JPH0532884B2 - - Google Patents

Info

Publication number
JPH0532884B2
JPH0532884B2 JP32005190A JP32005190A JPH0532884B2 JP H0532884 B2 JPH0532884 B2 JP H0532884B2 JP 32005190 A JP32005190 A JP 32005190A JP 32005190 A JP32005190 A JP 32005190A JP H0532884 B2 JPH0532884 B2 JP H0532884B2
Authority
JP
Japan
Prior art keywords
transformer
oil
vacuum
recycled
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32005190A
Other languages
Japanese (ja)
Other versions
JPH04188711A (en
Inventor
Makoto Watanabe
Shigeharu Muraki
Kenji Okumura
Yukio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP32005190A priority Critical patent/JPH04188711A/en
Publication of JPH04188711A publication Critical patent/JPH04188711A/en
Publication of JPH0532884B2 publication Critical patent/JPH0532884B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は再生油使用変圧器を再使用するため
に、不純物を含む再生油を簡易に、かつ、経済的
に除染する方法及び除染装置に関する。 〔従来の技術〕 再生油を使用した柱上変圧器の絶縁油から、国
が使用を規制している不純物(例えば、ポリ塩素
化ビフエニル、通称PCBと呼称)が検出され、
現在その対応に苦慮している。前記不純物は電気
絶縁性はもとより難燃性に非常に優れているの
で、種々の産業分野に幅広く使用しており、変圧
器の絶縁油もその例外ではない。しかし、今日で
は人体に悪影響を及ぼす物質としてその使用が規
制されている。 然るに、例えば、柱上変圧器においては、その
寿命あるいは故障等に際しては、その都度、新し
い変圧器を装柱して使用しており、一方、寿命等
により降柱した変圧器は、解体されスクラツプ化
されるが、絶縁油は解体前に変圧器から抜取り、
これを種々の再生処理を施して再度絶縁油(以
下、再生油という)として使用することが多い。
ところが、前記再生処理を行う絶縁油の中には、
使用規制を受けている不純物が、その使用規制を
受ける前に使用した絶縁油に多く含まれているの
で、前記不純物を含む絶縁油の再生処理工程にお
いて、前記不純物を含む絶縁油が何等かの理由
で、残存含有量がオーバーした状態で再生油とし
て、誤つて使用されることがあつた。この場合、
前記再生油を注油した柱上変圧器は、変圧器自体
の使用について特別問題がない反面、使用規制を
受けている不純物が混入している再生油を使用し
ている関係上、この再生油を使用している柱上変
圧器をそのまま使用することは社会通念上困難で
あつた。 〔発明が解決しようとする課題〕 然るに、絶縁油として前記再生油を使用した柱
上変圧器は、どの柱上変圧器に注油した再生油に
規制値以上の不純物が混入しているか、装柱した
変圧器1台々の再生油を抜取り、これを測定分析
することは、多大の手間と時間を必要とするので
事実上困難であつた。このため、再生油を使用し
た柱上変圧器のすべてを回収し、これらの変圧器
から再生油の脱油処理を行つたあと、新油(絶縁
油)を注油して再使用をはかるか、あるいは、廃
棄処分にする必要があつた。 しかし、前者において、再生油を新油に入れ換
えて濃度測定を行うと、例えば、不純物濃度が約
50ppm(一般的な検出限界値0.5ppm以下)を測定
した再生油を変圧器から抜取り、新油と交換した
直後の濃度を測定すると、0.48ppmであつた。と
ころが、前記の状態で、1週間後に再度濃度測定
を行うと、2.02ppmあり、更に、この状態で通電
を行い30日目後に再生油の濃度を測定したとこ
ろ、2.38ppmであつた。前記の測定結果から、再
生油を単純に抜取つてこれを新油と交換しても、
変圧器本体の要部を構成する電線の被覆紙、層間
絶縁紙等の絶縁部材や鉄心の層間に含浸している
残存油が新油の中に滲透して混入した結果と考え
られる。又、新油の入れ換え後不純物濃度が平衡
状態に達する期間は20〜30日と推定される。この
ため、再度前記新油を抜取り、新たな絶縁油を注
油して不純物残存含有量の測定を行つたところ再
度注油した直後は、0.10ppm以下であり、1週間
後の測定でも同じ測定値であつた。更に通電を行
い、その1週間後に再度測定すると、0.11ppmと
なり一般的な検出限界値を下回ることが判明し
た。前記の測定結果より、新油を2〜3回入れ換
えることによつて、不純物を拡散させ、その濃度
を不検出に近い希釈度まで低下させることが判明
した。ところが、再生油の不純物残存含有量を規
制値以下に希釈するために、新油を複数回にわた
り交換することは、再生油使用変圧器の使用台数
を考慮すると、多大な時間と費用がかかり、到底
採用することができず、又新油を何回も交換する
ことは、再生油の処理と相まつて交換したものの
再度抜取つた新油の処理も併せて行う必要があ
り、その処理費用は膨大なものとなる他、再生油
の処理に新たな2次公害を誘発するおそれがあつ
た。 又、後者は廃棄する台数が少量ならば特に問題
も発生しないと思われるが、再生油使用変圧器の
使用台数を考えれば、処分する場所に限度があ
り、かつ、その解体等の費用も考慮すると、物理
的及び経済的において到底採用できるものではな
い。 本発明は、前記種々の問題点に鑑み、再生油を
抜取つた変圧器を特定の温度と真空度とを加味し
ながら一定時間真空加熱乾燥処理を行つて、変圧
器本体内に残存している不純物を検出不能に近い
状態まで除去し、このあと、新油を注油して再生
油使用変圧器の再使用を可能とした再生油の簡易
な除染方法及び除染装置を提供することにある。 〔課題を解決するための手段〕 本発明は、ポンプ等を用いて変圧器内から再生
油を抜取り、つづいて、この変圧器を転倒装置に
て180゜転回させ、変圧器のケース底面に滞留して
いる再生油や、変圧器本体に付着している再生油
を滴下排出させて油切りを行う。前記再生油の油
切りを一定時間行つた後、変圧器を転倒させたま
ま真空加熱乾燥装置に搬入し、変圧器の絶縁材料
が熱的影響を受けることなく再使用可能な温度で
数時間加熱乾燥処理を行い、つづいて、前記温度
及び所定の真空度で真空乾燥処理を数十時間行
い、加熱乾燥処理中に発生した油分や水分を含む
真空加熱乾燥装置内の雰囲気ガスを強制的に排出
(装置外で大気中に拡散させることなく吸収処理
する)して変圧器本体の加熱乾燥処理を促進し、
残存する再生油とともに不純物も強制的に蒸発さ
せてその雰囲気ガスを強制排気させる。前記のよ
うにして変圧器のケース内に残存している再生油
や変圧器本体内に含浸・付着している再生油及び
不純物を蒸発させて除去する。前記変圧器本体の
真空加熱乾燥処理を行つてから、新しい絶縁油を
所定の真空度で注油して不純物を検出不能に近い
状態まで除去することにより、再生油使用変圧器
の再使用を可能としたことを特徴とする。 〔作用〕 本発明は、前記のようにして再生油使用変圧器
の再処理を行うことにより、不純物の残存量をほ
とんど皆無に近い状態にしてこの種変圧器の再使
用を可能にすることができるとともに、再処理の
ための作業工程も、再生油の抜取り工程から油切
りを行うために変圧器の転倒処理、転倒したまま
の真空加熱乾燥処理等大部分の作業の自動化をは
かることができるので、再生油使用変圧器の除染
処理に人手を余り要することなく連続して、安全
で、経済的に、しかも、作業時間を余りかけるこ
ともなく、円滑・良好に行うことが可能となる。 〔実施例〕 以下、本発明の実施例を第1図ないし第9図に
よつて説明する。 第1図は再生油使用変圧器の再処理工程を示す
工程図であり、第2図は前記再処理のための再生
油を除去し、この再生油使用変圧器を再使用可能
に除染処理する除染装置の概略システム構成を示
すブロツク図であり、これら第1図及び第2図に
基づいて、再生油使用変圧器(第9図参照)の除
染処理の概要を説明する。 第2図において、1は再生油使用変圧器の載置
場所を示し、例えば、第9図で示す再生油使用変
圧器50(以下単に変圧器と称する)を所要数並
置し、この状態で、変圧器50のカバー52をケ
ース51から取外して図示しないポンプを用いて
ケース51内の再生油を順次抜取る。抜取つた再
生油はドラム缶等にて保管する。2は前記再生油
を抜取つた変圧器50を180゜転回してケース51
の開口部53を下向きに変更させる転回装置(第
3図〜第6図参照、詳細は後述)で、ケース51
内に滞留している再生油の油切りを行うために変
圧器の転回を行うものである。3は前記転回装置
2にて転回した変圧器50を転回させた状態で一
定時間保管する油切保管場所を示し、例えば、ロ
ーラコンベアを設置して形成するもので、変圧器
50を転回させたまま、約10〜15時間放置し、ケ
ース51内に残存している再生油及び変圧器本体
54に付着している再生油を滴下させて油切りを
行う。4は変圧器50の移動台車を示し、前記一
定時間放電して油切りを行つた変圧器50aを転
回させたままの状態で、例えば、クレーン等の吊
上移動手段5により、前記移動台車4に順次乗載
する。6は真空加熱装置で、前記転回させたまま
の変圧器50aを台車4に載せたまま装置6内に
搬入し、真空加熱装置6内の雰囲気温度を約110
℃に設定して変圧器50aの加熱乾燥を数時間行
つたあと、更に、装置6内を真空ポンプ7により
真空に引き、加熱乾燥処理と真空加熱乾燥処理と
を同時に数十時間行つて、ケース51内に残存及
び変圧器本体54内に含浸・付着している再生油
や不純物を蒸発させ、かつ、真空加熱乾燥装置6
内に浮遊している前記油分や水分を含む雰囲気ガ
スを強制的に排出し、回収することによつて、ケ
ース51内及び変圧器本体54の内、外に付着し
ている再生油を、不純物が検出できない程度まで
蒸発させることができるように変圧器50aの真
空・加熱乾燥処理を行う(第6図参照、詳細は後
述)。8は前記真空加熱乾燥装置6にて所要の真
空・加熱処理を行つた変圧器50aを前記装置6
から引出して次工程に搬送する移動台車で、前記
台車4をそのまま兼用する。又、この移動台車8
上にはクレーン等の吊上移動手段9が併設されて
おり、開口部53を下向きにしたまま移動台車8
に乗載されている変圧器50aを吊上げて、転回
装置10(転回装置2と同一構造)に近接して設
けたローラコンベア(図示せず)上に載置する。 前記した転回装置10は、開口部53が下向き
となつている変圧器50aを180゜反転させて正常
に戻す。このあと、変圧器50aは転回装置10
から引出し、ローラコンベアを利用して一時保管
場所11まで搬送する。一時保管場所で所定温度
まで降温した変圧器50aは、真空注油装置12
(第8図参照、詳細後述)のところまで搬送し、
ケース51内に新しい絶縁油を真空に近い状態で
注油する。新油の注油後ケース51の開口部53
にカバー52の被せ、この状態で、電気特性試験
を行い、合格したものは出荷場所13にて出荷時
点まで保管する。前述した作業工程を終えること
によつて、再生油使用変圧器50の除染処理を完
了し、その再使用をはかるものである。なお、第
2図中、14は真空ポンプを示し、15は新しい
絶縁油を保管する油タンクである。 次に、再生油使用変圧器50を除染処理する装
置の主要機器の構成を第3図ないし第8図にて説
明する。 最初に、変圧器50を転回したり、引起したり
する転回装置2,10の構成を第3図及び第6図
にて説明する。 転回装置2は、2つの転回輪16,16aを変
圧器50が通抜けできる間隔を保つて横梁17,
17aにより上、下部を固定してリング状の回転
体18を形成し、この回転体の上部側には、ロー
ラを必要数並設した滑動体19を取付け、下部に
は前記回転体18の上部側に固定した滑動体19
と対応して滑動体20を昇降可能に載置固定した
シリンダ21を下側の横梁17a上に嵌着する。
そして、前記回転体18は第3図で示すように、
ベース22上に軸受板23を介して回転可能に取
付けた回転ローラ24上に回転自在に乗載し、減
速機付電動機25と、回転ローラ24,24を両
端に有するローラ軸26の一方とをベルト等にて
駆動結合し、電動機25を起動して回転ローラ2
4,24を駆動させると、回転体18はその上、
下部に滑動体19,20を備えた状態で回転する
ように構成されている。27,27aは回転体1
8の前、後方向に配置したローラコンベアで、前
記回転体18に設けた滑動体19,20は、回転
体18が180゜回動する毎に前記ローラコンベア2
7,27aと同一高さとなるように配置されてい
る。又、28は再生油の排出シユートを示す。な
お、真空加熱乾燥装置6から引出した乾燥処理後
の変圧器50aを元の状態、即ち、開口部53上
側に向けて引起すための転回装置10は、前記転
回装置2と同一構造のため説明は省略する。 つづいて、真空加熱乾燥装置6の構成を第7図
にて説明する。 真空加熱乾燥装置6は、真空加熱炉30と、こ
の加熱炉30の入口側と出口側とを開閉させる電
動扉31,31aと、前記真空加熱炉30の内壁
面と底面とに電熱線あるいは温水管等を配設して
なる加熱体32と、真空加熱炉30内の雰囲気ガ
スを撹拌する撹拌フアン33とを備え、更に、外
部には真空ポンプ7を設置し、この真空ポンプ7
と真空加熱炉30とは、水冷コンデンサ34、電
磁バルブS1を介して排気管35にて配管接続する
ことにより構成されている。又、第7図中、36
は真空ポンプ7に設けた油煙トラツプ、37は水
冷コンデンサ34に冷却水を供給する通水管で、
その通水側及び排水側にはそれぞれ通水管37を
開閉する電磁バルブS2,S3が取付けられている。
38は水冷コンデンサ34により冷却されて液化
した油や水分を収容するドレンで、電磁バルブS4
を介して水冷コンデンサ34に取付ける。更に、
S5は真空加熱炉30側に取付けられて、真空加熱
炉30内の真空状態を常圧に戻すための電磁バル
ブ、39は炉内を照らす照明灯、40は加熱炉3
0の覗窓である。 次に真空注油装置12の構成について説明す
る。 第8図において、41は真空加熱乾燥を行つて
油切りした変圧器50aのケース51内を再度真
空状態にする場合に使用する上記変圧器50aの
開口部53を被覆するための仮蓋と、この仮蓋4
1に真空ポンプ14に接続されたパイプ42及び
油タンク15に接続したパイプ43とを、それぞ
れ配管途中に電磁バルブS6,S7を介してケース5
1内と連通可能に接続することにより構成されて
いる。 そして、前記した真空加熱乾燥装置6と真空注
油装置12は、図示しない制御装置からの指令信
号により、あらかじめ設定したシーケンスに従つ
て駆動制御されている。 次に、再生油使用変圧器50の除染処理につい
て説明する。 はじめに、変圧器50の載置場所1において、
変圧器50のカバー52を外し、ケース51内か
ら図示しないポンプ等を用いて再生油の抜取りを
行う。次に再生油を抜取つた変圧器50を、その
開口部53に格子状のパレツト29aを被せた状
態で第3図に示すように、パレツト29に乗せ、
ローラコンベア27上を移動させて転回装置2の
回転体18に設けた滑動体20上に搬入する。こ
の状態で、転回装置2を図示しない制御装置の操
作パネルに設けた操作スイツチを操作してシリン
ダ21を駆動し、変圧器50をパレツト29aが
第4図のように、上部の滑動体19と当接する位
置まで上動させる。このあと、電動機25を起動
して回転ローラ24,24上に乗載した回転体1
8を第5図のように、180゜転回させて、変圧器5
0の開口部53が下向きとなるように反転させ
る。この状態でシリンダ21を原位置に戻してか
ら、前記転回して反転させた変圧器50を、滑動
体19からローラコンベア27aを介して油切り
保管場所3に移動させ、ケース51内に残存して
いる再生油を滴下させながら油切りを行う。な
お、滴下した油は排出シユート28に流下し、図
示しないドラム缶等に安全に回収する。反転させ
た変圧器50の油切りに要する時間は約10〜15時
間である。 これは、ケース51内に残存している再生油は
比較的早い時間(1〜2時間)で滴下する。しか
し、変圧器本体54内に残存している油量の割合
は、その80〜90%がコイル内に含浸・付着してお
り、残りの10〜20%は鉄心やその他の部材に付着
していると考えられる。このため、本件発明者等
が実器により残存油量の滴下排出テストを行つた
ところ、ケース51を反転した時点から10時間ま
での間は、比較的順調に油の滴下状況が認められ
たが、10時間を越えると、僅かの量しか滴下しな
いことが判つた。これは、変圧器50の反転時か
ら10時間経過する間に大部分の残存油が滴下排出
されるためであると考えられる。しかし、反転さ
せたまま変圧器50の放置時間を長く(48〜72時
間)とれば、滴下量はそれだけ微増するが、これ
では油切りに時間がかかり過ぎて得策とは思われ
ない。従つて、前記テストの結果、油切り時間は
変圧器50の除染処理に関し後工程のことを考慮
すると、10〜15時間が適切であり、これ以上いた
ずらに時間を費やしても油切りの効果がほとんど
得られないことが判明した。 前記のようにして再生油の油切りを行つた変圧
器50aは、吊上移動手段5にて油切り保管場所
3から移動台車4に載せ、次の除染工程を行うた
めに気密性に優れた真空加熱乾燥装置6に搬入す
る。前記装置6は図示しない制御装置からの指令
信号により駆動制御されており、前記変圧器50
aが反転したまま移動台車4とともに搬入されて
電動扉31,31aが閉鎖すると、加熱体32が
直ちに作動し、真空加熱炉30内の雰囲気温度を
設定温度まで上昇させる。この際、変圧器本体5
4に残存している油量の割合は、前記のように、
コイル内にほぼ80〜90%、鉄心及びその他の部材
に10〜20%付着している。従つて、これら残存油
をどの程度除去できるかによつて変圧器50aが
再使用できるか、否かの分岐点となる。このた
め、本件発明者等は前記残存油をいかに早く、か
つ、効率的に除去できるかについて種々の試験を
行つた。 最初に、変圧器本体54をケース51に収容し
たまま、このケース51の開口部53を上に向け
て加熱乾燥を行つた場合、変圧器本体54の構成
材料に含浸している残存油は加熱により粘度が低
下し、ケース51の底部に落下し滞溜することに
なる。次に、ケース51の開口部53を下向にし
て試験を行つた。この場合、当然ながら残存油の
粘度低下に伴い残存油はケース51外に落下す
る。前記試験の結果、加熱乾燥によつて低粘度化
した残存油の排出にあたつては、ケース51内に
落下させて蒸発させるよりも、ケース51の開口
部53を下向きにしてケース51外に滴下排出さ
せた方が明らかに残存油の蒸発効率が良好である
ことが判明したので、前記の如く、本発明におい
てはケース51を反転させたまま真空加熱乾燥装
置6に搬入することとした。次に、変圧器本体5
4をケース51に収容した状態と、変圧器本体5
4をケース51から取出して本体単体の状態で残
存油の蒸発効率を測定したところ、どちらの方式
においても、残存油の低減効果に大差のないこと
が判明した。従つて、本発明は作業効率を考慮し
て変圧器本体54をケース51に収容したまま加
熱乾燥を行うこととした。 次に加熱乾燥温度を設定するに際し、変圧器本
体54に使用している絶縁材料の劣化検証試験を
行つた。絶縁材料としては電線被覆紙、クラフト
紙、接着絶縁紙を選び、加熱温度110℃での放置
日数を0〜8日間とし、JIS C2111(電気絶縁試
験法)にて初日の引張強度を100として試験を実
施したので、その結果を第1表により示す。
[Industrial Application Field] The present invention relates to a method and a decontamination device for simply and economically decontaminating recycled oil containing impurities in order to reuse a transformer using recycled oil. [Prior art] Impurities whose use is regulated by the government (for example, polychlorinated biphenyl, commonly known as PCB) have been detected in the insulating oil of pole transformers that use recycled oil.
I am currently struggling with how to deal with this. Since the impurities have excellent flame retardancy as well as electrical insulation properties, they are widely used in various industrial fields, and insulating oil for transformers is no exception. However, today, its use is regulated as a substance that has an adverse effect on the human body. However, for example, when a pole-mounted transformer reaches the end of its lifespan or malfunctions, a new transformer is mounted on the pole and used.On the other hand, transformers that come down from the pole due to their lifespan are dismantled and scrapped. However, the insulating oil is extracted from the transformer before disassembly.
This is often subjected to various recycling treatments and used again as insulating oil (hereinafter referred to as recycled oil).
However, among the insulating oils subjected to the above-mentioned regeneration treatment,
Many of the impurities whose use is regulated are contained in the insulating oil that was used before the use of the impurities was regulated. For some reason, the residual content was sometimes mistakenly used as recycled oil. in this case,
Although the pole transformer lubricated with the recycled oil does not have any particular problems when using the transformer itself, it is not recommended to use recycled oil because it contains impurities whose use is regulated. It was difficult to use the existing pole-mounted transformer as is due to conventional social conventions. [Problem to be Solved by the Invention] However, in a pole transformer using the recycled oil as an insulating oil, it is difficult to determine which pole transformer the recycled oil lubricated contains impurities exceeding the regulation value. It has been practically difficult to extract the recycled oil from each transformed transformer and measure and analyze it, as it requires a great deal of time and effort. For this reason, either all pole transformers that use recycled oil are collected, the recycled oil is deoiled from these transformers, and then new oil (insulating oil) is filled in for reuse. Or, it was necessary to dispose of it. However, in the former case, when the recycled oil is replaced with new oil and the concentration is measured, for example, the impurity concentration is approximately
The recycled oil, which had measured 50ppm (below the general detection limit of 0.5ppm), was removed from the transformer and immediately after replacing it with new oil, the concentration was measured and found to be 0.48ppm. However, when the concentration was measured again one week later under the above conditions, it was 2.02 ppm, and when the concentration of the recycled oil was measured 30 days after electricity was applied in this condition, it was 2.38 ppm. From the above measurement results, even if you simply remove the recycled oil and replace it with new oil,
This is thought to be the result of residual oil impregnated into the new oil, which is impregnated between the layers of insulating materials such as wire sheathing paper and interlayer insulating paper, and the core, which make up the main parts of the transformer body. Furthermore, it is estimated that it takes 20 to 30 days for the impurity concentration to reach an equilibrium state after replacing the new oil. Therefore, when we took out the new oil again, filled it with new insulating oil, and measured the remaining impurity content, it was less than 0.10 ppm immediately after the oil was filled again, and the measurement one week later showed the same measurement value. It was hot. When electricity was further applied and measurements were taken again one week later, it was found to be 0.11 ppm, which was below the general detection limit. From the above measurement results, it has been found that replacing the fresh oil two to three times can diffuse impurities and reduce their concentration to a degree of dilution close to undetectable. However, replacing new oil multiple times in order to dilute the residual impurity content of the recycled oil to below the regulatory value takes a lot of time and money, considering the number of transformers using recycled oil. In addition, replacing the new oil many times requires processing the recycled oil and also processing the new oil that has been replaced but has been extracted again, and the processing cost is enormous. In addition to causing problems, there was a risk of inducing new secondary pollution in the processing of recycled oil. In addition, the latter does not seem to cause any particular problems if only a small number of transformers are to be disposed of, but considering the number of transformers that use recycled oil, there is a limit to where they can be disposed of, and the cost of dismantling them is also taken into consideration. Therefore, it is not possible to adopt it physically and economically. In view of the various problems mentioned above, the present invention subjects the transformer from which the recycled oil has been removed to vacuum heating and drying for a certain period of time while taking into account a specific temperature and degree of vacuum, so that the recycled oil remains inside the transformer body. The purpose of the present invention is to provide a simple decontamination method and decontamination device for recycled oil that removes impurities to a state that is nearly undetectable, and then lubricates with new oil, making it possible to reuse a transformer using recycled oil. . [Means for Solving the Problems] The present invention uses a pump or the like to extract recycled oil from inside a transformer, then rotates the transformer 180° using an inversion device, and collects the oil on the bottom of the transformer case. Remove the oil by dripping and draining any recycled oil that is present or adhering to the transformer body. After the recycled oil has been drained for a certain period of time, the transformer is transported upside down to a vacuum heating dryer and heated for several hours at a temperature that allows the transformer's insulating material to be reused without being affected by heat. Drying treatment is performed, followed by vacuum drying treatment at the above temperature and predetermined degree of vacuum for several tens of hours, and the atmospheric gas inside the vacuum heating drying device containing oil and moisture generated during the heating drying process is forcibly discharged. (absorbing treatment without dispersing it into the atmosphere outside the equipment) to promote heating and drying of the transformer body,
Impurities are forcibly evaporated together with the remaining recycled oil, and the atmospheric gas is forcibly exhausted. As described above, the recycled oil remaining in the transformer case and the recycled oil and impurities impregnated or attached to the transformer body are evaporated and removed. After vacuum heating and drying the transformer body, new insulating oil is applied at a predetermined degree of vacuum to remove impurities to the point where they are almost undetectable, making it possible to reuse transformers using recycled oil. It is characterized by what it did. [Operation] By reprocessing a transformer using recycled oil as described above, the present invention makes it possible to reuse this type of transformer with almost no remaining impurities. At the same time, it is also possible to automate most of the work processes for reprocessing, such as the process of extracting recycled oil, the process of overturning the transformer to drain the oil, and the vacuum heating drying process while the transformer remains overturned. Therefore, decontamination of transformers using recycled oil can be carried out continuously, safely, economically, and smoothly without requiring too much manpower, and without taking too much work time. . [Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 9. Fig. 1 is a process diagram showing the reprocessing process for a transformer using recycled oil, and Fig. 2 is a process diagram showing the process of removing the recycled oil for the reprocessing and decontaminating the transformer using recycled oil so that it can be reused. 1 is a block diagram showing a schematic system configuration of a decontamination apparatus for decontamination. Based on FIGS. 1 and 2, an outline of decontamination processing for a transformer using recycled oil (see FIG. 9) will be explained. In FIG. 2, reference numeral 1 indicates a mounting location of a transformer using recycled oil. For example, a required number of transformers using recycled oil 50 (hereinafter simply referred to as transformers) shown in FIG. 9 are arranged side by side, and in this state, The cover 52 of the transformer 50 is removed from the case 51, and the recycled oil in the case 51 is sequentially drawn out using a pump (not shown). The extracted recycled oil will be stored in drums, etc. 2, the transformer 50 from which the recycled oil has been removed is rotated by 180 degrees to form the case 51.
A turning device (see FIGS. 3 to 6, details will be described later) that changes the opening 53 of the case 51 downward.
The transformer is rotated in order to drain the recycled oil that has accumulated inside the transformer. 3 indicates an oil-draining storage area where the transformer 50 rotated by the rotation device 2 is stored for a certain period of time in a rotated state, for example, it is formed by installing a roller conveyor, and the transformer 50 is rotated The transformer is left as it is for about 10 to 15 hours, and the recycled oil remaining in the case 51 and the recycled oil adhering to the transformer body 54 are dripped to drain the oil. Reference numeral 4 denotes a movable trolley for the transformer 50, and while the transformer 50a, which has been discharged and drained for a certain period of time, is still rotated, the movable trolley 4 is moved by a hoisting and moving means 5 such as a crane, for example. will be installed in sequence. Reference numeral 6 denotes a vacuum heating device, in which the rotated transformer 50a is carried into the device 6 while being placed on the trolley 4, and the atmospheric temperature in the vacuum heating device 6 is raised to about 110°C.
After heating and drying the transformer 50a for several hours at a temperature of 51 and impregnated or attached to the transformer body 54, and vacuum heating drying device 6
By forcibly discharging and collecting the atmospheric gas containing oil and moisture floating inside, the recycled oil adhering to the inside and outside of the case 51 and the transformer body 54 is freed from impurities. The transformer 50a is subjected to a vacuum/heat drying process so that it can be evaporated to an undetectable level (see FIG. 6, details will be described later). Reference numeral 8 denotes a transformer 50a that has been subjected to the necessary vacuum and heat treatment in the vacuum heating and drying device 6.
This is a movable cart that is pulled out from the container and transported to the next process, and the cart 4 is also used as it is. Also, this moving trolley 8
A lifting means 9 such as a crane is installed on the top, and the moving trolley 8 is installed with the opening 53 facing downward.
The transformer 50a mounted on the transformer 50a is lifted up and placed on a roller conveyor (not shown) provided close to the turning device 10 (same structure as the turning device 2). The turning device 10 described above turns the transformer 50a, whose opening 53 faces downward, by 180 degrees to return it to its normal state. After this, the transformer 50a is transferred to the turning device 10.
, and transported to the temporary storage location 11 using a roller conveyor. The transformer 50a, which has cooled down to a predetermined temperature at the temporary storage location, is transferred to the vacuum lubrication device 12.
(See Figure 8, details will be described later).
Fill the case 51 with new insulating oil in a near-vacuum state. Opening 53 of case 51 after filling with new oil
A cover 52 is placed on the cover 52, and in this state, an electrical property test is conducted, and those that pass are stored at the shipping location 13 until the time of shipping. By completing the above-mentioned work steps, the decontamination process for the transformer 50 using recycled oil is completed, and its reuse is planned. In FIG. 2, 14 represents a vacuum pump, and 15 represents an oil tank for storing new insulating oil. Next, the configuration of the main equipment of the apparatus for decontaminating the transformer 50 using recycled oil will be explained with reference to FIGS. 3 to 8. First, the configuration of the turning devices 2 and 10 for turning and raising the transformer 50 will be explained with reference to FIGS. 3 and 6. The turning device 2 connects the two turning wheels 16, 16a with a horizontal beam 17, while maintaining an interval that allows the transformer 50 to pass through.
A ring-shaped rotating body 18 is formed by fixing the upper and lower parts with 17a, and a sliding body 19 having a required number of rollers arranged in parallel is attached to the upper side of this rotating body, and the upper part of the rotating body 18 is attached to the lower part. Slide body 19 fixed on the side
Correspondingly, the cylinder 21 on which the sliding body 20 is placed and fixed so as to be movable up and down is fitted onto the lower cross beam 17a.
As shown in FIG. 3, the rotating body 18 is
It is rotatably mounted on a rotating roller 24 rotatably mounted on the base 22 via a bearing plate 23, and includes an electric motor 25 with a reduction gear and one of the roller shafts 26 having rotating rollers 24, 24 at both ends. The motor 25 is driven and connected by a belt or the like, and the rotating roller 2 is activated.
4 and 24, the rotating body 18 also
It is configured to rotate with sliding bodies 19 and 20 provided at the lower part. 27, 27a are rotating bodies 1
The sliding bodies 19 and 20 provided on the rotating body 18 move the roller conveyor 2 forward and backward every time the rotating body 18 rotates by 180 degrees.
7 and 27a so as to be at the same height. Further, 28 indicates a discharge chute for recycled oil. Note that the turning device 10 for pulling the drying-processed transformer 50a pulled out from the vacuum heating drying device 6 to its original state, that is, toward the upper side of the opening 53, is of the same structure as the turning device 2, and therefore will not be described. is omitted. Next, the configuration of the vacuum heating drying device 6 will be explained with reference to FIG. 7. The vacuum heating drying device 6 includes a vacuum heating furnace 30, electric doors 31, 31a that open and close the inlet and outlet sides of the heating furnace 30, and heating wires or hot water connected to the inner wall surface and bottom surface of the vacuum heating furnace 30. It is equipped with a heating body 32 formed by arranging pipes, etc., and a stirring fan 33 for stirring the atmospheric gas in the vacuum heating furnace 30. Furthermore, a vacuum pump 7 is installed outside, and this vacuum pump 7
and the vacuum heating furnace 30 are connected by piping with an exhaust pipe 35 via a water-cooled condenser 34 and an electromagnetic valve S1 . Also, in Figure 7, 36
37 is a soot trap installed in the vacuum pump 7, and 37 is a water pipe that supplies cooling water to the water-cooled condenser 34.
Electromagnetic valves S 2 and S 3 for opening and closing the water pipe 37 are installed on the water passage side and the drainage side, respectively.
38 is a drain that stores liquefied oil and water cooled by the water-cooled condenser 34, and a solenoid valve S 4
It is attached to the water-cooled condenser 34 via. Furthermore,
S 5 is an electromagnetic valve attached to the vacuum heating furnace 30 side to return the vacuum state in the vacuum heating furnace 30 to normal pressure, 39 is a lighting lamp that illuminates the inside of the furnace, and 40 is the heating furnace 3
0 viewing window. Next, the configuration of the vacuum lubrication device 12 will be explained. In FIG. 8, reference numeral 41 denotes a temporary cover for covering the opening 53 of the transformer 50a, which is used when the inside of the case 51 of the transformer 50a, which has been vacuum heated and dried to remove oil, is brought into a vacuum state again; This temporary lid 4
A pipe 42 connected to the vacuum pump 14 and a pipe 43 connected to the oil tank 15 are connected to the case 5 through electromagnetic valves S 6 and S 7 in the middle of the piping, respectively.
1 and is configured by being connected for communication with the inside of 1. The vacuum heating and drying device 6 and the vacuum lubricating device 12 described above are driven and controlled in accordance with a preset sequence by command signals from a control device (not shown). Next, the decontamination process for the transformer 50 using recycled oil will be explained. First, at the installation location 1 of the transformer 50,
The cover 52 of the transformer 50 is removed, and the recycled oil is extracted from inside the case 51 using a pump (not shown) or the like. Next, the transformer 50 from which the recycled oil has been drained is placed on the pallet 29 with its opening 53 covered with a grid-like pallet 29a, as shown in FIG.
It is moved on the roller conveyor 27 and carried onto the sliding body 20 provided on the rotating body 18 of the turning device 2. In this state, the turning device 2 is operated by operating an operation switch provided on the operation panel of the control device (not shown) to drive the cylinder 21, and the transformer 50 is moved so that the pallet 29a is connected to the upper sliding body 19 as shown in FIG. Move it up until it makes contact. After that, the electric motor 25 is started and the rotating body 1 mounted on the rotating rollers 24, 24
8 by 180 degrees as shown in Figure 5, and transformer 5.
0 so that the opening 53 faces downward. In this state, the cylinder 21 is returned to its original position, and then the transformed transformer 50 is moved from the sliding body 19 to the oil drain storage area 3 via the roller conveyor 27a, where it remains in the case 51. Drain the oil while dripping the recycled oil. Note that the dropped oil flows down to the discharge chute 28 and is safely collected in a drum can or the like (not shown). The time required to drain the oil from the inverted transformer 50 is about 10 to 15 hours. This means that the recycled oil remaining in the case 51 drips in a relatively short time (1 to 2 hours). However, 80 to 90% of the oil remaining in the transformer body 54 is impregnated and attached to the coil, and the remaining 10 to 20% is attached to the iron core and other parts. It is thought that there are. For this reason, when the inventors of the present invention conducted a drip discharge test of the amount of remaining oil using an actual device, it was observed that the oil dripped relatively smoothly for 10 hours from the time when Case 51 was turned over. It was found that after 10 hours, only a small amount was dripped. This is believed to be because most of the remaining oil is dripped and discharged during the 10 hours that have passed since the transformer 50 was reversed. However, if the transformer 50 is left in the inverted state for a longer period of time (48 to 72 hours), the amount of dripping will increase slightly, but this is not considered a good idea as it will take too much time to drain the oil. Therefore, as a result of the above-mentioned test, it was found that 10 to 15 hours is appropriate for decontaminating the transformer 50, considering the post-process, and even if more time is spent unnecessarily, the oil removal effect will not be effective. It turned out that very little was obtained. The transformer 50a, which has been drained of the recycled oil as described above, is placed on the moving trolley 4 from the oil draining storage area 3 by the hoisting and moving means 5, and is kept in an airtight state for the next decontamination process. It is carried into the vacuum heating drying device 6. The device 6 is driven and controlled by a command signal from a control device (not shown), and the transformer 50
When the electric door 31, 31a is brought in together with the movable trolley 4 while being inverted, the heating element 32 is immediately activated to raise the atmospheric temperature in the vacuum heating furnace 30 to the set temperature. At this time, the transformer body 5
The ratio of the amount of oil remaining in 4 is, as mentioned above,
Approximately 80-90% of it is attached to the inside of the coil, and 10-20% is attached to the iron core and other parts. Therefore, whether or not the transformer 50a can be reused depends on how much of these residual oils can be removed. For this reason, the present inventors conducted various tests to determine how quickly and efficiently the residual oil could be removed. If the transformer main body 54 is first heated and dried while being housed in the case 51 with the opening 53 of the case 51 facing upward, the remaining oil impregnated in the constituent material of the transformer main body 54 will be heated. As a result, the viscosity decreases, and it falls to the bottom of the case 51 and accumulates therein. Next, a test was conducted with the opening 53 of the case 51 facing downward. In this case, the remaining oil naturally falls out of the case 51 as the viscosity of the remaining oil decreases. As a result of the above test, when discharging the residual oil whose viscosity has been reduced by heating and drying, it is better to drain it outside the case 51 with the opening 53 of the case 51 facing downward, rather than dropping it into the case 51 and letting it evaporate. Since it was found that the evaporation efficiency of the residual oil was clearly better when the oil was discharged dropwise, in the present invention, as described above, in the present invention, the case 51 was carried into the vacuum heating dryer 6 while being inverted. Next, the transformer body 5
4 housed in the case 51 and the transformer body 5
4 was removed from the case 51 and the evaporation efficiency of residual oil was measured in the state of the main body alone, and it was found that there was no significant difference in the residual oil reduction effect in either method. Therefore, in the present invention, the transformer body 54 is heated and dried while being housed in the case 51 in consideration of work efficiency. Next, when setting the heating and drying temperature, a test was conducted to verify the deterioration of the insulating material used in the transformer body 54. Wire-coated paper, kraft paper, or adhesive insulating paper was selected as the insulating material, left at a heating temperature of 110℃ for 0 to 8 days, and tested according to JIS C2111 (electrical insulation testing method) with the tensile strength on the first day set as 100. The results are shown in Table 1.

【表】 表中の数値は、5回の測定値の平均値である。 この表から明らかなように、3種類の試料は、
110℃で8日間連続加熱を行つても、引張強度の
低下は見られない。従つて、変圧器本体54を
110℃の温度で加熱乾燥を行つた場合、絶縁材料
への熱的影響による劣化損傷は全くなく、十分に
再使用できることが判明した。 つづいて、残存油を加熱乾燥によつて蒸発させ
る際、不純物の蒸発有無試験を行つた。一般的
に、絶縁油の沸点は270〜350℃であり、又、従
来、変圧器に通常使用していた不純物の沸点は、
210〜390℃であり、両者は極めて近い温度関係に
あるので、両者の蒸発量の確認を行つた。試験
は、100℃及び110℃の温度で61時間行つた気中乾
燥と、真空加熱乾燥(加熱温度110℃、真空度
0.05Torr、46時間)との条件で行つた結果を第
2表で示す。
[Table] The numerical values in the table are the average values of 5 measurements. As is clear from this table, the three types of samples are
No decrease in tensile strength was observed even after continuous heating at 110°C for 8 days. Therefore, the transformer body 54
It was found that when heat-dried at a temperature of 110°C, there was no deterioration or damage to the insulating material due to thermal effects, and it was found that it could be reused. Subsequently, when the remaining oil was evaporated by heating and drying, a test was conducted to see if impurities were evaporated. Generally, the boiling point of insulating oil is 270 to 350℃, and the boiling point of impurities conventionally used in transformers is
The temperature was 210 to 390°C, and since the two had a very close temperature relationship, the amount of evaporation of both was confirmed. The test consisted of air drying conducted at temperatures of 100℃ and 110℃ for 61 hours, and vacuum heating drying (heating temperature 110℃, degree of vacuum).
Table 2 shows the results obtained under the conditions (0.05 Torr, 46 hours).

【表】 表2から明らかなように、残存油(再生油)の
蒸発と同時に不純物も併せて蒸発することが判明
した。表2中、気中乾燥処理だけでは、蒸発した
不純物がそのまま大気中に拡散されて大気汚染公
害につながるため、本発明においては、第7図で
示すように、加熱乾燥によつて真空加熱炉30内
に蒸発して滞溜している残存油の油分や水分を含
む雰囲気ガスを真空ポンプ7にて吸引(真空度
0.05Torr)し、途中水冷コンデンサ34により
前記雰囲気ガス(オイルミスト)を冷却凝縮し、
液化した油、水分をドレン38にて回収し、気体
は油煙トラツプ36にて不純物質等を吸収させ、
清浄な気体として大気中に拡散するように構成さ
れている。このため、真空加熱炉30内から不純
物を含む雰囲気ガスが外部に排出されて大気汚染
を引き起こすおそれは全くない。なお、真空ポン
プ7の駆動開始時期、駆動時間及びこれに伴う各
電磁バルブS1〜S4はすべて制御装置からの指令信
号にてシーケンス制御されている。 次に残存油を蒸発処理する場合、不純物が絶縁
材料にどの程度吸着するか、即ち、吸着有無の試
験を行つた。試験の条件としては、テスト容器に
不純物を含む絶縁油1.2に絶縁材料として絶縁
紙200gを入れ、20℃の温度で16日間放置した後、
80℃の温度で更に2日間放置した。そして、各放
置日数毎に絶縁油中の不純物の分析を行つたの
で、その結果を第3表により示す。なお、表3中
の不純物濃度は、初日の濃度を100として算出し
た。
[Table] As is clear from Table 2, it was found that impurities also evaporated at the same time as the residual oil (regenerated oil) evaporated. In Table 2, if only the air drying treatment is performed, the evaporated impurities will be directly diffused into the atmosphere, leading to air pollution. Therefore, in the present invention, as shown in FIG. Atmospheric gas containing oil and moisture from residual oil that has evaporated and accumulated in the vacuum pump 7 is sucked (vacuum degree
0.05 Torr), and the atmospheric gas (oil mist) is cooled and condensed by a water-cooled condenser 34 on the way.
The liquefied oil and moisture are collected in the drain 38, and the gas is absorbed in the oil smoke trap 36 to absorb impurities.
It is configured to diffuse into the atmosphere as a clean gas. Therefore, there is no possibility that atmospheric gas containing impurities will be discharged from inside the vacuum heating furnace 30 to the outside and cause air pollution. Incidentally, the driving start timing and driving time of the vacuum pump 7, and the corresponding electromagnetic valves S1 to S4 are all sequentially controlled by command signals from the control device. Next, when the remaining oil is evaporated, a test was conducted to determine the extent to which impurities are adsorbed to the insulating material, that is, whether or not they are adsorbed. The test conditions were as follows: 200 g of insulating paper was placed in a test container containing 1.2 insulating oil containing impurities, and after being left at a temperature of 20°C for 16 days,
It was left for an additional 2 days at a temperature of 80°C. Then, the impurities in the insulating oil were analyzed for each number of days of storage, and the results are shown in Table 3. Note that the impurity concentrations in Table 3 were calculated with the concentration on the first day as 100.

【表】 第3表から明らかなように、絶縁油中の不純物
の濃度変化はほとんどみられない。このことは、
不純物が特に絶縁紙に吸着しやすいことはないと
判断できる。この結果、不純物は絶縁油中に均一
に分布していると考えるのが妥当と思われる。従
つて、油切りを行つた変圧器50aの変圧器本体
54内に含浸・付着している再生油の残量を、前
記した加熱温度及び真空度に基づいて強制除去す
ることにより、再生油に含有している不純物も、
再生油とともに蒸発して除去することが可能であ
ることが判明した。 前記した油切り後の変圧器50aを本発明によ
る真空加熱乾燥にて再生油の除染処理を行つた場
合と、常温及び熱気のみにて除染処理を行つた場
合とにおける不純物の希釈効果について測定を行
つたので、その結果を第4表により示す。
[Table] As is clear from Table 3, there is almost no change in the concentration of impurities in the insulating oil. This means that
It can be judged that impurities are not particularly easily adsorbed to insulating paper. As a result, it seems reasonable to assume that impurities are uniformly distributed in the insulating oil. Therefore, by forcibly removing the remaining amount of recycled oil impregnated and attached to the transformer body 54 of the transformer 50a that has been drained, based on the heating temperature and degree of vacuum described above, the recycled oil is The impurities contained in
It has been found that it is possible to remove the oil by evaporation together with the recycled oil. Regarding the effect of diluting impurities in the case where the transformer 50a after oil removal is subjected to the decontamination treatment of recycled oil by vacuum heating drying according to the present invention and the case where the decontamination treatment is performed only at room temperature and hot air. Measurements were carried out and the results are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されているの
で、次に示すような効果を有する。 (1) 本発明は、再生油使用変圧器における再生油
の除染処理が、人手をほとんどかけることなく
自動化することができるので、再生油の除染作
業を安全に、しかも、効率的に行うことができ
る。 (2) 特に、再生油の油切り及び乾燥に際しては、
転回装置の採用によつて、変圧器を、その開口
部を下向にして行う方式となつているので、残
存油を自然落下させながら再生油の除染処理が
行なえるため、変圧器本体内に含浸・付着して
いる残存油の排除を極めて容易に行うことがで
きる。 (3) 又、再生油に含有している使用規制の対象と
なつている不純物は、絶縁材料に吸着しにくい
性質を利用して再生油とともに、特定範囲の加
熱温度と蒸発物質を強制排気させる手段との併
用によつて迅速・確実に排除させることが可能
であるので、再生油使用変圧器の再処理が確実
に行い得、この種変圧器の再使用を2次公害等
を発生させることなく、経済的に活用すること
ができ至便である。
Since the present invention is configured as described above, it has the following effects. (1) The present invention can automate the decontamination process of recycled oil in transformers using recycled oil with almost no human effort, so the decontamination work of recycled oil can be carried out safely and efficiently. be able to. (2) Especially when draining and drying recycled oil,
By adopting a rotating device, the transformer is installed with its opening facing downward, allowing the decontamination of recycled oil to be carried out while allowing residual oil to fall naturally. It is extremely easy to remove residual oil that has impregnated and adhered to the surface. (3) In addition, impurities contained in recycled oil that are subject to usage regulations are difficult to adsorb to insulating materials, so together with the recycled oil, heating temperature within a specific range and evaporated substances are forcibly exhausted. Since it is possible to quickly and reliably eliminate transformers using recycled oil in combination with other means, it is possible to reprocess transformers using recycled oil without fail, and to prevent the reuse of such transformers from causing secondary pollution. It is very convenient and can be used economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除染方法を実施するための概
略工程図、第2図は同じく除染装置全体を概略的
に示すブロツク図、第3図は再生油を抜取つた変
圧器あるいは乾燥処理後の変圧器を転倒、引起し
を行うための装置の概略説明図で、第4図、第5
図はその動作説明図、第6図は第4図のA矢視
図、第7図は真空加熱乾燥装置の概略系統図、第
8図は真空注油を行う状態の1例を示す変圧器の
縦断面図、第9図は再生油使用変圧器の1部を切
欠いて示す正面図である。 2,10…転回装置、4…移動台車、6…真空
加熱乾燥装置、12…真空注油装置、18…回転
体、24…回転ローラ、50,50a…変圧器、
53…開口部。
Fig. 1 is a schematic process diagram for implementing the decontamination method of the present invention, Fig. 2 is a block diagram schematically showing the entire decontamination equipment, and Fig. 3 is a transformer from which recycled oil has been extracted or a drying process. This is a schematic explanatory diagram of a device for overturning and raising the transformer.
The figure is an explanatory diagram of its operation, Figure 6 is a view in the direction of arrow A in Figure 4, Figure 7 is a schematic system diagram of the vacuum heating and drying equipment, and Figure 8 is a transformer showing an example of a state in which vacuum lubrication is performed. The vertical cross-sectional view and FIG. 9 are front views with a portion of the transformer using recycled oil cut away. 2, 10... Turning device, 4... Moving trolley, 6... Vacuum heating drying device, 12... Vacuum oiling device, 18... Rotating body, 24... Rotating roller, 50, 50a... Transformer,
53...Opening.

Claims (1)

【特許請求の範囲】 1 変圧器内の再生油を動力手段等にて抜取る工
程と、再生油の抜取り後前記変圧器を反転させて
変圧器内の残存油を滴下排出させて油切りを行う
工程と、油切りを行つた変圧器を、その開口部を
下向きとして真空加熱乾燥装置に搬入し、この変
圧器を絶縁材料の再使用可能な温度で加熱して変
圧器本体内に含浸・付着している残存油及び不純
物を蒸発させ、かつ、これを強制排気させて乾燥
処理する工程と、前記真空加熱乾燥処理を行つた
変圧器を転回して開口部を上向きとなして新油を
真空注油する工程とを備えたことを特徴とする再
生油使用変圧器の除染方法。 2 変圧器が通り抜けできる間隔で一対の転回輪
を横梁により転倒不能に固定して形成したリング
状の回転体に、変圧器の上下部を挟持する一対の
滑動体を昇降可能に具備させて回転ローラ上に回
転自在に乗載して構成した変圧器の反転・引起し
用の転回装置と、油切りを行つた変圧器を、その
開口部を下向きとなして真空加熱乾燥装置に出・
入させる移動台車と、内部に変圧器の加熱手段を
有し、外部には、蒸発物質を液化する手段と連結
されて雰囲気ガスを外部に強制排気させる排気手
段とを一体的に結合させて油切り後の変圧器を真
空加熱乾燥させる真空加熱乾燥装置と、前記真空
加熱乾燥した変圧器に、その内部の真空排気を続
けながら絶縁油の真空注油を行う真空注油装置
と、更に、前記各装置をシーケンス制御する制御
装置とを備えたことを特徴とする再生油使用変圧
器の除染装置。
[Scope of Claims] 1. A step of extracting the recycled oil in the transformer using a power means, etc., and after removing the recycled oil, turning the transformer upside down to drain the remaining oil in the transformer drippingly to drain the oil. The transformer, which has been drained of oil, is transported into a vacuum heating and drying device with its opening facing downward, and the transformer is heated to a temperature that allows the insulating material to be reused to impregnate the inside of the transformer body. There is a step of evaporating the remaining oil and impurities that have adhered to it, and drying it by forcibly exhausting it, and turning the transformer that has been subjected to the vacuum heating drying process so that the opening faces upward and pouring in new oil. A method for decontaminating a transformer using recycled oil, comprising the step of vacuum lubricating. 2 A ring-shaped rotating body is formed by fixing a pair of rotating wheels at a distance that allows the transformer to pass through with a cross beam so that they cannot fall over, and a pair of sliding bodies that sandwich the upper and lower parts of the transformer are installed so that the transformer can move up and down. A turning device for reversing and pulling up the transformer, which is configured by being rotatably mounted on a roller, and the transformer, which has been drained of oil, are placed in a vacuum heating dryer with the opening facing downward.
A movable trolley, which has a heating means for a transformer inside, and an exhaust means, which is connected to a means for liquefying evaporated substances and forcibly exhausts atmospheric gas to the outside, are integrally combined. a vacuum heating and drying device for vacuum heating and drying the transformer after being cut; a vacuum lubricating device for vacuum lubricating the transformer with insulating oil while continuing to evacuate the inside of the transformer that has been vacuum heated and dried; A decontamination device for a transformer using recycled oil, characterized in that it is equipped with a control device that performs sequence control.
JP32005190A 1990-11-21 1990-11-21 Method and apparatus for decontamination of transformer using regenerated oil Granted JPH04188711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32005190A JPH04188711A (en) 1990-11-21 1990-11-21 Method and apparatus for decontamination of transformer using regenerated oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32005190A JPH04188711A (en) 1990-11-21 1990-11-21 Method and apparatus for decontamination of transformer using regenerated oil

Publications (2)

Publication Number Publication Date
JPH04188711A JPH04188711A (en) 1992-07-07
JPH0532884B2 true JPH0532884B2 (en) 1993-05-18

Family

ID=18117182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32005190A Granted JPH04188711A (en) 1990-11-21 1990-11-21 Method and apparatus for decontamination of transformer using regenerated oil

Country Status (1)

Country Link
JP (1) JPH04188711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268358A (en) * 2006-03-30 2007-10-18 Kobelco Eco-Solutions Co Ltd Pressure reduction and heating device and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434765B1 (en) * 2004-01-12 2004-06-09 이종문 apparatus of transformer and manufacturing method thereof
JP5436889B2 (en) * 2008-03-17 2014-03-05 一般財団法人電力中央研究所 Method and apparatus for cleaning PCB contaminated transformer
CN102034591B (en) * 2010-10-29 2012-11-28 山东鲁能泰山电力设备有限公司 Device and method for injecting oil into transformer under vacuum condition
JP2013236999A (en) * 2012-05-14 2013-11-28 Toshio Konuma Method and device for removing oil from waste electrical equipment
CN103123850B (en) * 2013-03-01 2015-07-15 山东达驰电气有限公司 Transformer half-vacuum oiling device and technology thereof
CN104103409B (en) * 2014-06-20 2016-08-17 中国南方电网有限责任公司超高压输电公司检修试验中心 The field drying processing method of converter power transformer
CN109003787B (en) * 2018-07-24 2021-08-31 国网福建省电力有限公司 Intelligent microwave vacuum treatment method for transformer oil
CN109003786B (en) * 2018-07-24 2021-08-31 国网福建省电力有限公司 Intelligent microwave vacuum treatment device for transformer oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268358A (en) * 2006-03-30 2007-10-18 Kobelco Eco-Solutions Co Ltd Pressure reduction and heating device and method

Also Published As

Publication number Publication date
JPH04188711A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
JPH0532884B2 (en)
CA1311621C (en) Refrigerant recovery and purification system
US5123176A (en) Method and apparatus for dry cleaning as well as method and device for recovery of solvent therein
US6829844B2 (en) Evaporative desorption soil treatment apparatus and process
US4865061A (en) Decontamination apparatus for chemically and/or radioactively contaminated tools and equipment
EP1974172A2 (en) System and method for drying wood
KR20090116058A (en) Apparatus for removing moisture for transformer oils
US3871394A (en) Device for treating articles arranged in containers with organic solvents
JP2004340814A (en) Vacuum dryer of waste and method therefor
CA3007413A1 (en) Device and method for decontaminating soil
WO2000052445A1 (en) Apparatus for removing water from dielectric oil in electrical power transformers
US5195252A (en) Method for dry cleaning as well as a method for recovery of solvent therein
JPH07174466A (en) Dryer
EP0795594B1 (en) Plant for the environmentally friendly thermal treatment of industrial, hospital, domestic and the like waste
CN109539751B (en) Transformer bushing dehumidification device and use method
US7789937B2 (en) System and method for recovering ice-clad machinery and equipment
CN106058697A (en) Comprehensive maintenance device for reducing defect rate of power equipment
CN220541248U (en) Device for exhausting moisture and air
CN215985467U (en) Concrete test block boils and boils case
John Transportation, erection and maintenance of power transformers
US6049993A (en) System for adapting a dry cleaner machine to the use of hydrocarbon-based cleaning fluids
CN209752221U (en) Liquid waste material drying machine
KR20190103673A (en) Transporting equipment of hazard material for mounting on the vehicle
CA3007413C (en) Device and method for decontaminating soil
JP3338528B2 (en) Emergency operation stop method of oil and fat extractor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 18