JPH05329404A - Rotary nozzle device - Google Patents

Rotary nozzle device

Info

Publication number
JPH05329404A
JPH05329404A JP19477892A JP19477892A JPH05329404A JP H05329404 A JPH05329404 A JP H05329404A JP 19477892 A JP19477892 A JP 19477892A JP 19477892 A JP19477892 A JP 19477892A JP H05329404 A JPH05329404 A JP H05329404A
Authority
JP
Japan
Prior art keywords
nozzle
mounting body
nozzle mounting
rotation
suppressing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19477892A
Other languages
Japanese (ja)
Other versions
JP2514142B2 (en
Inventor
Eikan Sawaide
英喚 澤出
Keiko Oshima
桂子 尾島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anzen Motor Car Co Ltd
Original Assignee
Anzen Motor Car Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anzen Motor Car Co Ltd filed Critical Anzen Motor Car Co Ltd
Priority to JP19477892A priority Critical patent/JP2514142B2/en
Publication of JPH05329404A publication Critical patent/JPH05329404A/en
Application granted granted Critical
Publication of JP2514142B2 publication Critical patent/JP2514142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a rotary nozzle device by which the nozzle is easily turned at the steady jet pressure even at the beginning of starting. CONSTITUTION:A nozzle fitting body 16 which is freely rotatably supported by a main body 11 connected to a pressure source is provided. A straight advance nozzle 7 is fitted to the nozzle fitting part 16. The nozzle 7 is disposed obliquely to the axial center C of the fitting body at a specified angle. The nozzle fitting body 16 is constituted so as to be rotatable by the jet pressure. Rotation suppressing means 50-54 are disposed at positions which are axially separatedly by the specified distances from the axial center C of the nozzle fitting body 16. The suppressing force of the rotation suppressing means 50-54 starts substantially from the non-load state to be increased in proportion to the increase of the rotational speed of the nozzle fitting body 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はノズルより噴射した水そ
の他の噴射液の反力により回転する回転ノズル装置に係
り、特に車両洗浄用高圧水噴射ノズル等の他に除雪、配
管、タンク、ビル洗浄用の高圧水噴射ノズルとして、更
にはエアレス塗装用のノズルとして適用可能な回転ノズ
ル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary nozzle device which is rotated by a reaction force of water or other jet liquid jetted from a nozzle, and more particularly to a high pressure water jet nozzle for washing vehicles, snow removal, pipes, tanks and buildings. The present invention relates to a rotary nozzle device that can be used as a high-pressure water jet nozzle for cleaning and also as a nozzle for airless painting.

【0002】[0002]

【従来の技術】噴射ノズルより洗浄水を噴射して車両内
外面に付着した汚れを除去する為の洗浄装置において
は、洗浄力を増す為に洗浄水の噴射圧を高めるとともに
直進ノズルを使用し、単位面積当たりの噴射圧を高めて
いるが、このような構成を採ると必然的に洗浄域が挟小
化して洗浄効率の低下が避けられない。この為、前記噴
射ノズルを回転可能な支持体に取付けるとともに、該ノ
ズルの噴射方向を前記支持体の回転軸に対し偏向して配
置し、前記ノズルより噴射される噴射圧の反作用力を利
用して該ノズルを回転又は揺動させるようにし、その噴
射域を拡大させるようにした回転ノズル装置が提案され
ている。
2. Description of the Related Art In a cleaning device for spraying cleaning water from a spray nozzle to remove dirt adhering to the inside and outside surfaces of a vehicle, the spray pressure of the cleaning water is increased and a straight-ahead nozzle is used to increase the cleaning power. Although the injection pressure per unit area is increased, if such a configuration is adopted, the cleaning area is inevitably narrowed and a decrease in cleaning efficiency cannot be avoided. For this reason, the injection nozzle is attached to a rotatable support, the injection direction of the nozzle is arranged so as to be deflected with respect to the rotation axis of the support, and the reaction force of the injection pressure injected from the nozzle is used. A rotary nozzle device has been proposed in which the nozzle is rotated or swung to expand the injection area.

【0003】しかしながらかかる回転ノズル装置におい
ては、前記ノズルの回転速度は噴射圧に起因して決定さ
れるものである為に、該噴射圧が高圧化すればする程前
記回転速度が大になり、一方前記ノズルは支持体の回転
軸に対し偏心している為に、該ノズルの回転により前記
回転軸に対し直交する方向に遠心力が働き、而も該遠心
力は回転速度に比例して増大する。そしてこのように増
大した遠心力は、ノズルより噴射された噴射水流にも作
用して、その直進性を妨げるのみならず、該直進してい
る噴射水流を散乱化させ、霧状態にしてしてしまう。そ
して一旦霧化した水流は例えその噴出速度を維持して車
両に衝突しても衝撃力が大幅に低下し、洗浄効率が大幅
に低下するという問題が生じる。
However, in such a rotary nozzle device, since the rotation speed of the nozzle is determined by the injection pressure, the higher the injection pressure, the higher the rotation speed. On the other hand, since the nozzle is eccentric with respect to the rotation axis of the support, a centrifugal force acts in a direction orthogonal to the rotation axis due to the rotation of the nozzle, and the centrifugal force increases in proportion to the rotation speed. .. The centrifugal force thus increased acts not only on the jet water flow ejected from the nozzle, but also impedes the straightness of the jet water flow, and scatters the jet water flow that is advancing straight into a mist state. I will end up. Then, even if the once atomized water flow maintains its ejection speed and collides with the vehicle, the impact force is significantly reduced, and the cleaning efficiency is significantly reduced.

【0004】かかる欠点を解消する為に、前記ノズルと
支持体との係合をきつくして、その回転力をセーブする
ように構成する事も可能であるが、このように構成する
と、起動初期において前記ノズルが円滑に回転せず、こ
の為該ノズルを強制的に回転させる為に、ノズル噴射圧
を起動初期において前記ノズルが回転し得るだけの高圧
に設定し、ノズル回転後前記ノズルを定常圧に戻す操作
を必要とし、制御操作が必要以上に複雑化するととも
に、装置自体を前記起動初期における高圧に耐えるだけ
の耐圧強度をもたす必要がある。
In order to eliminate such a drawback, it is possible to tightly engage the nozzle with the support to save the rotational force thereof. In the above, the nozzle does not rotate smoothly, and therefore, in order to forcibly rotate the nozzle, the nozzle injection pressure is set to a high pressure that allows the nozzle to rotate in the initial stage of startup, and after the nozzle has rotated, the nozzle is steadily rotated. It is necessary to return the pressure to the pressure, the control operation becomes more complicated than necessary, and the pressure resistance strength of the device itself must be high enough to withstand the high pressure at the initial stage of startup.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる従来技
術の欠点に鑑み、簡単な構造で高圧化した洗浄水を噴射
する場合においても、噴射水流が遠心力によって霧化せ
ず、その直進性を維持し得る回転ノズル装置を提供する
事にある。又本発明の他の目的とする所は、起動初期に
おいても定常噴射圧で容易にノズルが回転可能な回転ノ
ズル装置を提供する事にある。
In view of the above-mentioned drawbacks of the prior art, the present invention does not atomize the jet flow of water by centrifugal force even when jetting washing water of high pressure with a simple structure, and the straightness thereof is improved. It is to provide a rotary nozzle device that can maintain the above. Another object of the present invention is to provide a rotary nozzle device in which the nozzle can be easily rotated with a steady injection pressure even in the initial stage of startup.

【0006】更に本発明の他の目的とする所は、噴射媒
体を洗浄水のみに限定する事なく、塗料、油等にも適用
可能な回転ノズル装置を提供する事を目的とする。
Another object of the present invention is to provide a rotary nozzle device which can be applied to paints, oils, etc. without limiting the jetting medium to only washing water.

【0007】[0007]

【課題を解決する為の手段】本発明は、かかる技術的課
題を達成する為に第4図乃至第11図に示すように、圧力
源に連結される本体11に回転自在に支持されるノズル取
付体16を有する点、前記ノズル取付体16に取付けられた
直進ノズル7 を有し、該ノズル7 を取付体軸心C に対し
所定角度傾斜させて配設し、その噴射圧により前記ノズ
ル取付体16が回転可能に構成されている点前記ノズル取
付体16の軸心C から半径方向に所定距離隔てた位置に回
転抑制手段50〜85を設け、該回転抑制手段50〜85の抑制
力が実質的に無負荷状態から出発し、ノズル取付体16の
回転速度の増大に比例して増加可能に構成した点を構成
要件とする回転ノズル7 装置を提案する。
In order to achieve the above technical object, the present invention provides a nozzle rotatably supported by a main body 11 connected to a pressure source, as shown in FIGS. 4 to 11. A point having a mounting body 16, a straight-moving nozzle 7 mounted on the nozzle mounting body 16, the nozzle 7 is arranged at a predetermined angle with respect to the mounting body axis C, and the nozzle mounting is performed by its injection pressure. A point at which the body 16 is configured to be rotatable. Rotation suppressing means 50 to 85 are provided at a position that is separated from the axis C of the nozzle mounting body 16 by a predetermined distance in the radial direction, and the suppressing force of the rotation suppressing means 50 to 85 is A rotary nozzle (7) device is proposed which has a constitutional point that is configured to start from a substantially unloaded state and can be increased in proportion to an increase in the rotation speed of the nozzle mounting body (16).

【0008】そして前記のような回転抑制手段50〜85に
は、種々の具体的な構成が考えられ、例えば、請求項1
及び2記載の発明に対応する図4乃至図6においては、
前記ノズル取付体16と本体11との間の対面する位置に介
在させた摺擦体51、56、61-62を配置し、該摺擦体51、5
6、61-62 が、前記ノズル取付体16又は本体11との間の
摺擦面との間で非接触の状態を維持した後、前記ノズル
取付体16の回転により前記摺擦体51、56、61-62 の摩擦
抵抗が発生し、該取付体16の回転を抑制するとともに、
前記ノズル取付体16の回転により発生する遠心力の増大
に比例して前記摩擦抵抗が増加可能に構成している。
Various specific configurations are conceivable for the rotation restraining means 50 to 85 as described above.
4 to 6 corresponding to the invention described in 1 and 2,
The rubbing bodies 51, 56, 61-62 interposed between the nozzle mounting body 16 and the main body 11 facing each other are arranged.
6, 61-62, after maintaining a non-contact state with the rubbing surface between the nozzle mounting body 16 or the main body 11, by rotating the nozzle mounting body 16, the rubbing body 51, 56 , 61-62 frictional resistance is generated to suppress the rotation of the mounting body 16, and
The frictional resistance can be increased in proportion to the increase of the centrifugal force generated by the rotation of the nozzle mounting body 16.

【0009】又請求項3記載の発明に対応する図7にお
いては、前記回転抑制手段を、ノズル取付体16外周壁面
に設けた羽根体66で形成し、該羽根体66の受圧面積が前
記ノズル取付体16の回転により発生する遠心力の増大に
比例して増加可能に構成している。
Further, in FIG. 7 corresponding to the invention of claim 3, the rotation suppressing means is formed by a blade body 66 provided on the outer peripheral wall surface of the nozzle mounting body 16, and the pressure receiving area of the blade body 66 is the nozzle. It is configured such that it can be increased in proportion to an increase in centrifugal force generated by the rotation of the mounting body 16.

【0010】更に請求項4記載の発明に対応する図8に
おいては、前記ノズル取付体16と本体11との間の対面す
る位置に夫々設けた磁石体71-72 であり、該磁石体71-7
2 間で形成される反発磁界により前記ノズル取付体16の
回転力を抑制可能に構成している。更に請求項5記載の
発明に対応する図9においては、前記回転抑制手段を、
前記ノズル に導く流体をノズル取付体回転により生じ
る遠心力により開放可能な逃し弁で構成し、該逃し弁が
ノズル取付体の非回転時に封止され、該ノズル取付体回
転数の増大に比例して前記逃し弁の弁/シート間の離間
距離が増大可能に構成している 更に請求項6記載の発明に対応する図10及び11にお
いては、前記回転抑制手段が、鋼球収納孔をノズル取付
体外周面の周径方向に複数個凹設するとともに、該収納
孔内に僅かに小なる鋼球を収納し、一方前記本体に固設
されノズル取付体外周面と所定空隙を介して対面する外
被体側に、前記鋼球81と対面する位置の内選択された個
所に浅い弧状凹溝を設け、該凹溝に前記鋼球が係合可能
に構成したホールブレーキ機構である事を特徴とする。
Further, in FIG. 8 corresponding to the invention of claim 4, there are shown magnet bodies 71-72 provided at the facing positions between the nozzle mounting body 16 and the main body 11, respectively. 7
The rotational force of the nozzle mounting body 16 can be suppressed by the repulsive magnetic field formed between the two. Further, in FIG. 9 corresponding to the invention of claim 5, the rotation suppressing means is
The fluid introduced to the nozzle is composed of a relief valve that can be opened by centrifugal force generated by the rotation of the nozzle mounting body, and the relief valve is sealed when the nozzle mounting body is not rotating, and is proportional to the increase in the number of rotations of the nozzle mounting body. 10 and 11 corresponding to the invention of claim 6, the rotation suppressing means mounts the steel ball accommodating hole to the nozzle. A plurality of recesses are formed in the circumferential direction of the outer peripheral surface of the body, and a slightly smaller steel ball is housed in the housing hole, and fixed to the main body while facing the outer peripheral surface of the nozzle mounting body through a predetermined gap. On the outer body side, a shallow arc-shaped concave groove is provided at a selected position in a position facing the steel ball 81, and the steel ball is configured to be engageable with the steel ball 81. To do.

【0011】[0011]

【作用】前記いずれの発明もノズル取付体16の軸心C か
ら半径方向に所定距離隔てた位置に回転抑制手段50〜85
を設け、該回転抑制手段50〜85がノズル取付体16の回転
速度の増大に比例して増加可能に構成されている為に、
高圧化した洗浄水を前記直進ノズル7 より噴射した場合
においても、その回転速度を前記手段により抑制する為
に、噴射水流が霧化し得るだけの遠心力が発生せず、結
果としてその直進性を維持し得る。又前記回転抑制手段
50〜85の抑制力は実質的に無負荷状態から出発するよう
構成した為に、定常噴射圧でも容易に起動させる事が出
来る。
In any of the above-mentioned inventions, the rotation suppressing means 50 to 85 are provided at a position radially separated from the axis C of the nozzle mounting body 16 by a predetermined distance.
Since the rotation suppressing means 50 to 85 can be increased in proportion to the increase in the rotation speed of the nozzle mounting body 16,
Even when high-pressure washing water is sprayed from the straight-ahead nozzle 7, the rotational speed is suppressed by the means, so that a centrifugal force sufficient to atomize the sprayed water flow does not occur, and as a result, its straightness is improved. Can be maintained. Also, the rotation suppressing means
Since the suppression force of 50 to 85 is configured to start from a substantially no-load state, it can be easily started even with a steady injection pressure.

【0012】[0012]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
は本発明が適用される回転ノズル装置で、(A)は左側
面図、(B)は縦断正面図、(C)は右側面図である。
図中1 は耐圧ホースを流入口に螺着させる事により高圧
流体源が内部に流入可能に構成した本体で、その先端外
輪側を螺子係合させたスリーブ2 によりベアリングを含
む転がり軸受3 の外輪3aをパッキング押え4 と共に締着
させる。支持体5 は前記転がり軸受3 の内輪に圧入固定
され、該転がり軸受3 を介して本体1 に回転自在に支持
されており、そして該支持体5 は前記本体流入口1aと対
面開口する流体導通空間5aを有しその基側筒部に耐圧シ
ールを介在させ、前記流入口1aと転がり軸受3 間の本体
1 内部空間を遮断させるとともに、本体1 より突設する
側に六角フランジ5bを介して、上部が開口し、外周囲に
ガス螺子が刻設してあり筒状体5cを設け、該筒状体5cを
支持体5 の回転軸M (転がり軸受3 の軸心に対し偏位し
た位置に設ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described in detail below as an example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Not too much. Figure 1
Is a rotary nozzle device to which the present invention is applied, (A) is a left side view, (B) is a vertical sectional front view, and (C) is a right side view.
In the figure, 1 is a main body in which a high-pressure fluid source can flow into the inside by screwing a pressure-resistant hose into the inlet, and the outer ring of the rolling bearing 3 including the bearing is covered by a sleeve 2 in which the outer ring side of the tip is screw-engaged. Tighten 3a together with packing retainer 4. The support body 5 is press-fitted and fixed to the inner ring of the rolling bearing 3 and is rotatably supported by the main body 1 via the rolling bearing 3, and the support body 5 is in fluid communication with the main body inflow port 1a facing open. A main body between the inflow port 1a and the rolling bearing 3 which has a space 5a and a pressure resistant seal interposed in the base side cylindrical portion thereof.
1 In addition to blocking the internal space, an upper part is opened on the side protruding from the main body 1 via a hexagonal flange 5b, and a gas screw is engraved on the outer periphery to provide a tubular body 5c. 5c is provided at a position deviated from the rotation axis M of the support 5 (the axis of the rolling bearing 3).

【0013】この結果、本体1 側支持体5 の回転軸M と
筒状体軸心αとが図1(A)に示す如く偏心する事にな
る。そして前記筒状体の外周囲にテープシールを巻回さ
せた後、キャップ状のノズル取付体6 (以下キャップと
いう)を回転可能に螺合させる。キャップ6 は、入口側
に整流片7aを設けた直進ノズル7 を螺着するとともに、
該ノズル7 をキャップ6 の軸心C αを指向するよう斜方
向に配置する。
As a result, the rotation axis M of the main body 1 side support body 5 and the cylindrical body axis center α are eccentric as shown in FIG. 1 (A). After a tape seal is wound around the outer periphery of the tubular body, a cap-shaped nozzle mounting body 6 (hereinafter referred to as a cap) is rotatably screwed. The cap 6 is screwed with a straight-moving nozzle 7 having a rectifying piece 7a on the inlet side, and
The nozzle 7 is obliquely arranged so as to point the axis C α of the cap 6.

【0014】上記構成において、例えば図1(A)に示
すようにキャップ6 を支持体5 上で螺子によりα (例え
ば 130°) 回動すると、ノズル7 の先端の中心O は O´
に移動する。 Mを支持体5 の回転中心軸とすると、O-M
は最大のオフセット量を、又O´-Mは最小のオフセット
量を示す。このようにキャップ6 を支持体5 上で回動す
ることによりオフセット量が変化するので、その噴射反
力で回転するノズル7の回転数と噴射域が制御出来る。
尚、上記ノズル7 の入口には整流片7aが挿着されてい
る。該整流片7aは金属薄板を屈曲して例えば、星形の形
状に成形したもので、市販のノズル7 の入口に挿着され
る。その作用は次の通りである。導入された高圧温水は
支持体5 ーキャップ内で容積拡大してノズル7 へと流れ
て行く。この容積拡大のため流体に乱流が発生し、この
乱流の状態のままノズル7 より噴射させると噴射角度が
設定値より広がり、インパクト (洗浄効果) が減少す
る。整流片7aを組込むと乱流流体が整流片7a通過中に整
えられ、上記の欠点が防止される。
In the above structure, when the cap 6 is rotated by α (for example 130 °) on the support 5 with a screw as shown in FIG. 1A, the center O of the tip of the nozzle 7 becomes O '.
Move to. If M is the rotation center axis of support 5, OM
Indicates the maximum offset amount, and O'-M indicates the minimum offset amount. Since the offset amount is changed by rotating the cap 6 on the support 5 in this manner, the rotation speed and the injection area of the nozzle 7 rotated by the injection reaction force can be controlled.
A rectifying piece 7a is inserted into the inlet of the nozzle 7. The rectifying piece 7a is formed by bending a thin metal plate into a star shape, for example, and is inserted and attached to the inlet of the commercially available nozzle 7. Its action is as follows. The introduced high-pressure hot water expands in volume in the support 5 cap and flows to the nozzle 7. Due to this volume expansion, a turbulent flow is generated in the fluid, and if the turbulent flow is used to eject from the nozzle 7, the ejection angle becomes wider than the set value, and the impact (cleaning effect) is reduced. When the rectifying piece 7a is incorporated, the turbulent fluid is conditioned while passing through the rectifying piece 7a, and the above-mentioned drawbacks are prevented.

【0015】図2(A)(B)は本発明の回転ノズル7 装置の
応用例たる揺動型のサイドフィレーム部の洗浄装置の4
柱リフト取付全体図を示し、 21は回転ノズル装置、
22は該回転ノズル装置21が設けられる分配ブロック
で、ノブ23により正逆回転軸24に対して任意の位置に取
付けて洗浄高さを設定する。軸24の正逆回転はモータ25
により減速駆動される回転板26、コネクチングロッド2
7、正逆回動片28によって行なわれる。本装置は車両が
リフトアップするため進入して来る際障害とならずに、
最も洗浄効果の有効な位置として 4柱リフト移動側台車
に左右各々取付けられて自動洗浄を行なうものであり、
自動洗浄の範囲は、ノズル装置21の高さ及び角度が任意
に調整できるので、車種による洗浄範囲設定が可能であ
る。又、横方向の揺動機構を設けることより一層洗浄範
囲を拡大し、洗浄効果を増大することが出来る。
2 (A) and 2 (B) show an example of application of the rotary nozzle 7 device of the present invention, which is an oscillating type side film portion cleaning device 4.
Shows the overall view of the column lift installation, 21 is a rotary nozzle device,
A distribution block 22 is provided with the rotary nozzle device 21, and is mounted at an arbitrary position with respect to the forward / reverse rotation shaft 24 by a knob 23 to set a cleaning height. The motor 24 rotates the shaft 24 forward and backward.
Rotating plate 26, connecting rod 2 driven by deceleration by
7. This is performed by the forward / reverse rotation piece 28. This device does not become an obstacle when entering because the vehicle lifts up,
As the position where the cleaning effect is most effective, it is installed on each side of the four-column lift moving side carriage for automatic cleaning.
Since the height and angle of the nozzle device 21 can be arbitrarily adjusted in the range of automatic cleaning, the cleaning range can be set depending on the vehicle type. Further, by providing a lateral swing mechanism, the cleaning range can be further expanded and the cleaning effect can be increased.

【0016】図3は本発明の回転ノズル7 装置の他の応
用例たる下部洗浄機自送型装置の斜視図である。従来の
下部洗浄装置では、ノズルアーム取付のノズルを設定
し、ノズルアームを本体に収納した状態で前進又は後退
し、停止時に左右にノズルアームを広げるという動作を
繰り返しながら洗浄していたので充分な洗浄効果が得ら
れなかった。本装置によると、下方から上元部を洗う条
件にもかかわらず、洗浄角度が広角なため洗浄面積の拡
大と重複した洗浄とで良好な洗浄効果を得られる。図中
は31本発明の回転ノズル装置で、保護カバー33内、分配
ブロック32に取付られ、ノズルアーム34が揺動し、さら
にノズルアーム34を広げるという動作を繰り返し洗浄面
積を拡大し、回転ノズル装置31により重複洗浄する。こ
のように、ノズルアーム34は揺動及び横行するため、外
部動力で回転ノズル装置31を駆動する方法は、非常に複
雑な機構となる。本発明の回転ノズル装置31を使用する
ことで、いっさいの複雑な機構を使用せずに、流体のエ
ネルギーを利用し回転させるものである。
FIG. 3 is a perspective view of a lower washing machine self-feeding type apparatus as another application example of the rotary nozzle 7 apparatus of the present invention. In the conventional lower cleaning device, the nozzle of the nozzle arm is set, the nozzle arm is housed in the main body, and the nozzle arm is moved forward or backward. No cleaning effect was obtained. According to this apparatus, a good cleaning effect can be obtained by expanding the cleaning area and overlapping cleaning because the cleaning angle is wide, regardless of the condition of cleaning the upper part from below. In the figure, 31 is a rotary nozzle device of the present invention, which is attached to the distribution block 32 in the protective cover 33, swings the nozzle arm 34, and further expands the nozzle arm 34 to repeat the operation to expand the cleaning area, and to rotate the rotary nozzle. Overlapping cleaning is performed by the device 31. As described above, since the nozzle arm 34 swings and traverses, the method of driving the rotary nozzle device 31 by the external power becomes a very complicated mechanism. By using the rotary nozzle device 31 of the present invention, the energy of the fluid is used for rotation without using any complicated mechanism.

【0017】図4は前記洗浄装置に組込まれる第2発明
の実施例を示す回転ノズル装置で、(A)は平面図、
(B)は縦断正面図である。図中11は耐圧ホースを流入
口1aに螺着させる事により高圧流体源が内部に流入可能
に構成した本体11で、上面側にノズル取付体16(以下ロ
ータ16という)収納する円筒凹部を有する筒状外被体12
を螺子結合させるとともに、該外被体12下側内周部と本
体11上面間に転がり軸受3 の外輪3aを挟着させる。又前
記本体11の中心貫通孔11a を有する中心管11b の外周囲
には、ライナパッキン13を介してロータ16のガイド部16
a が嵌合されており、該ガイド部16b 外周囲に転がり軸
受3 の内輪3bが圧入固定され、この結果転がり軸受3 を
介して前記ロータ16が本体11に回転自在に支持される事
となる。尚図中14はシールパッキン等より漏洩した流体
の逃穴、15はドレンカバー、17は転がり軸受3 のストッ
パとして機能するスナップリングである。一方、ロータ
16上部は、外被体12の円筒凹部内壁面12a より僅かに小
なる外径をもって形成され、その上面に整流片7aを設け
た直進ノズル7 を螺着するとともに、該ノズル7 をロー
タ16の軸心C を指向するよう斜めに且つ周径方向にも僅
かに傾斜させて配置する。そして前記本体11側の中心貫
通孔11a と直進ノズル7 間を連通させる為に前記ロータ
16内に導通孔16b を穿孔する。この結果前記中心貫通孔
11a に高圧流体を導入する事により、ノズル7 よりの噴
射圧により前記ロータ16が回転する。
FIG. 4 is a rotary nozzle device showing an embodiment of the second invention incorporated in the cleaning device, (A) is a plan view,
(B) is a vertical sectional front view. Reference numeral 11 in the drawing is a main body 11 configured to allow a high-pressure fluid source to flow therein by screwing a pressure-resistant hose into the inflow port 1a, and has a cylindrical concave portion for accommodating the nozzle mounting body 16 (hereinafter referred to as the rotor 16) on the upper surface side. Cylindrical jacket 12
The outer ring 3a of the rolling bearing 3 is sandwiched between the lower inner peripheral portion of the outer cover 12 and the upper surface of the main body 11 while being screwed together. Further, the guide portion 16 of the rotor 16 is provided around the outer periphery of the central tube 11b having the central through hole 11a of the main body 11 with the liner packing 13 interposed therebetween.
a is fitted, the inner ring 3b of the rolling bearing 3 is press-fitted and fixed around the outer periphery of the guide portion 16b, and as a result, the rotor 16 is rotatably supported by the main body 11 via the rolling bearing 3. .. In the figure, 14 is an escape hole for the fluid leaked from the seal packing, 15 is a drain cover, and 17 is a snap ring that functions as a stopper of the rolling bearing 3. On the other hand, the rotor
16 The upper part is formed with an outer diameter slightly smaller than the inner wall surface 12a of the cylindrical recess of the outer casing 12, and a straight-ahead nozzle 7 provided with a rectifying piece 7a is screwed onto the upper surface thereof, and the nozzle 7 is attached to the rotor 16 of the rotor 16. It is arranged diagonally so as to point the axis C and slightly inclined in the circumferential direction. Then, in order to connect the central through hole 11a on the main body 11 side and the straight-ahead nozzle 7 with each other, the rotor
A through hole 16b is bored in the inner part 16. As a result, the central through hole
By introducing a high-pressure fluid into 11a, the rotor 16 is rotated by the injection pressure from the nozzle 7.

【0018】さて前記ロータ16は、外被体12と対面する
外周面側に、複数のU字溝52を所定角度隔てた位置に凹
設するとともに、該U字溝52に、U字溝52直径と同形の
円筒体51を収納し、更に該ロータ16外周面と円筒体51周
面上に形成したリング溝53にOリング54を巻回し、前記
円筒体51をU字溝52側に所定の弾性力で保持させる。こ
の結果ロータ16の非回転の状態においては円筒体51は、
外被体12内壁面12a に対し非接触の状態を維持させる事
が出来る。又前記ロータ16の上面側には断面コの字状キ
ャップ18を取付け、前記U字溝52の隠蔽を図る。
The rotor 16 is provided with a plurality of U-shaped grooves 52 at positions separated by a predetermined angle on the outer peripheral surface facing the outer casing 12, and the U-shaped grooves 52 are provided in the U-shaped grooves 52. A cylindrical body 51 having the same shape as the diameter is housed, and an O-ring 54 is wound around an outer peripheral surface of the rotor 16 and a ring groove 53 formed on the peripheral surface of the cylindrical body 51, so that the cylindrical body 51 is predetermined on the U-shaped groove 52 side. It is held by the elastic force of. As a result, in the non-rotating state of the rotor 16, the cylindrical body 51 is
It is possible to maintain a non-contact state with the inner wall surface 12a of the outer cover 12. A cap 18 having a U-shaped cross section is attached to the upper surface of the rotor 16 to conceal the U-shaped groove 52.

【0019】かかる実施例によれば、回転停止時におい
ては、円筒体51は外被体12内壁面12a に対し非接触の状
態を維持している為に、前記ノズル7 の噴射反力でロー
タ16が容易に回転し始め、そして該ロータ16の回転によ
り生じる遠心力によりOリング54の弾性的保持力に抗し
て、前記円筒体51が外被体12内壁面12a に接触押圧し、
その摺動抵抗によりロータ16の回転を抑制し、該ロータ
16の回転数の増大に比例して前記摺動抵抗が増大する為
に、結果として回転速度が抑制され、噴射水流が霧化し
得るだけの遠心力が発生せず、その直進性を維持する事
が出来る。
According to this embodiment, since the cylindrical body 51 is kept in non-contact with the inner wall surface 12a of the outer cover 12 when the rotation is stopped, the rotor is driven by the jet reaction force of the nozzle 7. 16 begins to rotate easily, and the cylindrical body 51 contacts and presses the inner wall surface 12a of the outer casing body 12 against the elastic holding force of the O-ring 54 by the centrifugal force generated by the rotation of the rotor 16.
The sliding resistance suppresses the rotation of the rotor 16,
Since the sliding resistance increases in proportion to the increase in the number of rotations of 16, the rotation speed is consequently suppressed, the centrifugal force sufficient to atomize the jet water is not generated, and the straightness is maintained. Can be done.

【0020】図5はライニングシューを利用した他の実
施例で、自由端56a 側を二つに折り返し、外被体12内壁
面12a に非接触の状態まで重畳させたライニングシュー
56と、該ライニングシュー56の基端側を固定させた円筒
体57と、該円筒体57を収納する為に、ロータ16外周面上
に凹設した円筒凹部58とから回転抑制手段を構成する。
かかる実施例によれば、回転停止時においては、ライニ
ングシュー56は外被体12内壁面12a に対し非接触の状態
を維持し、又例え僅かに接触したとしても該ライニング
シュー56は低抵抗性である為に、前記ノズル7 の噴射反
力でロータ16が容易に回転し始め、そして該ロータ16の
回転により生じる遠心力により円筒体57の押圧力によ
り、前記ライニングシュー56が外被体12内壁面12a に接
触押圧し、その摺動抵抗によりロータ16の回転を抑制
し、該ロータ16の回転数の増大に比例して前記摺動抵抗
が増大する為に、結果として回転速度が抑制され、前記
と同様な効果を発生させる。
FIG. 5 shows another embodiment using a lining shoe, in which the free end 56a side is folded back in two and overlapped with the inner wall surface 12a of the outer casing 12 to a non-contact state.
56, a cylindrical body 57 to which the base end side of the lining shoe 56 is fixed, and a cylindrical recess 58 recessed on the outer peripheral surface of the rotor 16 to house the cylindrical body 57 constitute a rotation suppressing means. ..
According to such an embodiment, when the rotation is stopped, the lining shoe 56 maintains a non-contact state with the inner wall surface 12a of the outer casing 12, and even if the lining shoe 56 makes a slight contact, the lining shoe 56 has a low resistance. Therefore, the rotor 16 easily starts to rotate due to the injection reaction force of the nozzle 7, and the lining shoe 56 is pushed by the pressing force of the cylindrical body 57 due to the centrifugal force generated by the rotation of the rotor 16. The inner wall surface 12a is pressed against the inner wall surface 12a, the rotation of the rotor 16 is suppressed by the sliding resistance, and the sliding resistance is increased in proportion to the increase in the number of rotations of the rotor 16, so that the rotation speed is suppressed. , Produces the same effect as described above.

【0021】図6はタービンブレーキ機構を利用した他
の実施例で、ロータ16中心管11b を外被体12内壁面12a
位置まで延設して形成し、該延設部位に先端を八の字状
に分岐させた摺動片61を有する円板部材60を設けるとと
もに、該摺動片61の両端に重錘63を取付け、該重錘63に
遠心力が作用する事により前記摺動片61が閉塞可能に構
成する。一方外被体12内壁面12a 側には前記摺動片61と
対面する位置に、周径方向に沿って半径複数の半球状摩
擦球62を設ける。かかる実施例によれば、回転停止時に
おいては、半球状摩擦球62と摺動片61は非接触の状態を
維持している為に、前記ノズル7 の噴射反力でロータ16
が容易に回転し始め、そして該ロータ16の回転により生
じる遠心力により前記八の字状に拡開している摺動片61
が閉塞し摩擦球62に摺擦する為に、その摺動抵抗により
ロータ16の回転を抑制し、該ロータ16の回転数の増大に
比例して前記摺動抵抗は増大する為に、結果として回転
速度が抑制され、前記と同様な効果を発生させる。
FIG. 6 shows another embodiment using a turbine brake mechanism, in which the rotor 16 center tube 11b is fitted to the inner wall surface 12a of the outer casing 12.
A disk member 60 having a sliding piece 61 whose end is branched in an eight shape is provided at the extended position, and a weight 63 is provided at both ends of the sliding piece 61. The sliding piece 61 is attached so that the sliding piece 61 can be closed by a centrifugal force acting on the weight 63. On the other hand, hemispherical friction balls 62 having a plurality of radii are provided on the inner wall surface 12a side of the outer casing 12 at a position facing the sliding piece 61 along the circumferential direction. According to this embodiment, since the hemispherical friction ball 62 and the sliding piece 61 are kept in non-contact with each other when the rotation is stopped, the injection reaction force of the nozzle 7 causes the rotor 16 to rotate.
Of the sliding piece 61 which starts to rotate easily and which is expanded in the shape of an eight by the centrifugal force generated by the rotation of the rotor 16.
Is blocked and rubs against the friction ball 62, the rotation of the rotor 16 is suppressed by its sliding resistance, and the sliding resistance increases in proportion to the increase in the number of rotations of the rotor 16. The rotation speed is suppressed, and the same effect as described above is generated.

【0022】図7は羽根体66を利用した他の実施例で、
ロータ16と一体的に回転するキャップ18の外周面に、周
径方向に沿って複数の垂直軸67を取付け、該軸67に羽根
体66を螺子を介して取付ける。前記羽根体66はステンレ
ス板で形成され、キャップ18外周面に沿って延設させた
後、その自由端66a を折り返して受圧面66b を形成す
る。かかる実施例によれば、回転停止時においては、前
記羽根体66の自由端66a 側は180゜重畳して折返され
ている為に受圧面積が僅かであり、従ってこの状態で
は、前記ノズル7 の噴射反力でロータ16が容易に回転し
始め、そして該ロータ16の回転により生じる遠心力と回
転風力により前記180 度重畳して折返されている羽根体
66自由端66a が羽根体66自体の弾性力に抗して半径方向
に立ち上がり、その風力抵抗によりロータ16の回転を抑
制し、該ロータ16の回転数の増大に比例して前記自由端
66a の受圧面積が増大してその風力抵抗は増大する為
に、結果として回転速度が抑制され、前記と同様な効果
を発生させる。
FIG. 7 shows another embodiment using the blade 66,
A plurality of vertical shafts 67 are attached to the outer peripheral surface of the cap 18 that rotates integrally with the rotor 16 along the circumferential direction, and the blade bodies 66 are attached to the shafts 67 with screws. The blade body 66 is formed of a stainless steel plate, and extends along the outer peripheral surface of the cap 18, and then the free end 66a is folded back to form a pressure receiving surface 66b. According to such an embodiment, when the rotation is stopped, the free end 66a side of the blade body 66 is overlapped by 180 ° and folded back, so that the pressure receiving area is small. Therefore, in this state, the nozzle 7 The rotor 16 easily starts to rotate due to the jet reaction force, and the centrifugal force generated by the rotation of the rotor 16 and the rotating wind force cause the blade body to be folded back in such a manner that it overlaps by 180 degrees.
66 The free end 66a rises in the radial direction against the elastic force of the blade body 66 itself and suppresses the rotation of the rotor 16 by its wind force resistance, and the free end is proportional to the increase in the rotation speed of the rotor 16.
Since the pressure receiving area of 66a increases and its wind resistance increases, the rotation speed is consequently suppressed and the same effect as described above is generated.

【0023】図8は磁石の反発磁界を利用した他の実施
例で、外被体12内壁面12a とロータ16外周面上の夫々対
面する位置に、同極性の磁石体71-72 を、夫々複数個取
付ける。かかる実施例によれば、回転停止時において
は、磁石体71-72 同士の反発磁界により前記磁石体71-7
2 同士が周径方向に最も遠去かった位置に位置してお
り、従ってこの状態では磁界の影響がほとんど無視し得
る状態にあり、従ってノズル7 の噴射反力でロータ16が
容易に起動し、そして該起動後前記磁石体71-72 同士が
対面する位置に来た時にその回転力が抑制され、そして
更に回転速度の増大に連れ対面度数が比例的に増大する
為に、結果として回転速度も比例的に抑制され、噴射水
流が霧化し得るだけの遠心力が発生せず、その直進性を
維持する事が出来る。
FIG. 8 shows another embodiment in which the repulsive magnetic field of the magnet is utilized. Magnets 71-72 of the same polarity are respectively provided at positions where the inner wall surface 12a of the outer casing 12 and the outer peripheral surface of the rotor 16 face each other. Install more than one. According to such an embodiment, when the rotation is stopped, the magnetic body 71-7 is moved by the repulsive magnetic field between the magnetic bodies 71-72.
The two are located farthest apart from each other in the circumferential direction.Therefore, in this state, the influence of the magnetic field is almost negligible.Therefore, the injection reaction force of the nozzle 7 easily starts the rotor 16. When the magnets 71-72 come to a position where they face each other after the start-up, the rotational force is suppressed, and as the rotational speed further increases, the face-to-face frequency increases proportionally. Is proportionally suppressed, the centrifugal force sufficient to atomize the jet water is not generated, and the straightness can be maintained.

【0024】図9は逃がし弁を利用した他の実施例で、
前記高圧流体をノズル7 に導くロータ16内の導通孔16b
と連通する小孔75を中心位置より半径方向に向け穿孔す
るとともに、その出口側にテーパシート面76a を介して
密閉空間76の出口側に垂直に逃がし孔77を上面位置まで
貫通させ、該空間76内に、バネ78により遠心力と抗する
方向に弾性力が付勢された鋼球79を収納し、該鋼球79を
前記シート面76a に当接シールさせ、前記小孔75と逃が
し孔77間を遮断している。かかる実施例によれば、回転
停止時においては、ロータ16は外被体12内壁面12a に対
し非接触の状態を維持している為に、前記ノズル7 の噴
射反力でロータ16が容易に回転し始め、そして該ロータ
16の回転により生じる遠心力が前記鋼球79に作用して、
その回転速度がバネ78圧より大になると、鋼球79とシー
ト面76a 間が僅かに離間し、導通孔16b 内を流れる高圧
流体の一部が小孔75より逃がし孔77を通って外部に逃
げ、その流体圧の低下によりロータ16の回転が抑制さ
れ、そして該ロータ16の回転数の増大に比例して前記鋼
球79とシート面76a 間の離間距離は拡がる為に、前記流
体の逃げ量は一層大になり、結果として回転速度が抑制
され、前記と同様な効果を発生させる。
FIG. 9 shows another embodiment using a relief valve.
A through hole 16b in the rotor 16 for guiding the high-pressure fluid to the nozzle 7.
A small hole 75 communicating with the hole is formed in the radial direction from the center position, and the escape hole 77 is vertically penetrated to the exit side of the closed space 76 through the taper sheet surface 76a at the exit side thereof to reach the upper surface position. A steel ball 79, which is elastically biased by a spring 78 in the direction opposite to the centrifugal force, is housed in 76, and the steel ball 79 is brought into contact with and sealed to the seat surface 76a, and the small hole 75 and the escape hole are provided. It cuts off between 77. According to this embodiment, when the rotation is stopped, the rotor 16 maintains the non-contact state with the inner wall surface 12a of the outer casing 12, so that the rotor 16 can be easily moved by the injection reaction force of the nozzle 7. Begins to rotate, and the rotor
The centrifugal force generated by the rotation of 16 acts on the steel ball 79,
When the rotation speed becomes higher than the spring 78 pressure, the steel ball 79 and the seat surface 76a are slightly separated from each other, and a part of the high-pressure fluid flowing in the conduction hole 16b passes through the escape hole 77 from the small hole 75 to the outside. Escape, the rotation of the rotor 16 is suppressed by the decrease of the fluid pressure, and the separation distance between the steel ball 79 and the seat surface 76a increases in proportion to the increase in the rotation speed of the rotor 16, so that the fluid escapes. The amount is even greater, and as a result the rotational speed is suppressed, producing the same effect as above.

【0025】図10はホールブレーキを利用した他の実
施例で、鋼球収納孔83を、ロータ16外周面の周径方向に
複数個凹設するとともに、該収納孔83内に僅かに小なる
鋼球81を収納した後、その外周端にストッパ85を取付け
鋼球81の離脱を防ぐとともに、その下側外周面上にOリ
ング84を巻回させてロータ16回転の容易化を図る。一方
外被体12内壁面12a 側には前記鋼球81と対面する位置の
内、選択された一又は二個所(本実施例の場合は180 ゜
隔てた二個所)に、浅い弧状凹溝82を設け、該凹溝に前
記鋼球81が係合可能に構成する。かかる実施例によれ
ば、回転停止時においては、鋼球81は外被体12内壁面12
aに対し非接触の状態を維持している為に、前記ノズル7
の噴射反力でロータ16が容易に回転し始め、そして該
ロータ16の回転により生じる遠心力により鋼球81が収納
孔83外方に移動し、その一部が収納孔83より突設して前
記凹溝82に係合し且つロータ16の回転により離脱し、該
鋼球81の係合離脱を繰り返す事によりロータ16の回転を
抑制し、該ロータ16の回転数の増大に比例して遠心力が
大になると、前記鋼球81に付勢される押圧力も大になる
為に、前記鋼球81と凹溝82間の係合強度が増大し、結果
として回転速度が抑制され、前記と同様な効果を発生さ
せる。
FIG. 10 shows another embodiment in which a hall brake is used. A plurality of steel ball storage holes 83 are formed in the outer circumferential surface of the rotor 16 in the radial direction, and are slightly smaller in the storage holes 83. After housing the steel ball 81, a stopper 85 is attached to the outer peripheral end of the steel ball 81 to prevent the steel ball 81 from coming off, and an O-ring 84 is wound around the lower outer peripheral surface of the steel ball 81 to facilitate the rotation of the rotor 16. On the other hand, on the inner wall surface 12a side of the outer casing 12, a shallow arc-shaped groove 82 is formed at one or two selected positions (two positions 180 ° apart in the case of this embodiment) of the positions facing the steel ball 81. And the steel ball 81 can be engaged with the groove. According to such an embodiment, when the rotation is stopped, the steel ball 81 has the outer wall 12 and the inner wall surface 12
Since it is not in contact with a, the nozzle 7
The rotor 16 easily starts to rotate due to the injection reaction force of the steel ball 81, and the centrifugal force generated by the rotation of the rotor 16 causes the steel ball 81 to move to the outside of the storage hole 83, and a part of the steel ball 81 projects from the storage hole 83 Rotation of the rotor 16 is suppressed by repeating engagement and disengagement of the rotor 16 with engagement with the groove 82 and rotation of the rotor 16 and centrifugal separation in proportion to an increase in the rotation speed of the rotor 16. When the force becomes large, the pressing force applied to the steel ball 81 also becomes large, so the engagement strength between the steel ball 81 and the concave groove 82 increases, and as a result, the rotation speed is suppressed, Produces the same effect as.

【0026】図11は、転がり軸受3を用いずに、ライ
ニングシール材19によりロータ16を本体11に対し回転自
在に支持させた他の実施例で、前記図10に示す実施例
と同様に鋼球収納孔83をロータ16外周面に複数個凹設す
るとともに、該収納孔83内に僅かに小なる鋼球81を収納
した後、その外周端ににOリング86を巻回させてロータ
16回転の容易化を図るとともに、鋼球離脱防止のストッ
パとして機能させる。一方外被体12内壁面12a側にも浅
い弧状凹溝82を設け、該凹溝82に前記鋼球81が係合可能
に構成する事により回転抑制手段として機能させる。か
かる実施例の作用は前記第10図と同様である。
FIG. 11 shows another embodiment in which the rotor 16 is rotatably supported by the lining seal material 19 with respect to the main body 11 without using the rolling bearing 3, and is made of steel similarly to the embodiment shown in FIG. A plurality of ball storage holes 83 are provided in the outer peripheral surface of the rotor 16, a slightly smaller steel ball 81 is stored in the storage hole 83, and an O-ring 86 is wound around the outer peripheral end of the steel ball 81.
It facilitates 16 rotations and also functions as a stopper to prevent the steel balls from coming off. On the other hand, a shallow arc-shaped concave groove 82 is also provided on the inner wall surface 12a side of the outer casing 12, and the steel ball 81 can be engaged with the concave groove 82, thereby functioning as a rotation suppressing means. The operation of this embodiment is similar to that shown in FIG.

【0027】[0027]

【効果】以上記載した如く本第発明によれば、簡単な構
造で、高圧化した洗浄水を噴射する場合においても、噴
射水流が遠心力によって霧化せず、その直進性を維持し
得る.又高圧化した洗浄水を噴射する場合においても、
噴射水流が遠心力によって霧化せず、その直進性を維持
し得るとともに、起動初期においても定常噴射圧で容易
にノズルが回転可能な回転ノズル装置を提供するが出来
る、等の種々の著効を有す。
As described above, according to the present invention, with a simple structure, even when the high-pressure cleaning water is sprayed, the sprayed water flow is not atomized by centrifugal force, and its straightness can be maintained. Also when spraying high-pressure cleaning water,
It is possible to provide a rotary nozzle device in which the jet water flow is not atomized by centrifugal force and its straightness can be maintained, and the nozzle can easily rotate with a steady jet pressure even at the initial stage of startup, and other various effects. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用される回転ノズル装置で、(A)
は左側面図、(B)は縦断正面図である。
FIG. 1 is a rotary nozzle device to which the present invention is applied.
Is a left side view, and (B) is a vertical front view.

【図2】(A)(B)は本発明の回転ノズル装置の応用
例たる揺動型のサイドフィレーム部の洗浄装置を示す正
面図と側面図
2A and 2B are a front view and a side view showing an oscillating type side film cleaning device as an application example of the rotary nozzle device of the present invention.

【図3】本発明の回転ノズル装置の他の応用第例たる下
部洗浄機自送型装置を示す全体斜視図である。
FIG. 3 is an overall perspective view showing a lower washing machine self-feeding type apparatus as another application example of the rotary nozzle apparatus of the present invention.

【図4】前記洗浄装置に組込まれる本発明の実施例にか
かり、ロータ外周面と円筒体周面上に形成したリング溝
によりブレーキ機構をもたせた回転ノズル装置で、
(A)は中央破断平面図、(B)は縦断正面図である。
FIG. 4 is a rotary nozzle device according to an embodiment of the present invention incorporated in the cleaning device, in which a brake mechanism is provided with ring grooves formed on the rotor outer peripheral surface and the cylindrical peripheral surface,
(A) is a central cutaway plan view, and (B) is a vertical sectional front view.

【図5】前記洗浄装置に組込まれる本発明の実施例にか
かり、ブレーキ機構にライニングシューを利用した回転
ノズル装置で、(A)は中央破断平面図、(B)は縦断
正面図である。
FIG. 5 is a rotary nozzle device according to an embodiment of the present invention incorporated in the cleaning device, in which a lining shoe is used for a brake mechanism, (A) is a central cutaway plan view, and (B) is a vertical sectional front view.

【図6】前記洗浄装置に組込まれる本発明の実施例にか
かり、ブレーキ機構にタービンブレーキ機構を利用した
回転ノズル装置で、(A)は中央破断平面図、(B)は
縦断正面図である。
FIG. 6 is a rotary nozzle device using a turbine brake mechanism as a brake mechanism according to an embodiment of the present invention incorporated into the cleaning device, (A) is a central cutaway plan view, and (B) is a vertical sectional front view. ..

【図7】前記洗浄装置に組込まれる本発明の実施例にか
かり、ブレーキ機構に羽根体を利用した回転ノズル装置
で、(A)は中央破断平面図、(B)は縦断正面図であ
る。
FIG. 7 is a rotary nozzle device according to an embodiment of the present invention incorporated in the cleaning device, in which a blade body is used for a brake mechanism, (A) is a central cutaway plan view, and (B) is a vertical sectional front view.

【図8】前記洗浄装置に組込まれる本発明の実施例にか
かり、ブレーキ機構に磁石の反発磁界を利用した回転ノ
ズル装置で、(A)は中央破断平面図、(B)は縦断正
面図である。
FIG. 8 is a rotary nozzle device using a repulsive magnetic field of a magnet for a brake mechanism according to an embodiment of the present invention incorporated in the cleaning device, (A) is a central cutaway plan view, and (B) is a vertical sectional front view. is there.

【図9】前記洗浄装置に組込まれる本発明の実施例にか
かり、ロータ外周面と円筒体周面上に形成したリング溝
によりブレーキ機構をもたせた回転ノズル装置で、
(A)は中央破断平面図、(B)は縦断正面図である。
FIG. 9 is a rotary nozzle device according to an embodiment of the present invention incorporated in the cleaning device, in which a brake mechanism is provided with ring grooves formed on the rotor outer peripheral surface and the cylindrical peripheral surface,
(A) is a central cutaway plan view, and (B) is a vertical sectional front view.

【図10】前記洗浄装置に組込まれる本発明の実施例に
かかり、ブレーキ機構に逃がし弁を利用した回転ノズル
装置で、(A)は中央破断平面図、(B)は縦断正面図
である。
FIG. 10 is a rotary nozzle device according to an embodiment of the present invention incorporated into the cleaning device, in which a relief valve is used in a brake mechanism, (A) is a plan view of a central cutaway, and (B) is a vertical sectional front view.

【図11】前記洗浄装置に組込まれる本発明の実施例に
かかり、ブレーキ機構にライニングシール材を利用した
回転ノズル装置で、(A)は中央破断平面図、(B)は
縦断正面図である。
FIG. 11 is a rotary nozzle device according to an embodiment of the present invention incorporated in the cleaning device, in which a lining seal material is used for a brake mechanism, (A) is a central cutaway plan view, and (B) is a vertical sectional front view. ..

【符号の説明】[Explanation of symbols]

11 本体 16ノズル取付体 7 直進ノズル 50〜85 回転抑制手段 11 main body 16 nozzle mounting body 7 straight advance nozzle 50 to 85 rotation suppressing means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧力源に連結される本体に回転自在に支
持されるノズル取付体と、その噴射圧により前記ノズル
取付体が回転可能に、該ノズル取付体軸心に対し所定角
度傾斜させて前記ノズル取付体に固設した直進ノズル
と、前記ノズル取付体の軸心から半径方向に所定距離隔
てた位置に設けた回転抑制手段とを有し、前記回転抑制
手段が、前記ノズル取付体と本体との間の対面する位置
に介在させた摺擦体であり、前記ノズル取付体の回転に
より発生する前記摺擦体の摩擦抵抗が、前記ノズル取付
体の回転により発生する遠心力の増大に比例して増加可
能に構成した事を特徴とする回転ノズル装置
1. A nozzle mounting body rotatably supported by a main body connected to a pressure source, and the nozzle mounting body being rotatable by an injection pressure thereof, being inclined at a predetermined angle with respect to an axis of the nozzle mounting body. The nozzle mounting body includes a straight-moving nozzle fixedly mounted on the nozzle mounting body, and rotation suppressing means provided at a position separated from the axial center of the nozzle mounting body by a predetermined distance in the radial direction, wherein the rotation suppressing means is the nozzle mounting body. The frictional resistance of the rubbing body generated by the rotation of the nozzle mounting body increases the centrifugal force generated by the rotation of the nozzle mounting body. Rotating nozzle device characterized by being configured to be able to increase in proportion
【請求項2】 回転停止時において、前記摺擦体が、前
記ノズル取付体又は本体との間の摺擦面との間で非接触
の状態を維持している請求項1記載の回転ノズル装置
2. The rotary nozzle device according to claim 1, wherein when the rotation is stopped, the rubbing body maintains a non-contact state with a rubbing surface between the rubbing body and the nozzle mounting body.
【請求項3】 圧力源に連結される本体に回転自在に支
持されるノズル取付体と、その噴射圧により前記ノズル
取付体が回転可能に、該ノズル取付体軸心に対し所定角
度傾斜させて前記ノズル取付体に固設した直進ノズル
と、前記ノズル取付体の軸心から半径方向に所定距離隔
てた位置に設けた回転抑制手段とを有し、7)前記回転抑
制手段が、前記ノズル取付体外周壁面に設けた羽根体で
あり、該羽根体の受圧面積が、前記ノズル取付体の回転
により発生する遠心力の増大に比例して増加可能に構成
した事を特徴とする回転ノズル装置
3. A nozzle mounting body rotatably supported by a main body connected to a pressure source, and the nozzle mounting body being rotatable by an injection pressure thereof, being inclined at a predetermined angle with respect to an axis of the nozzle mounting body. 7) a straight-moving nozzle fixed to the nozzle mounting body, and a rotation suppressing means provided at a position separated from the axial center of the nozzle mounting body in the radial direction by a predetermined distance, 7) the rotation suppressing means includes the nozzle mounting means. A rotary nozzle device, which is a blade body provided on a wall surface of a body, and a pressure receiving area of the blade body can be increased in proportion to an increase in centrifugal force generated by rotation of the nozzle mounting body.
【請求項4】 圧力源に連結される本体に回転自在に支
持されるノズル取付体と、その噴射圧により前記ノズル
取付体が回転可能に、該ノズル取付体軸心に対し所定角
度傾斜させて前記ノズル取付体に固設した直進ノズル
と、前記ノズル取付体の軸心から半径方向に所定距離隔
てた位置に設けた回転抑制手段とを有し、前記回転抑制
手段が、前記ノズル取付体と本体との間の対面する位置
に夫々設けた磁石体であり、該磁石体間で形成される反
発磁界により前記ノズル取付体の回転力を抑制可能に構
成した事を特徴とする回転ノズル装置
4. A nozzle mounting body rotatably supported by a main body connected to a pressure source, and the nozzle mounting body being rotatable by an injection pressure thereof, being inclined at a predetermined angle with respect to an axis of the nozzle mounting body. The nozzle mounting body includes a straight-moving nozzle fixedly mounted on the nozzle mounting body, and rotation suppressing means provided at a position separated from the axial center of the nozzle mounting body by a predetermined distance in the radial direction, wherein the rotation suppressing means is the nozzle mounting body. A rotary nozzle device, which is a magnet body provided at a position facing each other with respect to the main body, and configured to suppress the rotational force of the nozzle mounting body by a repulsive magnetic field formed between the magnet bodies.
【請求項5】 圧力源に連結される本体に回転自在に支
持されるノズル取付体と、その噴射圧により前記ノズル
取付体が回転可能に、該ノズル取付体軸心に対し所定角
度傾斜させて前記ノズル取付体に固設した直進ノズル
と、前記ノズル取付体の軸心から半径方向に所定距離隔
てた位置に設けた回転抑制手段とを有し、前記回転抑制
手段が、前記ノズル に導く流体をノズル取付体回転に
より生じる遠心力により開放可能な逃し弁で構成され、
該逃し弁がノズル取付体の非回転時に封止され、該ノズ
ル取付体回転数の増大に比例して前記逃し弁の弁/シー
ト間の離間距離が増大可能に構成した事を特徴とする回
転ノズル装置
5. A nozzle mounting body rotatably supported by a main body connected to a pressure source, and the nozzle mounting body being rotatable by an injection pressure thereof, being inclined at a predetermined angle with respect to an axis of the nozzle mounting body. A fluid nozzle that has a straight-moving nozzle fixed to the nozzle mounting body and a rotation suppressing means provided at a position separated from the axial center of the nozzle mounting body in the radial direction by a predetermined distance, and the rotation suppressing means guides to the nozzle. Is composed of a relief valve that can be opened by the centrifugal force generated by the rotation of the nozzle mounting body,
A rotation characterized in that the relief valve is sealed when the nozzle mounting body is not rotating, and the valve / seat separation distance of the relief valve can be increased in proportion to an increase in the number of rotations of the nozzle mounting body. Nozzle device
【請求項6】 圧力源に連結される本体に回転自在に支
持されるノズル取付体と、その噴射圧により前記ノズル
取付体が回転可能に、該ノズル取付体軸心に対し所定角
度傾斜させて前記ノズル取付体に固設した直進ノズル
と、前記ノズル取付体の軸心から半径方向に所定距離隔
てた位置に設けた回転抑制手段とを有し、前記回転抑制
手段が、鋼球収納孔をノズル取付体外周面の周径方向に
複数個凹設するとともに、該収納孔内に僅かに小なる鋼
球を収納し、一方前記本体に固設されノズル取付体外周
面と所定空隙を介して対面する外被体側に、前記鋼球81
と対面する位置の内選択された個所に浅い弧状凹溝を設
け、該凹溝に前記鋼球が係合可能に構成したホールブレ
ーキ機構である事を特徴とする回転ノズル装置。
6. A nozzle mounting body rotatably supported by a main body connected to a pressure source, and the nozzle mounting body being rotatable by an injection pressure thereof, being inclined at a predetermined angle with respect to an axis of the nozzle mounting body. It has a straight-moving nozzle fixed to the nozzle mounting body, and a rotation suppressing means provided at a position separated by a predetermined distance in the radial direction from the axial center of the nozzle mounting body, and the rotation suppressing means has a steel ball storage hole. A plurality of recesses are provided in the circumferential direction of the outer peripheral surface of the nozzle mounting body, and a slightly smaller steel ball is housed in the housing hole, while it is fixed to the main body through a predetermined gap with the outer peripheral surface of the nozzle mounting body. On the facing outer body side, the steel ball 81
A rotary nozzle device comprising a hall brake mechanism in which a shallow arc-shaped groove is provided at a selected position facing the groove, and the steel ball can be engaged with the groove.
JP19477892A 1992-06-29 1992-06-29 Rotating nozzle device Expired - Lifetime JP2514142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19477892A JP2514142B2 (en) 1992-06-29 1992-06-29 Rotating nozzle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19477892A JP2514142B2 (en) 1992-06-29 1992-06-29 Rotating nozzle device

Publications (2)

Publication Number Publication Date
JPH05329404A true JPH05329404A (en) 1993-12-14
JP2514142B2 JP2514142B2 (en) 1996-07-10

Family

ID=16330102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19477892A Expired - Lifetime JP2514142B2 (en) 1992-06-29 1992-06-29 Rotating nozzle device

Country Status (1)

Country Link
JP (1) JP2514142B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814304B2 (en) * 2002-12-04 2004-11-09 Rain Bird Corporation Rotating stream sprinkler with speed control brake
CN113154444A (en) * 2021-03-26 2021-07-23 西北工业大学 Gas turbine combustion chamber head air inlet structure of whirl atomizing integration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814304B2 (en) * 2002-12-04 2004-11-09 Rain Bird Corporation Rotating stream sprinkler with speed control brake
CN113154444A (en) * 2021-03-26 2021-07-23 西北工业大学 Gas turbine combustion chamber head air inlet structure of whirl atomizing integration
CN113154444B (en) * 2021-03-26 2022-07-12 西北工业大学 Gas turbine combustion chamber head air inlet structure of whirl atomizing integration

Also Published As

Publication number Publication date
JP2514142B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US5328097A (en) Rotor nozzle for a high-pressure cleaning device
US5236126A (en) Rotating nozzle apparatus with magnetic braking
US20130001318A1 (en) Nozzle system and method
US20210229118A1 (en) A centrifugal atomization structure and a spraying device with the same, a centrifugal atomization device, a drive device and a dual-drive spraying device
US4261515A (en) Rotary sprinkler
JPS60257865A (en) Spray chip
JP2001161853A (en) Rotary water-spraying head
US5261233A (en) Brake device of pneumatic rotational tool
JPWO2012073475A1 (en) Air motor and electrostatic coating device
US6925659B2 (en) Fluid jetting device
JP2514142B2 (en) Rotating nozzle device
JPH062243B2 (en) Rotating nozzle device
US5039013A (en) Rotating nozzle apparatus
US4462546A (en) Rotary indexing nozzle for swimming pools and the like
CN213700368U (en) Centrifugal nozzle and movable platform
US5265806A (en) Nozzle for the generating of a rotating jet
JPH0728919Y2 (en) Rotating nozzle device
CN114765967A (en) Centrifugal nozzle and movable platform
KR20070009514A (en) Revolution type a fire extinguisher
EP1706635B1 (en) Rolling fluid machine especially with a liquid spraying at the output
US6619564B1 (en) Orbital spray assembly
JPH0753728Y2 (en) Rotary jet nozzle device
JPH0141496Y2 (en)
RU2196009C1 (en) Device for liquid spraying
KR20180112339A (en) Speed controlling device for a a rotary atomizer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12