0008】都市ごみ焼却灰と上記セメント質混合物
は、土質試験法による試験では次表1〜2に示すような
物理的性質を有し、セメント協会標準試験法と環境庁告
示第13号のイによる試験では次表3〜4に示すような
化学的性質を有する。これらの表に於いて、都市ごみは
焼却炉の上方で発生するゴミフライアッシュFAと、下
方で発生するボトムアッシュBAとに分けて分析し、セ
メント質混合物は、石炭灰のフライアッシュF(以下、
単にフライアッシュという)と、亜硫酸カルシウムと硫
酸カルシウムを含む石灰水スラリーSとに分けて分析試
験をした。表1は含水比、比重及び粒度分布を調べたも
ので、表2はFAの含水比の測定試験結果であり、表3
は化学成分分析試験結果、表4は溶出試験結果である。
[0008] The incineration ash of municipal solid waste and the above cementitious mixture have the physical properties shown in the following Tables 1 and 2 in the test by the soil test method, and the cement tester standard test method and the Environmental Agency Notification No. 13 In the test according to (4), it has the chemical properties shown in Tables 3 to 4 below. In these tables, municipal waste is analyzed by dividing it into waste fly ash FA generated above the incinerator and bottom ash BA generated below, and the cementitious mixture is coal ash fly ash F (hereinafter referred to as fly ash F). ,
(A fly ash) and a lime water slurry S containing calcium sulfite and calcium sulfate were separately analyzed. Table 1 shows the water content, specific gravity and particle size distribution, and Table 2 shows the results of the FA water content measurement test.
Is the chemical component analysis test result, and Table 4 is the dissolution test result.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4】 [Table 4]

【0013】表1、2に見られるように、都市ごみ焼却
灰のゴミフライアッシュFAは、フライアッシュFと同
様に74μm以下の細粒分が多く、土の分類ではシルト
に相当する。FA及びBAの粒子の比重はセメント(比
重3.16程度)や土(比重2.7程度)より小さく、
Fと同程度である。また、FAの含水比の測定は、加水
後一週間以上炉乾燥を行なわないと求められない場合が
あった。一般土やFの場合、炉乾燥は約1日である。B
Aは、細粒分(74μm以下)がFAよりも少なく、土
の分類では砂質土に相当する。BA粒子の比重はセメン
トや土より小さく、FAやFと同程度である。
As shown in Tables 1 and 2, the refuse fly ash FA of municipal waste incineration ash has a large amount of fine particles of 74 μm or less, like the fly ash F, and corresponds to silt in the classification of soil. The specific gravity of FA and BA particles is smaller than that of cement (specific gravity about 3.16) or soil (specific gravity about 2.7),
It is about the same as F. Further, the measurement of the water content of FA may not be required unless oven drying is performed for at least one week after water addition. For general soil and F, oven drying takes about 1 day. B
A has a smaller fine grain content (74 μm or less) than FA, and corresponds to sandy soil in soil classification. The specific gravity of BA particles is smaller than that of cement or soil and is almost the same as FA or F.

【0014】表3に見られるように、FAの化学成分
は、Fと比較するとSiO2とAl2O3がかなり少なく、CaO、
SO3が多く、未燃分が多いのが特徴的である。また、F
AのpHはFほどアルカリ性を示していない。その溶出試
験では、表4のように、基準値を越えないもののカドミ
ウム、六価クロム及び全水銀が検出されている。特に、
Fと比較して六価クロムが多い傾向がある。BAの化学
成分はFAと同様の傾向を示しているが、FAよりSiO2
とAl2O3が少なく、pHはFAより高いアルカリ性を示す
が、Fと比較するとやや低い。BAの溶出試験では有害
物質は検出されなかった。
As can be seen from Table 3, the chemical constituents of FA are much smaller in SiO 2 and Al 2 O 3 than in F and CaO,
It is characterized by a large amount of SO 3 and high unburned content. Also, F
The pH of A is not as alkaline as F. In the dissolution test, as shown in Table 4, cadmium, hexavalent chromium, and total mercury were detected, although the standard values were not exceeded. In particular,
Compared to F, it tends to contain more hexavalent chromium. The chemical composition of BA shows the same tendency as that of FA, but SiO 2
And Al 2 O 3 are less and the pH is more alkaline than FA, but slightly lower than F. No harmful substances were detected in the BA dissolution test.

【0015】このような都市ごみ焼却灰を、上記セメン
ト質混合物に25ないし75乾燥重量%の割合で混入
し、水分を調整すると、突き固めの可能な土状の建設材
料となり、火力発電所から生じる廃棄物と都市ごみ焼却
灰を同時に土木材料に再生できる。
When such incinerated municipal waste incineration ash is mixed in the cementitious mixture at a rate of 25 to 75% by dry weight and the water content is adjusted, it becomes a soil-like construction material that can be compacted, and is used from a thermal power plant. The generated waste and municipal waste incineration ash can be recycled into civil engineering materials at the same time.

【0016】国内産の石炭を使用した火力発電所に於い
て、CaSO3・1/2H2O+CaSO4・2H2Oと未反応石灰石(CaCO
3)の合計の乾燥重量%とフライアッシュの乾燥重量%
とが1:3であり、これらCaSO3・1/2H2O+CaSO4・2H2O
と未反応石灰石(CaCO3)とフライアッシュの合計重量
に対して2%の消石灰を配合し、残部が水のセメント質
混合物(原料A)を用い、これに配合割合を変えて都市
ごみ焼却灰のゴミフライアッシュFA(原料B)、ボト
ムアッシュBA(原料C)を混合して次の6種の試料を
作製し、試料が建設材料として適しているかどうかを調
べる各種の試験を行なった。この試料の作製時に固化特
性の比較のためにFAに2%の消石灰を添加した試料を
作製しておいた。この試験に使用した試料は、均質に混
合するため、まず配合割合になるよう計量した原料をソ
イルミキサーに入れて3分間攪拌し、その後所定の水を
加え、更に3分間攪拌する混合方法で作製した。得られ
た混合物の試料を直ちに試験に供した。試料と試験の詳
細は次の通りである。 試料1:乾燥重量%で25%の原料Aと75%の原料B
を上記混合方法で作製した。 試料2:乾燥重量%で50%の原料Aと50%の原料B
を上記混合方法で作製した。 試料3:乾燥重量%で75%の原料Aと25%の原料B
を上記混合方法で作製した。 試料4:乾燥重量%で25%の原料Aと75%の原料C
を上記混合方法で作製した。 試料5:乾燥重量%で50%の原料Aと50%の原料C
を上記混合方法で作製した。 試料6:乾燥重量%で75%の原料Aと25%の原料C
を上記混合方法で作製した。 試料7:乾燥重量%で100%の原料Bに2%の消石灰
を添加し、上記の混合方法で作製した。 これらの試料で土質試験法に基づく締固め特性と固化特
性の試験及び溶出試験を行なった。締固め特性の試験
は、各試料を路盤材や盛土材として利用する場合、一般
土と同様に施工できるかどうか、どの程度の含水比で原
料A,B、Cを混合すれば良いのかを知る目的で行なわ
れ、試料の含水比と乾燥密度の関係から当該配合の最適
含水比及び最大乾燥密度を求めるものである。一般に、
土の強度や耐久性は乾燥密度に比例して大きくなるが、
乾燥密度は含水比によっても変化するため、この試験に
より含水比と乾燥密度の関係を求めておく必要がある。
施工の際には、土を最適含水比に調整し、重機械で何度
も走行して高密度とするのが普通である。また、固化特
性は一軸圧縮試験により評価され、締固め特性の試験か
ら求めた最適含水比で原料A,B又はCの混合物を作製
し、その作製直後に直径5cm、高さ10cmのモールドに
最大乾燥密度になるように突き固めて供試体を得、これ
をビニール袋で密封して20℃の恒温室で所定の材令ま
で養生したのち試験した。一軸圧縮試験はJIS A
1216に従って材令7、28日に行なった。溶出試験
は都市ごみ焼却灰を原料A(セメント質混合物)に混合
して混合物とした場合、原料Aの溶出抑制効果を調べる
ために実施したもので、この混合物を陸上で利用するも
のとして、この試験を産業廃棄物の陸上埋立の場合に適
用される溶出試験方法(環境庁告示第13号のイ)に従
って行なった。試料は材令28日の一軸試験の供試体を
破砕して粒径0.5〜5.0mmの範囲のもので試験を行
なった。ただし、その試験項目は原料でも溶出が認めら
れない項目を除外した。締固め特性の試験の結果は次表
5の如くであり、FAを混合した試料1〜3は土と同様
に締固め特性を持ち、その締固め特性は配合割合による
相違が少なく、最大乾燥密度と最適含水比は原料A(セ
メント質混合物)と同程度である。また、BAと比較す
ると、最適含水比が小さく、最大乾燥密度が大きい結果
となった。BAを混合した試料4〜6も土と同様に締固
め特性を有し、その締固め特性は配合割合による相違が
少ないものの、FAと比較して最大乾燥密度が小さく最
適含水比が高い。BAは原料Aの締固め特性にFAより
も影響を与えていることが分かった。
In a thermal power plant using domestically produced coal, CaSO 3 1 / 2H 2 O + CaSO 4 2H 2 O and unreacted limestone (CaCO
3 ) Total dry weight% and fly ash dry weight%
And are 1: 3, and these CaSO 3 1 / 2H 2 O + CaSO 4 2H 2 O
2% slaked lime is mixed with the total weight of unreacted limestone (CaCO 3 ) and fly ash, and the balance is water cementitious mixture (raw material A). The following 6 types of samples were prepared by mixing the waste fly ash FA (raw material B) and the bottom ash BA (raw material C), and various tests were conducted to examine whether the samples are suitable as construction materials. A sample prepared by adding 2% of slaked lime to FA was prepared for comparison of solidification characteristics when preparing this sample. The sample used for this test was prepared by a mixing method in which the raw materials, which were weighed so as to have a blending ratio, were put in a soil mixer and stirred for 3 minutes, and then predetermined water was added, followed by stirring for 3 minutes. did. A sample of the resulting mixture was immediately tested. Details of the samples and tests are as follows. Sample 1: 25% raw material A and 75% raw material B by dry weight%
Was prepared by the above mixing method. Sample 2: 50% raw material A and 50% raw material B in dry weight%
Was prepared by the above mixing method. Sample 3: 75% raw material A and 25% raw material B in dry weight%
Was prepared by the above mixing method. Sample 4: 25% raw material A and 75% raw material C in dry weight%
Was prepared by the above mixing method. Sample 5: 50% of raw material A and 50% of raw material C by dry weight
Was prepared by the above mixing method. Sample 6: 75% of raw material A and 25% of raw material C by dry weight
Was prepared by the above mixing method. Sample 7: 2% slaked lime was added to 100% of the raw material B in terms of dry weight, and the mixture was prepared by the above mixing method. These samples were tested for compaction and solidification characteristics and elution test based on the soil test method. The test of compaction characteristics, when each sample is used as a roadbed material or embankment material, knows whether it can be constructed in the same manner as general soil, and to what extent the water content ratio should mix raw materials A, B and C. It is carried out for the purpose of obtaining the optimum water content ratio and the maximum dry density of the composition from the relationship between the water content ratio of the sample and the dry density. In general,
Although soil strength and durability increase in proportion to dry density,
Since the dry density also changes depending on the water content, it is necessary to obtain the relationship between the water content and the dry density by this test.
At the time of construction, it is usual to adjust the soil to the optimum water content ratio and run it many times with heavy machinery to make it highly dense. The solidification property is evaluated by a uniaxial compression test, and a mixture of raw materials A, B or C is produced at the optimum water content ratio obtained from the compaction property test, and immediately after the production, a maximum of 5 cm in diameter and 10 cm in height is obtained in a mold. The specimen was obtained by compacting to a dry density, sealed in a vinyl bag, and cured in a thermostatic chamber at 20 ° C. to a prescribed age, and then tested. Uniaxial compression test is JIS A
According to 1216, the test was conducted on the 7th and 28th days. The elution test was carried out to investigate the elution suppressing effect of the raw material A when the municipal waste incineration ash was mixed with the raw material A (cementitious mixture) to form a mixture, and this mixture was used on land. The test was conducted in accordance with the dissolution test method applied to landfill of industrial waste (Environmental Agency Notification No. 13B). The sample was crushed from a uniaxial test specimen of 28 days of age and tested with a particle size range of 0.5 to 5.0 mm. However, the test items excluded the items in which elution was not observed even with the raw materials. The results of the compaction characteristics test are shown in Table 5 below. Samples 1 to 3 mixed with FA have compaction characteristics similar to soil, and the compaction characteristics have a small difference depending on the mixing ratio and the maximum dry density. And the optimum water content is about the same as the raw material A (cementitious mixture). Further, as compared with BA, the optimum water content ratio was small and the maximum dry density was large. Samples 4 to 6 mixed with BA also have compaction characteristics similar to the soil, and although the compaction characteristics differ little depending on the blending ratio, the maximum dry density is smaller and the optimum water content ratio is higher than FA. It was found that BA affects the compaction property of raw material A more than FA.

【0017】[0017]

【表5】 [Table 5]

【0018】固化特性を知るための一軸圧縮試験の結果
を次表6に示す。この試験によれば、FAの混合物の試
料1〜3で作製した供試体は、いずれの配合でも強度発
現がほとんど認められないが、材令28日ではやや強度
が増加する傾向を示した。FAの配合割合が25%以上
では、FAは原料Aの固化反応を阻害ようである。供試
体の体積変化は膨脹傾向を示し、膨脹量はかなり大き
い。これらの傾向はBAより顕著である。BAの混合物
の試料4〜6で作製した供試体は、いずれの配合でも強
度発現が認められた。その強度は、材令7日では配合の
違いによる差がほとんど見られないが、材令28日では
原料Aの多い配合ほど強度が高く、強度増加が大きくな
っている。BAは原料Aの固化反応を阻害しないが、反
応を促進するものでもないと考えられる。また、BAの
供試体の体積変化はFAと同様に膨脹傾向にあるが、F
Aに比べて小さく、原料Aと同程度であった。
The results of the uniaxial compression test for knowing the solidification characteristics are shown in Table 6 below. According to this test, the specimens prepared from Samples 1 to 3 of the mixture of FA showed almost no strength development in any formulation, but showed a tendency that the strength slightly increased at 28 days of age. When the proportion of FA is 25% or more, FA seems to hinder the solidification reaction of raw material A. The change in volume of the specimen shows an expansion tendency, and the expansion amount is quite large. These tendencies are more pronounced than BA. The specimens prepared from Samples 4 to 6 of the mixture of BA exhibited strength development in any of the blends. Regarding the strength, there is almost no difference due to the difference in the composition on the 7th day of the material age, but on the 28th day of the material age, the higher the amount of the raw material A, the higher the strength and the larger the increase in the strength. BA does not inhibit the solidification reaction of the raw material A, but is not considered to promote the reaction. Further, the volume change of the BA specimen has an expansion tendency like the FA, but
It was smaller than A and about the same as raw material A.

【0019】[0019]

【表6】 [Table 6]

【0020】溶出試験はFAの混合物の試料1〜3につ
いてのみ実施した。その結果を次表7に示す。BA混合
物の試料4〜6は、表4に見られる通りBA自体から有
害物質の溶出がなかったので、実施しなかった。この溶
出試験では、表4のように、FA単独では溶出したカド
ミウム、六価クロム及び全水銀が試料1〜3からは溶出
しなかった。これは原料Aの化学反応による溶出抑制効
果と考えられる。一方、これらの試料1〜3から鉛が溶
出している。しかし、鉛は原料A中のF(石炭灰のフラ
イアッシュ)から溶出したと考えられ、今回使用した石
炭灰が表4の参考値を上回っていることを示している。
特に注目されるのは、FAを75%配合した試料1では
鉛が溶出していないことである。これら試料1〜3のpH
はいずれも高いアルカリ性を示しており、原料Aの配合
割合が多い方がより高くなっている。
The dissolution test was carried out only on samples 1-3 of the FA mixture. The results are shown in Table 7 below. Samples 4-6 of the BA mixture were not run because there was no elution of harmful substances from the BA itself as seen in Table 4. In this dissolution test, as shown in Table 4, cadmium, hexavalent chromium, and total mercury, which were eluted by FA alone, were not eluted from Samples 1 to 3. This is considered to be the effect of suppressing the elution due to the chemical reaction of the raw material A. On the other hand, lead is eluted from these samples 1 to 3. However, it is considered that lead was eluted from F (coal ash fly ash) in raw material A, indicating that the coal ash used this time exceeds the reference value in Table 4.
Particularly noteworthy is that lead was not eluted in Sample 1 containing 75% FA. PH of these samples 1-3
Shows a high alkalinity, and the higher the mixing ratio of the raw material A, the higher.

【0021】[0021]

【表7】 [Table 7]

【0022】原料Aに原料B又はCを混合した混合物
は、いずれも土と同様の締固め特性があり、その含水比
は原料Aのみの場合と大差がなく、比較的容易に混合物
として製造ができ、盛土や路盤用の建設材料として利用
が可能である。本来、都市ごみのゴミフライアッシュか
らは有害物質が溶出するので、管理された処分場に埋設
廃棄しなければ2次公害の問題が起きるが、原料Aを混
合することにより有害物質の溶出がなくなり、廃棄物の
再利用が安全に行なえる。原料AとB又はCの配合比は
上記の割合を越えて配合することも可能である。
The mixture obtained by mixing the raw material B or C with the raw material A has the same compaction property as that of the soil, and the water content ratio thereof is not much different from that of the raw material A alone, and can be produced as a mixture relatively easily. It can be used as a construction material for embankments and roadbeds. Originally, hazardous substances are eluted from the garbage fly ash of municipal waste, so the problem of secondary pollution will occur if it is not buried in a controlled disposal site, but mixing of the raw material A eliminates the elution of harmful substances. , Waste can be reused safely. It is also possible to mix the raw materials A and B or C in a ratio exceeding the above ratio.

【0023】[0023]

【発明の効果】以上のように本発明によるときは、懸濁
液のアルカリ土類金属水酸化物とフライアッシュ及びア
ルカリ土類金属亜硫酸塩(この亜硫酸塩の一部はアルカ
リ土類金属亜硫酸塩であってもよい)からなるセメント
質混合物に、都市ごみの焼却灰を混合したことにより、
該焼却灰からの有害物質の溶出が抑制された締固め特性
のある建設材料として利用できる混合物が得られ、都市
ごみ焼却灰を埋設廃棄せずに火力発電所等で得られる産
業廃棄物と共に有効利用でき、該焼却灰の廃棄場所の用
意が不要になり、処理経費を節減できる等の効果があ
る。
As described above, according to the present invention, the alkaline earth metal hydroxide of the suspension, the fly ash, and the alkaline earth metal sulfite (a part of this sulfite is alkaline earth metal sulfite). May be), by mixing the incineration ash of municipal waste with a cementitious mixture consisting of
A mixture that can be used as a construction material with compaction characteristics in which the elution of harmful substances from the incinerated ash is suppressed is obtained, and it is effective together with industrial waste obtained at thermal power plants, etc. without burying the municipal waste incinerated ash. It is possible to use, there is no need to prepare a disposal site for the incinerated ash, and the processing cost can be reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 11/30 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 11/30

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水性懸濁液に30〜90重量%の固形物
を含有し、該固形物が0.25ないし70重量%のアル
カリ土類金属水酸化物と10ないし99.5重量%のフ
ライアッシュ及び0.25ないし70重量%のアルカリ
土類金属亜硫酸塩(この亜硫酸塩の一部はアルカリ土類
金属亜硫酸塩であってもよい)から成るセメント質混合
物に、都市ごみ焼却灰を混入し、建設材料とすることを
特徴とする都市ごみ焼却灰の処理方法。
1. An aqueous suspension containing 30 to 90% by weight of solids, wherein the solids are 0.25 to 70% by weight of alkaline earth metal hydroxide and 10 to 99.5% by weight. Incinerating municipal solid waste incineration ash into a cementitious mixture of fly ash and 0.25 to 70% by weight of alkaline earth metal sulfite (some of this sulfite may be alkaline earth metal sulfite) A method for treating municipal waste incineration ash, which is characterized by being used as a construction material.
【請求項2】 上記セメント質混合物に25ないし75
乾燥重量%の都市ごみ焼却灰を混入することを特徴とす
る請求項1に記載の都市ごみ焼却灰の処理方法。
2. The cementitious mixture in the range of 25 to 75.
The method for treating municipal waste incineration ash according to claim 1, wherein dry weight% of the municipal waste incineration ash is mixed.
JP13911592A 1992-05-29 1992-05-29 Treatment method of municipal waste incineration ash Expired - Fee Related JP2646312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13911592A JP2646312B2 (en) 1992-05-29 1992-05-29 Treatment method of municipal waste incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13911592A JP2646312B2 (en) 1992-05-29 1992-05-29 Treatment method of municipal waste incineration ash

Publications (2)

Publication Number Publication Date
JPH05329459A true JPH05329459A (en) 1993-12-14
JP2646312B2 JP2646312B2 (en) 1997-08-27

Family

ID=15237848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13911592A Expired - Fee Related JP2646312B2 (en) 1992-05-29 1992-05-29 Treatment method of municipal waste incineration ash

Country Status (1)

Country Link
JP (1) JP2646312B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272574A (en) * 2007-01-12 2008-11-13 Chugoku Electric Power Co Inc:The Method of suppressing elution of hexavalent chromium and thermal power generation system
JP2008273997A (en) * 2007-01-12 2008-11-13 Chugoku Electric Power Co Inc:The Elution inhibitor for controlling elution of harmful trace element, method for controlling elution and method for combustion of dust coal
CN104876477A (en) * 2015-04-10 2015-09-02 同济大学 Stable regeneration method of cement fly-ash gravel base reclaimed material cement based on mortar content control
CN110228973A (en) * 2019-06-13 2019-09-13 淮阴工学院 A kind of burning city domestic garbage bottom ash regeneration method for preparing mortar
CN117658577A (en) * 2023-12-05 2024-03-08 广州市市政工程试验检测有限公司 Soft soil curing agent based on garbage incineration secondary bottom slag and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847524A (en) * 1971-10-20 1973-07-06
JPS5159770A (en) * 1974-10-15 1976-05-25 Kawasaki Heavy Ind Ltd Gomishokyakubaino seikeikakoho
JPS51140877A (en) * 1975-05-30 1976-12-04 Japan Steel Works Ltd:The A method for non-polluting treatment of fly ashes
JPS5710057A (en) * 1980-06-20 1982-01-19 Hiroyuki Morita Hot house

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847524A (en) * 1971-10-20 1973-07-06
JPS5159770A (en) * 1974-10-15 1976-05-25 Kawasaki Heavy Ind Ltd Gomishokyakubaino seikeikakoho
JPS51140877A (en) * 1975-05-30 1976-12-04 Japan Steel Works Ltd:The A method for non-polluting treatment of fly ashes
JPS5710057A (en) * 1980-06-20 1982-01-19 Hiroyuki Morita Hot house

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272574A (en) * 2007-01-12 2008-11-13 Chugoku Electric Power Co Inc:The Method of suppressing elution of hexavalent chromium and thermal power generation system
JP2008273997A (en) * 2007-01-12 2008-11-13 Chugoku Electric Power Co Inc:The Elution inhibitor for controlling elution of harmful trace element, method for controlling elution and method for combustion of dust coal
CN104876477A (en) * 2015-04-10 2015-09-02 同济大学 Stable regeneration method of cement fly-ash gravel base reclaimed material cement based on mortar content control
CN110228973A (en) * 2019-06-13 2019-09-13 淮阴工学院 A kind of burning city domestic garbage bottom ash regeneration method for preparing mortar
CN117658577A (en) * 2023-12-05 2024-03-08 广州市市政工程试验检测有限公司 Soft soil curing agent based on garbage incineration secondary bottom slag and preparation method and application thereof

Also Published As

Publication number Publication date
JP2646312B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
EP0390297B1 (en) Method of covering waste mounds using a fill
Naik et al. Performance and leaching assessment of flowable slurry
Tay et al. Engineering properties of incinerator residue
Tay et al. Reuse of industrial sludge as pelletized aggregate for concrete
KR102133152B1 (en) firming agent for civil enqineering of soft ground using blast furnace slag and fly ash and method for manufacturing thereof
US4397801A (en) Method for the production of cementitious compositions and aggregate derivatives from said compositions, and cementitious compositions and aggregates produced thereby
CN101113090A (en) Method for producing baking-free brick without odour and three-waste by using sewage plant sludge
JP6184149B2 (en) Fired product
Soltaninejad et al. Environmental-friendly mortar produced with treated and untreated coal wastes as cement replacement materials
JP3706618B2 (en) Solidification / insolubilizer and solidification / insolubilization method for soil, incineration ash, coal ash, and gypsum board waste
KR102133154B1 (en) System of manufacturing firming agent for civil enqineering of soft ground using blast furnace slag and fly ash
JP2646312B2 (en) Treatment method of municipal waste incineration ash
Blondin et al. A selective hydration treatment to enhance the utilization of CFBC ash in concrete
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
Triano et al. Durability of MSW fly-ash concrete
Sloss et al. Pulverised Coal Ash: Requirements for Utilisation
Zhang et al. Leachability of trace metal elements from fly ash concrete: Results from column-leaching and batch-leaching tests
US5256197A (en) Abrasion-resistant synthetic article and method of making
JPH05309352A (en) Disposal of waste construction material
US5164008A (en) Immobilization of incinerator ash toxic elements in an environmentally safe soil cement composition and method of manufacture
JP2003340494A (en) Solidified body using pressurized and fluidized bed coal ash and method for utilizing the same
JPH09155319A (en) Method for processing for making heavy metal-containing incineration ash, etc., and shredder dust pollution-free and manufacture of reuse material
JPH0611661B2 (en) Recycled roadbed material
JPS6041589A (en) Solidification process of waste material
Szarek et al. Environmental aspect of using ash from thermal treatment of municipal sewage sludge in hardening slurries

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees