JPH0532749B2 - - Google Patents

Info

Publication number
JPH0532749B2
JPH0532749B2 JP56110099A JP11009981A JPH0532749B2 JP H0532749 B2 JPH0532749 B2 JP H0532749B2 JP 56110099 A JP56110099 A JP 56110099A JP 11009981 A JP11009981 A JP 11009981A JP H0532749 B2 JPH0532749 B2 JP H0532749B2
Authority
JP
Japan
Prior art keywords
color
image
developer
development
electrostatic latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56110099A
Other languages
Japanese (ja)
Other versions
JPS5811957A (en
Inventor
Shigeo Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP56110099A priority Critical patent/JPS5811957A/en
Publication of JPS5811957A publication Critical patent/JPS5811957A/en
Publication of JPH0532749B2 publication Critical patent/JPH0532749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies
    • G03G13/013Electrographic processes using a charge pattern for multicoloured copies characterised by the developing step, e.g. the properties of the colour developers
    • G03G13/0133Electrographic processes using a charge pattern for multicoloured copies characterised by the developing step, e.g. the properties of the colour developers developing using a step for deposition of subtractive colorant developing compositions, e.g. cyan, magenta and yellow

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は3原色であるマゼンタ色(以降M色と
称す)、イエロー色(以降Y色と称す)、シアン色
(以降C色と称す)の色相の現像剤を順次1色相
ずつ静電記録紙上に現像し、減法混色により多色
画像を形成する、静電記録方式における現像方法
に関するものである。目的とするところは3原色
の混色による理想的多色画像形成を可能にする現
像方法を提供するにある。 先ず3原色による減法混色について簡単に説明
する。第1図は3原色の減法混色説明図、第2図
は3原色の波長と分光反射率との関係を示す説明
図である。 人間が赤とか青とか色相を感ずるのは目に入射
した光の波長の成分に相応して色相を感ずるから
である。いま第1図に示すM色1の色相のトナー
などの着色材料で画像を形成し、次にその画像の
上に重ねて、Y色2の色相の着色材料で同一濃度
の画像を形成したとする。この場合M色1の画像
は入射した白色のうち400〜500nmおよび600〜
700nmの波長領域の光は反射するが、500〜600n
mの波長領域の光は吸収して反射しない。一方Y
色2は500〜700nmの波長領域の光を反射し、
400〜500nmの波長領域の光を吸収する。したが
つてM色1の画像とY色2の画像の重なつた部分
からは600〜700nmの波長領域の光のみが反射し
て目に入射する。600〜700nmの波長領域に相応
する色感は赤色であるから、M色1とY色2の重
なつた部分は赤色4として感ずることになる。以
下同様にY色2とC色3を重ねると緑色5、C色
3とM色1を重ねると青色6、M色1とY色2と
C色3の3色を重ねると黒色7となる。 したがつて以上のごとき着色材料の原色と混色
とにより7種類の色相の画像を形成することが可
能である。 次に静電記録方式の画像形成のプロセスを簡単
に説明する。第3図は一般的静電記録方式の画像
形成プロセス説明図でaは静電潜像形成、bは現
像、cは定着の各段階を示す。被記録体である静
電記録紙は2相型と3層型とあるが2層型を例に
とり説明する。2層型静電記録紙8(以降記録紙
と称す)は基材である紙の表面に絶縁層8aを設
け、基材である紙には導電性物質が含浸されて導
電層8bを形成している。第3図aに示すごとく
絶縁層8aの表面に多針電極9を接触させて、導
電層8bとの間に電圧を印加すると絶縁層8aに
電荷が生ずる。一般に多針電極9は相互に絶縁さ
れ、記録紙8の巾方向に一列に配列されている。 記録紙8を矢印X方向に移動させながら画像記
録情報により多針電極9に選択的にパルス電圧を
印加することにより、記録紙8の絶縁層8a上に
静電潜像が形成される。静電潜像を構成する電荷
は上記印加電圧の極性によりプラスにもマイナス
にも出来るが、一般にマイナス電荷を発生させる
場合の方がいわゆるドツト抜けが少く信頼性が高
いと言われている。以下静電潜像を形成する電荷
はマイナス電荷として説明する。表面に静電潜像
の形成された記録紙8は第3図bは示されるごと
く現像器10により現像される。現像方式として
は湿式と乾式とあるが、いずれも静電潜像と逆極
性に帯電された着色粒子であるトナー10aを静
電潜像の部分に接触させ電気的に吸着させること
により現像が行われる。現像の終つたトナーはそ
の侭では機械的衝撃に弱いので、第3図cに示さ
れるごとくヒーターなどよりなる定着器11で加
熱などされ、ることによりトナー10aに含有さ
せている樹脂が記録紙8に強固に固着されること
により、1色相分の画像形成プロセスが終了す
る。多色現像の場合は上記画像形成プロセスを色
相の数だけ繰り返えすことにより行われる。この
場合上記現像の際に静電潜像の電荷とトナー10
aの電荷が極性のみ逆で電荷量が等しく、現像の
際両電荷が中和すれば、1色相分の画像形成プロ
セス終了の段階で形成された画像面に残存電荷は
存在せず、以降の他の色相の画像形成プロセスに
支障はないが、実際には静電潜像の電荷量の方が
大きく上記の現像では静電潜像の電荷は完全には
中和されずに残存電荷が存在する。 したがつてこの残留電荷量が大きいと、第2回
目のトナー10aによると現像の際、第2回目の
静電潜像の存在しない、第1回目の画像形成部分
にも第2回目のトナー10aが静電吸着され、混
色してしまう。したがつて例えば第1回目にM色
1の色相、第2回目にY色2の色相による画像形
成の場合は、理想的にはM色1、Y色2、と混色
による赤色4の3色の色相の画像が得られるべき
がM色1はすべてY色2と混色し赤色4になつて
しまい、M色1の画像が得られなくなつてしま
う。本発明は上記の事情に鑑みなされたもので、
3原色のトナー10aを使用して、画像情報と異
なる混色、いわゆるかぶりを防止し7種類の色相
の画像を得る現像方式を提供するものである。 以下現像後の画像上に残存電荷の生ずる要因に
ついて説明する。 上記要因としては、記録紙8と現像剤の両者が
環境条件などにより、一定条件で帯電させても電
荷量は大巾に変動することによる。このことは一
定環境のもとで静電潜像と現像剤の帯電荷が均衡
を保つように調整しても、環境の変化で上記の均
衡が保たれなくなることを意味する。記録紙8に
おいては基材の紙が多孔質で水分等を吸収しやす
いので、記録紙8を構成する絶縁層8aの体積抵
抗率は、湿度、温度、気圧など環境条件により
1010〜1017Ωcm程度に大巾に変化する。絶縁層8
aは1種のコンデンサにおける誘電体のごとき機
能があるので、上記のごとき体積抵抗率の変化に
対応して帯電荷量も約60%程度増減変動してしま
う。一方3原色の現像剤については、一般に摩擦
などにより現像剤に静電荷が与えられているが、
経時変化やポンプ等による流動過程で帯電荷量は
変化し約40%程度の増減がある。以上のごとく記
録紙3、現像剤ともに帯電荷量が大巾に変化する
ので、1種類のトナーによる単色記録では比較的
問題にならない上記現象が、多色記録ではかぶり
に関連して大きな問題となる。本発明は3原色の
現像剤の帯電特性と、静電潜像への静電吸着を開
始する最低電圧が異なる点に着目し、現像剤の上
記物性に応じた現像順序により多色現像すること
により、かぶりのない画像情報通りの7色画像を
得るものである。先ず画像形成部分に対する次の
現像剤によるかぶりについて考察する。 記録紙8上の静電潜像電荷による表面電位を一
定とした場合M色1、Y色2、C色の各現像剤を
静電吸着させた後の画像部分の残留電荷による画
像部分の表面電位の大きさの順位がC色3<M色
1<Y色2とすると、画像部分の残留電荷による
表面電位の絶対値が小さいほど、その部分に次の
現像剤が静電的に吸引されにくい。 したがつて画像部分の残留電荷にのみに着目す
れば、現像剤はC色3、M色1、Y色2の色相順
序に現像すれば最もかぶりが少くなる。次に各現
像剤が静電潜像に吸着を開始する静電潜像の電位
について考察する。 いま現像剤ごとに上記吸着開始静電潜像電位の
値の順位がC色3<M色1<Y色2とすると、吸
着開始静電潜像電位が高い現像剤ほど吸着しにく
い、換言すればすでに形成された画像形成面の残
留電荷に吸着されにくいことになるから、現像後
の残電荷量が一定と仮定とすると現像剤はC色
3、M色1、Y色2の色相の順序に現像する場合
のほうが、少くともY色2、M色1、C色3の色
相の順序に現像する場合よりかぶり防止上有利と
なる。現像剤により現像後の残留電荷量、現像剤
の吸着開始静電潜像電位に相異のあることに着目
し、実験により、C色3、M色1、Y色2の順序
に現像した場合が多の順序で現像した場合に比較
し、最も優れた7色相の画像が得られた。実験に
よる、現像剤の現像順序と得られた色調を表1に
示す。
In the present invention, developers of three primary colors, magenta (hereinafter referred to as M color), yellow (hereinafter referred to as Y color), and cyan color (hereinafter referred to as C color), are sequentially applied one by one onto electrostatic recording paper. The present invention relates to a developing method in an electrostatic recording system, in which a multicolor image is formed by subtractive color mixing. The object is to provide a developing method that enables ideal multicolor image formation by mixing three primary colors. First, subtractive color mixing using three primary colors will be briefly explained. FIG. 1 is an explanatory diagram of subtractive color mixture of three primary colors, and FIG. 2 is an explanatory diagram showing the relationship between wavelength and spectral reflectance of the three primary colors. Humans perceive hues such as red and blue because they perceive hues that correspond to the wavelength components of the light that enters their eyes. Now suppose that an image is formed using a coloring material such as a toner of hue M color 1 shown in Figure 1, and then an image of the same density is formed on top of that image using a coloring material of hue Y color 2. do. In this case, the image of M color 1 is 400 to 500 nm and 600 to 600 nm of the incident white color.
Light in the 700nm wavelength range is reflected, but 500-600n
Light in the m wavelength range is absorbed and not reflected. On the other hand, Y
Color 2 reflects light in the wavelength range of 500 to 700 nm,
Absorbs light in the wavelength range of 400 to 500 nm. Therefore, only light in the wavelength range of 600 to 700 nm is reflected from the overlapping portion of the M color 1 image and the Y color 2 image and enters the eye. Since the color corresponding to the wavelength region of 600 to 700 nm is red, the overlapping portion of M color 1 and Y color 2 is perceived as red 4. Similarly, if you overlap Y color 2 and C color 3, you get green 5, if you overlap C color 3 and M color 1, you get blue 6, and if you stack M color 1, Y color 2, and C color 3, you get black 7. . Therefore, it is possible to form images of seven different hues by combining the primary colors and color mixtures of the above-mentioned coloring materials. Next, the process of image formation using the electrostatic recording method will be briefly explained. FIG. 3 is an explanatory diagram of the image forming process of a general electrostatic recording method, in which a shows the stages of electrostatic latent image formation, b shows development, and c shows the fixing stages. There are two types of electrostatic recording paper, which is a recording medium, a two-phase type and a three-layer type, and the two-layer type will be explained as an example. The two-layer electrostatic recording paper 8 (hereinafter referred to as recording paper) has an insulating layer 8a on the surface of a paper base, and the paper base is impregnated with a conductive substance to form a conductive layer 8b. ing. As shown in FIG. 3a, when a multi-needle electrode 9 is brought into contact with the surface of the insulating layer 8a and a voltage is applied between it and the conductive layer 8b, charges are generated in the insulating layer 8a. Generally, the multi-needle electrodes 9 are insulated from each other and arranged in a line in the width direction of the recording paper 8. An electrostatic latent image is formed on the insulating layer 8a of the recording paper 8 by selectively applying a pulse voltage to the multi-needle electrode 9 according to image recording information while moving the recording paper 8 in the direction of the arrow X. The charge constituting the electrostatic latent image can be either positive or negative depending on the polarity of the applied voltage, but it is generally said that generating a negative charge is more reliable because it causes fewer so-called missing spots. The charges forming the electrostatic latent image will be explained below as negative charges. The recording paper 8 having the electrostatic latent image formed on its surface is developed by a developing device 10 as shown in FIG. 3b. There are two types of development methods: wet and dry, but in both cases, development is performed by bringing toner 10a, which is colored particles charged to the opposite polarity to the electrostatic latent image, into contact with the electrostatic latent image and causing it to be electrically adsorbed. be exposed. Since the toner that has been developed is vulnerable to mechanical shock, it is heated in the fixing device 11, which includes a heater, as shown in FIG. 8, the image forming process for one hue is completed. In the case of multicolor development, the above image forming process is repeated for the number of hues. In this case, during the development, the charge of the electrostatic latent image and the toner 10
If the charges on a are equal in polarity and equal in amount, and both charges are neutralized during development, there will be no residual charge on the image surface formed at the end of the image forming process for one hue, and subsequent There is no problem with the image formation process for other hues, but the amount of charge on the electrostatic latent image is actually larger, and in the above development, the charge on the electrostatic latent image is not completely neutralized and some residual charge remains. do. Therefore, if this amount of residual charge is large, when the second toner 10a is developed, the second toner 10a will be present even in the first image formation area where the second electrostatic latent image does not exist. are electrostatically attracted, resulting in color mixing. Therefore, for example, in the case of image formation using the hue of M color 1 in the first process and the hue of Y color 2 in the second process, ideally three colors are formed: M color 1, Y color 2, and red 4 by color mixture. However, all M color 1 is mixed with Y color 2 and becomes red 4, making it impossible to obtain an image of M color 1. The present invention was made in view of the above circumstances,
The present invention provides a developing method that uses toners 10a of three primary colors to prevent color mixing different from image information, that is, so-called fog, and to obtain images of seven different hues. The factors that cause residual charges to occur on images after development will be explained below. The reason for this is that the amount of charge on both the recording paper 8 and the developer varies widely depending on the environmental conditions even if they are charged under constant conditions. This means that even if the charges of the electrostatic latent image and the developer are adjusted to maintain a balance under a certain environment, the above balance may no longer be maintained due to changes in the environment. In the recording paper 8, the base paper is porous and easily absorbs moisture, so the volume resistivity of the insulating layer 8a that makes up the recording paper 8 varies depending on environmental conditions such as humidity, temperature, and atmospheric pressure.
It varies widely from 10 10 to 10 17 Ωcm. Insulating layer 8
Since a has a function similar to that of a dielectric in a type of capacitor, the amount of charged charge also fluctuates by about 60% in response to the above-mentioned change in volume resistivity. On the other hand, in the case of three primary color developers, static charges are generally applied to the developer due to friction, etc.
The amount of charge changes due to changes over time and the flow process caused by pumps, etc., and increases and decreases by about 40%. As described above, since the charge amount of both the recording paper 3 and the developer changes widely, the above phenomenon, which is relatively not a problem in monochrome recording using one type of toner, becomes a major problem related to fog in multicolor recording. Become. The present invention focuses on the fact that the charging characteristics of the three primary color developers and the minimum voltage that starts electrostatic adsorption to the electrostatic latent image are different, and multicolor development is performed by the development order according to the above-mentioned physical properties of the developer. As a result, a 7-color image without fogging and in accordance with the image information is obtained. First, let us consider the fog caused by the next developer on the image forming area. When the surface potential due to the electrostatic latent image charge on the recording paper 8 is constant, the surface potential of the image area due to the residual charge on the image area after electrostatically adsorbing each developer of M color 1, Y color 2, and C color. Assuming that the order of potential magnitude is C color 3 < M color 1 < Y color 2, the smaller the absolute value of the surface potential due to the residual charge in the image area, the more the next developer will be electrostatically attracted to that area. Hateful. Therefore, if we focus only on the residual charge in the image area, the fog will be minimized if the developer is developed in the order of C color 3, M color 1, and Y color 2. Next, the potential of the electrostatic latent image at which each developer starts adhering to the electrostatic latent image will be considered. Now, if the order of the above-mentioned adsorption start electrostatic latent image potential values for each developer is C color 3 < M color 1 < Y color 2, then the higher the adsorption start electrostatic latent image potential of the developer, the harder it is to adsorb. Assuming that the amount of residual charge after development is constant, the developer is difficult to be adsorbed by the residual charge on the image forming surface that has already been formed, so the developer will be applied in the order of C color 3, M color 1, and Y color 2. It is more advantageous in terms of fog prevention when the color is developed in the order of the hues of Y color 2, M color 1, and C color 3 at least. Focusing on the fact that there are differences in the amount of residual charge after development and the electrostatic latent image potential at the start of adsorption of the developer depending on the developer, we conducted an experiment to find that when developing in the order of C color 3, M color 1, and Y color 2. The most excellent 7-hue image was obtained compared to the case where the images were developed in the same order. Table 1 shows the development order of the developer and the obtained color tone according to the experiment.

【表】 表中○印は理論上の色相の得られた場合、△印
は理論上の色相と若干異なる場合、×印は理論上
の色相と全く異なる場合を示す。 上記したごとく項5における、現像順序として
C色3、M色1、Y色2とした場合にのみ理論上
の7色相が得られている。なお上記実験例の諸条
件の1例を下記に記す。 記録紙8に対する印加電圧600V、上記印加電
圧により生じた静電潜像の表面電位40〜100V、
3原色の現像剤の電位8〜15Vとした場合各現
像剤の現像直後の残留電荷による画像面の表面電
位はC色3は15V、M色1は23V、Y色2は
32Vであつた。なお画像形成面の残留電荷をコ
ロナ放電などによる除電器で除電する方法もある
が、0にすることは極めて困難で、除電器で逆に
帯電を誘発する場合もあるなど、安定した効果は
得られない。以上本発明による多色現像方法によ
れば現像後の残留電荷を除去することなく、画像
情報通りの7色相の画像が得られるので実用上の
効果は極めて大である。
[Table] In the table, the ○ mark indicates a case where the theoretical hue was obtained, the △ mark indicates a case where the hue was slightly different from the theoretical hue, and the × mark indicates a case where the theoretical hue was completely different. As described above, in item 5, the theoretical seven hues are obtained only when the development order is C color 3, M color 1, and Y color 2. An example of the various conditions for the above experimental example is described below. The voltage applied to the recording paper 8 is 600V, the surface potential of the electrostatic latent image generated by the above applied voltage is 40 to 100V,
When the potential of the three primary color developers is 8 to 15V, the surface potential of the image surface due to the residual charge of each developer immediately after development is 15V for C color 3, 23V for M color 1, and 23V for Y color 2.
It was 32V. Note that there is a method to remove the residual charge on the image forming surface using a static eliminator such as a corona discharge, but it is extremely difficult to reduce it to zero, and the static eliminator may even induce charging, so it is not a stable effect. I can't. As described above, according to the multicolor development method according to the present invention, an image with seven hues according to the image information can be obtained without removing the residual charge after development, so that the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3原色の減法混色説明図、第2図は3
原色の波長と分光反射率との関係を示す説明図、
第3図は一般的静電記録方式の画像形成プロセス
説明図である。 8……静電記録紙、10……現像器、10a…
…トナー、11……定着器。
Figure 1 is an illustration of subtractive color mixing of 3 primary colors, Figure 2 is 3
An explanatory diagram showing the relationship between primary color wavelength and spectral reflectance,
FIG. 3 is an explanatory diagram of an image forming process using a general electrostatic recording method. 8... Electrostatic recording paper, 10... Developing device, 10a...
...Toner, 11...Fuser.

Claims (1)

【特許請求の範囲】[Claims] 1 静電潜像を形成する静電記録紙を被記録体と
し、少なくともマゼンタ、イエロー、シアンの色
相の現像剤を、1種類ずつ複数回現像する静電記
録方式において、現像を、該現像剤として吸着開
始静電潜像電位と、現像直後の残留電荷による画
像の表面電位絶対値が低い現像剤から高い現像剤
のシアン、マゼンタ、イエローの順序に行うよう
にしたことを特徴とする静電記録方式における多
色現像方法。
1. In an electrostatic recording method in which an electrostatic recording paper that forms an electrostatic latent image is used as a recording material and is developed multiple times with one type of developer of at least magenta, yellow, and cyan, the development is performed using the developer. The electrostatic latent image potential at the start of adsorption and the surface potential of the image due to the residual charge immediately after development are carried out in the order of cyan, magenta, and yellow, from the lowest absolute value to the highest absolute value of the surface potential of the image. Multicolor development method in recording system.
JP56110099A 1981-07-16 1981-07-16 Multicolor developing method for electrostatic recording system Granted JPS5811957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110099A JPS5811957A (en) 1981-07-16 1981-07-16 Multicolor developing method for electrostatic recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110099A JPS5811957A (en) 1981-07-16 1981-07-16 Multicolor developing method for electrostatic recording system

Publications (2)

Publication Number Publication Date
JPS5811957A JPS5811957A (en) 1983-01-22
JPH0532749B2 true JPH0532749B2 (en) 1993-05-17

Family

ID=14527002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110099A Granted JPS5811957A (en) 1981-07-16 1981-07-16 Multicolor developing method for electrostatic recording system

Country Status (1)

Country Link
JP (1) JPS5811957A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718009B2 (en) * 1985-11-28 1998-02-25 富士通株式会社 Multi-color recording method
US4897330A (en) * 1986-12-09 1990-01-30 Konica Corporation Image forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080141A (en) * 1973-11-13 1975-06-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080141A (en) * 1973-11-13 1975-06-30

Also Published As

Publication number Publication date
JPS5811957A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
US2962375A (en) Color xerography
JPS5934310B2 (en) Electrophotography methods and equipment
JPH0532749B2 (en)
US4456669A (en) Image forming process
JPS6256508B2 (en)
US4078928A (en) Photoelectrophoretic imaging method
US4613555A (en) Image forming method using electrically conductive, light transmissive particles
JPH02123383A (en) Picture recording method
JPS5648655A (en) Image formation
JPS57109961A (en) Two-color copying method and its apparatus
JP2828704B2 (en) Color image forming method of wet development
JPS61126566A (en) Transfer method
JPH03144668A (en) Formation of color image by wet development
US4604337A (en) Electrophotographic color copying paper and copying method making use of the same
JPS5878157A (en) Method and device for three colors image forming
JPS5828759A (en) Two-color electrophotographic method
JPS6329767A (en) Colored picture forming device
JPH08115132A (en) High voltage power unit
JPS63285566A (en) Image forming method
JPH0469899B2 (en)
JPH05119638A (en) Transfer device
JPS62159164A (en) Transfer device
JPH0629995B2 (en) Development method
JPH0374390B2 (en)
JPH0576633B2 (en)