JPH05326197A - Method of arranging magnet - Google Patents

Method of arranging magnet

Info

Publication number
JPH05326197A
JPH05326197A JP13464192A JP13464192A JPH05326197A JP H05326197 A JPH05326197 A JP H05326197A JP 13464192 A JP13464192 A JP 13464192A JP 13464192 A JP13464192 A JP 13464192A JP H05326197 A JPH05326197 A JP H05326197A
Authority
JP
Japan
Prior art keywords
magnet
magnets
magnetic field
field strength
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13464192A
Other languages
Japanese (ja)
Inventor
Koichi Matsuda
浩一 松田
Kazuo Nose
和夫 能勢
Watoson Buruusu
ワトソン ブルース
Osamu Morioka
収 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13464192A priority Critical patent/JPH05326197A/en
Publication of JPH05326197A publication Critical patent/JPH05326197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine an optimum magnet arrangement in a practical time by operating the magnet strength in a determined position on the basis of the mutual relation between a magnet in this position and a magnet within a determined distance around it by means of simulated annealing method. CONSTITUTION:A magnet position can be realized, for example, by an arithmetic device A. In the arithmetic device A, a central arithmetic processing unit 2 operates it by the use of simulated annealing method on the basis of the data inputted by an input device 1. In the operation by the device 2, a setting circuit 3 automatically or manually sets the magnet number around to consider the effect to a magnetic field calculated position. According to the magnet number set by the circuit 3, the device 2 conducts the operation. A memory circuit 4 stores the operating condition and result. A comparing circuit 5 compares the condition in the previous operation stored in the circuit 4 with the condition in the following operation, and when the conditions are coincident to each other, the previous operation result is applied to the following operation. An output device 6 outputs the operation result by the device 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,磁石配置方法に係り,
詳しくはシンクロトロン放射装置のアンジュレータ等に
用いられる磁石配置方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet arrangement method,
More specifically, the present invention relates to a method for arranging magnets used for an undulator of a synchrotron radiation device.

【0002】[0002]

【従来の技術】近年の基礎科学の殆どあらゆる分野に利
用されているシンクロトロン放射装置は,その強力な磁
石(アンジュレータ磁石)により電子の運動方向を変化
させて光を放射させるものである。図5は従来の磁石配
置方法の一例における配置手順を示すフローチャート,
図6は遷移候補作成アルゴリズムを示すフローチャー
ト,図7はアンジュレータ磁石の配置例を示す模式図,
図8は磁石用の座席を示す模式図,図9は磁石と空間位
置との関係を示す説明図である。図7に示す如くアンジ
ュレータ磁石は,永久磁石を2列平行に配置した構成に
なっている。しかし,各磁石の磁力は,図の矢印のよう
に大きさ,方向が揃っておらず,それぞれにばらつきが
存在する。アンジュレータ磁石の性能を発揮させるため
には,このようなばらつきのある磁石に対し,図7中の
磁石間の位置P1〜P(2*L)+1における磁場を所
望の大きさと方向になるように最適に磁石を配置する必
要がある。従来は人手により実際にアンジュレータ磁石
の磁場を測定し,試行錯誤的に各磁石の並び代えを行う
方法がとられていた。しかし,この方法では,並び代え
に手間が掛り,最適な配置になるまでの試行錯誤は出来
ない。従って,あらかじめ計算機で最適な配置を求めて
おき,この結果に基づき実際の磁石を並べる方法が考え
られる。このような最適化方法の一つとして,金属の焼
き鈍しの原理を模倣したシミュレーテッド・アニーリン
グ法 Simulated Annealing Algorithum (以下SAと略
す)による磁石配置の最適化手法が知られている。以
下,従来のSAによる磁石配置方法をアンジュレータ磁
石の配置に応用した一例について図5,図6,図8及び
図9を参照してステップS1,S2,…順に説明する。
図5に示す如く従来のSAでは,まず初期温度T0 を設
定する(S1)。初期温度T0 はSAによる収束計算を
行うためのパラメータの一種である温度Tの初期値であ
り,焼き鈍しを行う金属にみたてた磁石の配列(磁石
列)の変化をおこすのに充分な値とする必要がある。次
に,図8の様な磁石用の座席を考える。この座席に左右
方向,上下方向,端磁石それぞれからランダムに1つず
つ選び,座席の先頭から詰めてゆく。これを行うことに
より1つの磁石の配列xx(磁石列)が出来る。この配
列xxの近傍Sxx(配列xxとただ1つの磁石だけが
異なる配列群)の中からランダムに新しい配列である所
謂遷移候補xx′を選択し生成する(S2)。この遷移
候補xx′の作成アルゴリズムは図6に示す如く2つの
磁石をランダムに入れ替えるものである(S10〜S1
5)。ここで,例えばアンジュレータ磁石の場合,各磁
石列を構成する磁石は,以下の3種類の磁石がある。 (1)終端磁石(4個) (2)左右方向磁石(4×周期数個) (3)上下方向磁石(4×周期数−2個) また,1周期は上下各4個の計8個の磁石から構成され
る。磁石jと空間の位置Piとの関係を図9のように表
すと,磁石jの上下方向の磁力My,左右方向の磁力M
xがr,θ方向に位置Piでつくる磁場(磁場強度)B
r,Bθは以下の式で表される。 Br(My)=(My/4π)×(2cosθy/r3 ) …(1a) Br(Mx)=(Mx/4π)×(2cosθx/r3 ) …(1b) Bθ(My)=(My/4π)×(2sinθy/r3 ) …(1c) Bθ(Mx)=(Mx/4π)×(2cosθx/r3 ) …(1d) また,位置Piでのすべての磁石による磁場のX成分,
Y成分は以下の式で表される。
2. Description of the Related Art A synchrotron radiation device used in almost all fields of basic science in recent years emits light by changing the moving direction of electrons by its powerful magnet (undulator magnet). FIG. 5 is a flowchart showing an arrangement procedure in an example of a conventional magnet arrangement method,
FIG. 6 is a flowchart showing a transition candidate creation algorithm, FIG. 7 is a schematic diagram showing an arrangement example of undulator magnets,
FIG. 8 is a schematic diagram showing a seat for a magnet, and FIG. 9 is an explanatory diagram showing the relationship between the magnet and the spatial position. As shown in FIG. 7, the undulator magnet has permanent magnets arranged in two rows in parallel. However, the magnetic force of each magnet is not uniform in size and direction as shown by the arrow in the figure, and there are variations in each. In order to exert the performance of the undulator magnet, the magnetic field at the positions P1 to P (2 * L) +1 between the magnets in FIG. It is necessary to arrange the magnets optimally. Conventionally, a method has been used in which the magnetic field of the undulator magnet is actually measured manually and the magnets are rearranged by trial and error. However, this method requires time and effort for rearranging, and trial and error until the optimum arrangement is not possible. Therefore, a method is possible in which the optimal placement is obtained in advance by a computer and the actual magnets are arranged based on this result. As one of such optimization methods, there is known a magnet arrangement optimization method by a simulated annealing method Simulated Annealing Algorithum (hereinafter abbreviated as SA) that imitates the principle of metal annealing. Hereinafter, an example in which the conventional magnet arrangement method by SA is applied to the arrangement of undulator magnets will be described in order of steps S1, S2, ... With reference to FIG. 5, FIG. 6, FIG. 8 and FIG.
As shown in FIG. 5, in the conventional SA, the initial temperature T 0 is first set (S1). The initial temperature T 0 is an initial value of the temperature T, which is a kind of parameter for performing the convergence calculation by SA, and is a value sufficient to cause a change in the arrangement of magnets (magnet array) depending on the metal to be annealed. And need to. Next, consider a magnet seat as shown in FIG. Randomly select one each from the left, right, up and down directions, and end magnets for this seat, and pack from the top of the seat. By doing this, one magnet array xx (magnet array) can be formed. A so-called transition candidate xx ', which is a new array, is randomly selected and generated from the neighborhood Sxx of the array xx (an array group in which only one magnet is different from the array xx) (S2). The algorithm for creating the transition candidate xx 'is to randomly replace two magnets as shown in FIG. 6 (S10 to S1).
5). Here, for example, in the case of an undulator magnet, the magnets forming each magnet row include the following three types of magnets. (1) Terminal magnets (4) (2) Horizontal magnets (4 x number of cycles) (3) Vertical magnets (4 x number of cycles-2) In addition, one cycle consists of 4 upper and 4 lower, total 8 Composed of magnets. When the relationship between the magnet j and the position Pi in the space is expressed as shown in FIG. 9, the magnetic force My in the vertical direction and the magnetic force M in the horizontal direction of the magnet j are shown.
Magnetic field (magnetic field strength) B created by x at position Pi in the r and θ directions
r and Bθ are represented by the following equations. Br (My) = (My / 4π) × (2cos θy / r 3 ) ... (1a) Br (Mx) = (Mx / 4π) × (2cos θx / r 3 ) ... (1b) Bθ (My) = (My / 4π) × (2sin θy / r 3 ) ... (1c) Bθ (Mx) = (Mx / 4π) × (2cos θx / r 3 ) ... (1d) Further, the X component of the magnetic field by all the magnets at the position Pi,
The Y component is represented by the following formula.

【数1】 上記(1a)〜(1d)式及び(2a)〜(2d)式に
より磁場計算を行う(S3)。次に,望まれる磁場は例
えば以下の評価関数Eを最小にするような磁場であると
定義し,上記配列xxと遷移候補xx′間での磁石の組
み替えである所謂遷移の前後での評価関数Eの変化Δを
計算する(S4)。
[Equation 1] The magnetic field is calculated by the above equations (1a) to (1d) and equations (2a) to (2d) (S3). Next, the desired magnetic field is defined, for example, as a magnetic field that minimizes the following evaluation function E, and the evaluation function before and after the transition, which is a change of magnet between the array xx and the transition candidate xx ′, is performed. The change Δ of E is calculated (S4).

【数2】 この評価関数の変化Δに基づいて遷移候補xx′を受け
入れるか拒絶するかを判定する(S5)。このような遷
移を温度Tにおける平衡条件が達成されるまで繰り返す
(S6)。そして,平衡条件が達成されれば(終了条件
を満足する(S7)まで)温度Tを更新して(S8),
ステップS2〜S8を繰り返す。このようにして徐々に
温度Tを下げていって終了条件が満たされた時,評価関
数Eが最小化されて最適の磁石配置が得られる。上記ア
ルゴリズム中の初期温度T0 の設定方法,各温度におけ
る平衡条件の判定条件,温度Tの更新方法,終了条件の
判定条件としては例えば Kirkpatrick,Huang 等のアニ
ーリング・スケジュールが用いられる。
[Equation 2] Based on the change Δ of the evaluation function, it is determined whether the transition candidate xx ′ is accepted or rejected (S5). Such transition is repeated until the equilibrium condition at the temperature T is achieved (S6). When the equilibrium condition is achieved (until the end condition is satisfied (S7)), the temperature T is updated (S8),
Repeat steps S2 to S8. In this way, when the temperature T is gradually lowered and the termination condition is satisfied, the evaluation function E is minimized and the optimum magnet arrangement is obtained. As the initial temperature T 0 setting method, the equilibrium condition determination condition at each temperature, the temperature T update method, and the termination condition determination condition, for example, an annealing schedule such as Kirkpatrick, Huang is used.

【0003】[0003]

【発明が解決しようとする課題】上記したような従来の
シミュレーテッド・アニーリング法による磁石配置方法
では,アンジュレータの磁石配置問題においては,最適
配置を求めるための繰り返し計算回数が膨大であるた
め,計算時間の点で実用的ではなかった。本発明は,こ
のような従来の技術における課題を解決するために,磁
石配置方法を改良し,実用的な時間で最適な磁石配置を
求めることのできる磁石配置方法を提供することを目的
とするものである。
In the magnet placement method by the conventional simulated annealing method as described above, in the magnet placement problem of the undulator, since the number of repeated calculations for obtaining the optimum placement is enormous, the calculation is performed. It was not practical in terms of time. SUMMARY OF THE INVENTION It is an object of the present invention to improve a magnet placement method and to provide a magnet placement method capable of obtaining an optimum magnet placement in a practical time in order to solve the problems in the conventional art. It is a thing.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,磁石列を構成する複数の磁石の配置を決定
するに際し,上記磁石の配置を組み替えて所定位置での
磁場強度を演算し,少なくとも上記組み替え毎に上記磁
場強度を評価するための評価関数を上記磁場強度から求
め,上記評価関数から上記磁石の最適配置をシミュレー
テッド・アニーリング法を用いて決定する磁石配置方法
において,上記所定位置での磁場強度を該位置の磁石と
その廻りの所定距離内の磁石との相互関係に基づいて演
算することを特徴とする磁石配置方法として構成され
る。又,磁石列を構成する複数の磁石の配置を決定する
に際し,上記磁石の配置を組み替えて所定位置での磁場
強度を演算し,少なくとも上記組み替え毎に上記磁場強
度を評価するための評価関数を上記磁場強度から求め,
上記評価関数から上記磁石の最適配置をシミュレーテッ
ド・アニーリング法を用いて決定する磁石配置方法にお
いて,ある磁石位置と別の磁石位置との間で磁石間の相
互関係が等しい場合には,上記ある位置の磁石について
の磁場強度の演算を上記別の位置の磁石について流用す
ることを特徴とする磁石配置方法である。更には,磁石
列を構成する複数の磁石の配置を決定するに際し,上記
磁石の配置を組み替えて所定位置での磁場強度を演算
し,少なくとも上記組み替え毎に上記磁場強度を評価す
るための評価関数を上記磁場強度から求め,上記評価関
数から上記磁石の最適配置をシミュレーテッド・アニー
リング法を用いて決定する磁石配置方法において,上記
所定位置での磁場強度を該位置の磁石とその廻りの所定
距離内の磁石との相互関係に基づいて演算し,ある磁石
位置と別の磁石位置との間で磁石間の相互関係が等しい
場合には,上記ある位置の磁石についての磁場強度の演
算を上記別の位置の磁石について流用することを特徴と
する磁石配置方法である。
In order to achieve the above object, the present invention calculates the magnetic field strength at a predetermined position by rearranging the arrangement of the magnets when deciding the arrangement of a plurality of magnets forming a magnet array. Then, at least in each of the above recombination, an evaluation function for evaluating the magnetic field strength is obtained from the magnetic field strength, and in the magnet arrangement method for determining the optimum arrangement of the magnets from the evaluation function by using a simulated annealing method, It is configured as a magnet arrangement method characterized in that the magnetic field strength at a predetermined position is calculated based on the mutual relationship between the magnet at that position and the magnets within a predetermined distance around it. When determining the arrangement of a plurality of magnets forming the magnet array, the arrangement of the magnets is rearranged to calculate the magnetic field strength at a predetermined position, and at least an evaluation function for evaluating the magnetic field strength is calculated for each rearrangement. Obtained from the above magnetic field strength,
In the magnet arrangement method for determining the optimum arrangement of the magnets from the above evaluation function by using the simulated annealing method, if the mutual relationship between the magnets is equal between one magnet position and another magnet position, the above is present. It is a magnet arranging method characterized in that the calculation of the magnetic field strength for the magnet at the position is applied to the magnet at the other position. Furthermore, when determining the arrangement of a plurality of magnets forming the magnet array, the arrangement of the magnets is rearranged to calculate the magnetic field strength at a predetermined position, and an evaluation function for evaluating the magnetic field strength at least for each rearrangement is calculated. In the magnet placement method for determining the optimum placement of the magnets from the evaluation function by using the simulated annealing method, the magnetic field strength at the predetermined position is set to the magnet at the predetermined position and a predetermined distance around the magnet. If the mutual relationship between magnets is the same between one magnet position and another magnet position, the calculation of the magnetic field strength for the magnet at the above-mentioned position is performed as described above. It is a magnet arranging method characterized in that the magnet at the position is used.

【0005】[0005]

【作用】本発明によれば,磁石列を構成する複数の磁石
の配置を組み替えて所定位置での磁場強度を演算し,少
なくとも上記組み替え毎に上記磁場強度を評価するため
の評価関数を上記磁場強度から求め,上記評価関数から
上記磁石の最適配置をシミュレーテッド・アニーリング
法を用いて決定するに際し,上記所定位置での磁場強度
が該位置の磁石とその廻りの所定距離内に限った磁石と
の相互関係に基づいて演算される。又,ある磁石位置と
別の磁石位置との間で磁石間の相互関係が等しい場合に
は,上記ある位置の磁石についての磁場強度の演算が上
記別の位置の磁石について流用される。その結果,計算
時間が大幅に短縮されるため実用的な時間で最適な磁石
配置を求めることができる。
According to the present invention, the arrangement of a plurality of magnets forming a magnet array is rearranged to calculate the magnetic field strength at a predetermined position, and an evaluation function for evaluating the magnetic field strength is calculated at least for each rearrangement. When determining the optimum arrangement of the magnets from the above-mentioned evaluation function using the simulated annealing method, the magnetic field strength at the predetermined position is limited to the magnet at that position and the magnets within a predetermined distance around the position. It is calculated based on the mutual relationship of. Further, when the mutual relationship between the magnets is equal between a certain magnet position and another magnet position, the calculation of the magnetic field strength for the magnet at the certain position is applied to the magnet at the other position. As a result, the calculation time is greatly reduced, and the optimum magnet arrangement can be obtained in a practical time.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る磁石配置方法による
配置手順を示すフローチャート,図2は磁石配置方法を
実現するための演算装置Aの概略構成を示すブロック
図,図3は演算装置Aによる演算結果を示す一覧表,図
4は演算装置Aによる演算結果を示すグラフである。ま
た,前記図5に示した従来の磁石配置方法の一例におけ
る配置手順を示すフローチャートと共通する要素には同
一の符号を使用する。本発明に係る磁石配置方法は基本
的にはシミュレーテッド・アニーリング法(以下SAと
略す)を用いて焼き鈍しを行う金属にみたてた磁石の配
列(磁石列)を組み替える所謂遷移を行うことにより最
適配置を求めるという点では従来例と同様である。しか
し,従来例が所定位置での磁場強度(以下磁場と略す)
を全ての磁石の影響下にあるものとして逐次計算を行う
のに対し,本発明では所定位置での磁場をその廻りの所
定距離内の磁石からの影響に限定して計算を行い,前回
の計算結果を次回の計算結果に流用する点で従来例と異
なる。本実施例では主として従来例と異なる部分につい
て説明し,従来例と同様の部分については既述の通りで
あるのでその詳細な説明は省略する。以下,本実施例に
係る磁石配置方法による配置手順について図1を参照し
てステップS1,S2,…の順に説明する。図1に示す
如く本実施例では,従来例と同様の手順でまず初期温度
0 の設定を行い(S1),1つの磁石の配列xxを生
成し,その近傍Sxxの中からランダムに遷移候補x
x′を選択して生成する(S2)。次に,磁場の計算を
行うが,ここで以下の二点に着目する。即ち, 前記図6に示す如く遷移候補xx′を生成した場
合,前回の磁石の配列xxと次回の遷移候補xx′とで
は高々2個の磁石しか入れ替わっていない。つまり,磁
場Br,Bθは毎回計算する必要はなく,入れ替わった
磁石とさらにそれに影響を受ける位置についてのみ計算
し,その他は前回の計算結果を流用すれば良いことがわ
かる。この場合,計算量は理論上(2×磁石数)/(位
置数×磁石数)に減少する。すなわち,周期5で1/
6,周期20で1/21になる。 前記(1a)〜(1d)式より,図9に示す磁石j
の位置Piにおける磁場Br,Bθは磁石j−位置間P
iの間の距離rの3乗分の1に比例するので,距離が離
れた磁石の影響を無視することができる。つまり,ある
位置について磁場計算は,すべての磁石について計算せ
ず,影響を受けるまわりN個の磁石についてのみ計算し
ても,計算結果は殆ど変わらない。これにより,計算量
は(N×位置数)/(磁石数×位置数)に減少する。例
えばN=18とすると,従来例に比べて周期5で3/
7,周期20で10/81になる。 一方,これらの方法を取らない従来例における評価関数
計算のための計算量は,磁石数×位置数(磁石数に比
例)になり,磁石数の2乗で増加する。これに対し,上
記による計算方法では,高々磁石数に比例した量し
か計算量は増加しないため,磁石数の多くなる場合は特
に有利となる。以下に示すデータは,周期5で1000
回評価関数を計算する時間を約5Mipsの計算機を用
いて比較したものであるが,理論上の計算量の減少(1
/6×3/7=1/14)と良く一致している。 従来例による評価関数計算 :A=22分40秒(13
60秒) 上記による評価関数計算:B= 1分38秒(
98秒) A/B=13.5 従って,磁場の計算に際しては,磁場計算位置に対し廻
りN個の磁石の影響のみを計算する(S3a)。磁石数
Nの設定は各磁石の磁力に基づいて自動設定するか,又
は手動にて設定する。この計算結果の内,ある磁石位置
と別の磁石位置との間で磁石間の相互関係が等しい場合
には,ある磁石位置の磁石についての磁場計算結果を別
の位置の磁石についての流用する。即ち,磁石間の相互
関係及び計算結果を記憶させ,次の計算時に相互関係の
等しいものがあれば前の計算結果を流用する(S3
b)。次に,従来例と同様の手順で評価関数の変化Δの
計算(S4),受け入れ判定(S5),平衡条件の判定
(S6),終了条件の判定(S7),及び温度更新(S
8)を順次行い,ステップS2〜S8を繰り返す。この
ようにして徐々に温度Tを下げていって終了条件が満た
された時,評価関数Eが最小化されて最適の磁石配置が
得られる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is a flowchart showing an arrangement procedure by a magnet arrangement method according to an embodiment of the present invention, FIG. 2 is a block diagram showing a schematic configuration of an arithmetic unit A for realizing the magnet arrangement method, and FIG. FIG. 4 is a table showing a calculation result by the device A, and FIG. 4 is a graph showing a calculation result by the device A. Further, the same reference numerals are used for the elements common to the flowchart showing the arrangement procedure in the example of the conventional magnet arrangement method shown in FIG. The magnet arranging method according to the present invention is basically optimal by performing a so-called transition in which a simulated annealing method (hereinafter abbreviated as SA) is used to rearrange the arrangement of magnets (magnet row) in the metal to be annealed. It is the same as the conventional example in that the arrangement is obtained. However, the conventional example has a magnetic field strength at a predetermined position (hereinafter abbreviated as magnetic field).
Is calculated under the influence of all the magnets, the present invention limits the magnetic field at a predetermined position to the influence of the magnets within a predetermined distance around the magnetic field and calculates the previous calculation. This is different from the conventional example in that the result is used for the next calculation result. In the present embodiment, parts different from the conventional example will be mainly described, and the same parts as the conventional example are as described above, and thus detailed description thereof will be omitted. An arrangement procedure by the magnet arrangement method according to this embodiment will be described below in the order of steps S1, S2, ... With reference to FIG. As shown in FIG. 1, in the present embodiment, the initial temperature T 0 is first set in the same procedure as the conventional example (S1), one magnet array xx is generated, and transition candidates are randomly selected from the vicinity Sxx. x
x'is selected and generated (S2). Next, we calculate the magnetic field, and pay attention to the following two points. That is, when the transition candidate xx ′ is generated as shown in FIG. 6, only two magnets are replaced at most in the previous magnet arrangement xx and the next transition candidate xx ′. That is, it is understood that the magnetic fields Br and Bθ do not have to be calculated each time, only the exchanged magnets and the positions affected by them are calculated, and the other calculation results can be used. In this case, the calculation amount is theoretically reduced to (2 × number of magnets) / (number of positions × number of magnets). That is, 1 / in cycle 5
6, it becomes 1/21 in 20 cycles. From the equations (1a) to (1d), the magnet j shown in FIG.
The magnetic fields Br and Bθ at the position Pi of the
Since it is proportional to the third power of the distance r between i, it is possible to ignore the influence of magnets that are far apart. In other words, the magnetic field calculation for a certain position does not calculate for all the magnets, and even if the calculation is performed only for the N magnets around the affected area, the calculation result hardly changes. As a result, the calculation amount is reduced to (N × number of positions) / (number of magnets × number of positions). For example, if N = 18, 3 / with a cycle of 5 compared to the conventional example.
7, with a period of 20 becomes 10/81. On the other hand, the calculation amount for the evaluation function calculation in the conventional example that does not use these methods is the number of magnets × the number of positions (proportional to the number of magnets), and increases with the square of the number of magnets. On the other hand, in the above-described calculation method, the calculation amount increases only at most in proportion to the number of magnets, which is particularly advantageous when the number of magnets is large. The data shown below is 1000 in cycle 5.
A comparison of the time for calculating the time evaluation function using a computer with about 5 Mips shows that the theoretical calculation amount decreases (1
/ 6 × 3/7 = 1/14). Calculation of evaluation function according to conventional example: A = 22 minutes 40 seconds (13
60 seconds) Calculation of evaluation function by the above: B = 1 minute 38 seconds (
(98 seconds) A / B = 13.5 Therefore, when calculating the magnetic field, only the influence of N magnets is calculated around the magnetic field calculation position (S3a). The number of magnets N is set automatically based on the magnetic force of each magnet or manually. If the mutual relationship between the magnets is the same between one magnet position and another magnet position among these calculation results, the magnetic field calculation result for the magnet at a certain magnet position is used for the magnet at another position. That is, the mutual relationship between the magnets and the calculation result are stored, and if there is the same mutual relationship at the time of the next calculation, the previous calculation result is used (S3).
b). Next, the change Δ of the evaluation function is calculated (S4), the acceptance judgment (S5), the equilibrium condition judgment (S6), the end condition judgment (S7), and the temperature update (S) in the same procedure as the conventional example.
8) is sequentially performed, and steps S2 to S8 are repeated. In this way, when the temperature T is gradually lowered and the termination condition is satisfied, the evaluation function E is minimized and the optimum magnet arrangement is obtained.

【0007】この磁石配置方法は例えば図2に示すよう
な演算装置Aにより実現できる。演算装置Aは各磁石の
磁力の大きさや方向等のデータを入力するための入力装
置1と,入力装置1により入力されたデータを基にSA
を用いて演算を行う中央演算処理装置2と,中央演算処
理装置2による演算に際し,磁場計算位置に対し影響を
考慮すべき廻りの磁石数の設定を自動又は手動により行
う設定回路3と,設定回路3により設定された磁石数に
て中央演算処理装置2により演算し,その演算条件及び
結果を記憶する記憶回路4と,記憶回路4に記憶された
前の演算時の条件を次の演算時の条件と比較して条件が
一致すれば前の演算結果を次の演算時に流用する比較回
路5と,中央演算処理装置2による演算結果を出力する
ための出力装置6とからなる。この装置Aにより演算し
た結果を図3,図4に示す。即ち,図3に示す如く,評
価関数全体としては34%の改善率が得られた。又,こ
の時,C8が28%,C9が70%であった。図4は評
価関数の推移である。本実施例によれば計算終了までの
繰り返し回数は,222,653回で中央演算処理装置
2(75Mips)による計算時間は,約1時間37分
であり,いずれも実用的な範囲にある。以上のように,
本実施例によれば従来例に比べて計算時間を大幅に短縮
することができるため,実用的な時間で最適な磁石配置
を得ることができる。その結果,アンジュレータ磁石等
の最適設計を短時間に行うことができ,このアンジュレ
ータ磁石等を用いたシンクロトロン放射装置の性能向上
を図ることができる。尚,上記実施例の演算装置Aにお
いては,設定回路3と記憶回路4と比較回路5とを中央
演算処理装置2から独立させて設けているが,実使用に
際しては各回路3,4,5の一部又は全部を中央演算処
理装置2に含めても何ら支障はない。尚,上記実施例で
はシンクロトロン装置のアンジュレータ磁石の配置に適
用したが,実使用に際しては他の磁石配置(例えばウィ
グラ磁石の配置等)に適用しても何ら支障はない。
This magnet arranging method can be realized by an arithmetic unit A as shown in FIG. 2, for example. The arithmetic unit A is an input device 1 for inputting data such as the magnitude and direction of the magnetic force of each magnet, and SA based on the data input by the input device 1.
And a setting circuit 3 for automatically or manually setting the number of magnets around which the influence on the magnetic field calculation position should be taken into consideration in the calculation by the central processing unit 2; The central processing unit 2 calculates the number of magnets set by the circuit 3, and stores a calculation condition and a result of the calculation, and a storage circuit 4 stores a previous calculation condition stored in the storage circuit 4 at the time of the next calculation. If the conditions are compared with each other and the conditions are matched, the comparison circuit 5 that uses the previous calculation result for the next calculation and the output device 6 for outputting the calculation result by the central processing unit 2 are included. The results calculated by this device A are shown in FIGS. That is, as shown in FIG. 3, an improvement rate of 34% was obtained for the entire evaluation function. At this time, C8 was 28% and C9 was 70%. FIG. 4 shows the transition of the evaluation function. According to the present embodiment, the number of repetitions until the end of calculation is 222,653, and the calculation time by the central processing unit 2 (75Mips) is about 1 hour and 37 minutes, both of which are in the practical range. As mentioned above,
According to the present embodiment, the calculation time can be significantly shortened as compared with the conventional example, so that the optimum magnet arrangement can be obtained in a practical time. As a result, the optimum design of the undulator magnet and the like can be performed in a short time, and the performance of the synchrotron radiation device using the undulator magnet and the like can be improved. In the arithmetic unit A of the above embodiment, the setting circuit 3, the memory circuit 4, and the comparison circuit 5 are provided independently of the central arithmetic processing unit 2, but in actual use, each circuit 3, 4, 5 is used. There is no problem even if a part or all of the above is included in the central processing unit 2. In the above embodiment, the undulator magnets of the synchrotron device are arranged. However, in actual use, the magnets may be applied to other magnet arrangements (eg, wiggler magnet arrangements) without any problem.

【0008】[0008]

【発明の効果】本発明に係る磁石配置方法は,上記のよ
うに構成されているため,従来例に比べて計算時間が大
幅に短縮され,実用的な時間で最適な磁石配置を得るこ
とができる。その結果,アンジュレータ磁石等の最適設
計を短時間に行うことができ,このアンジュレータ磁石
等を用いたシンクロトロン放射装置の性能向上を図るこ
とができる。
Since the magnet arrangement method according to the present invention is configured as described above, the calculation time is greatly shortened as compared with the conventional example, and the optimum magnet arrangement can be obtained in a practical time. it can. As a result, the optimum design of the undulator magnet and the like can be performed in a short time, and the performance of the synchrotron radiation device using the undulator magnet and the like can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る磁石配置方法による
配置手順を示すフローチャート。
FIG. 1 is a flowchart showing an arrangement procedure by a magnet arrangement method according to an embodiment of the present invention.

【図2】 磁石配置方法を実現するための演算装置Aの
概略構成を示すブロック図。
FIG. 2 is a block diagram showing a schematic configuration of an arithmetic unit A for realizing a magnet arrangement method.

【図3】 演算装置Aによる演算結果を示す一覧表。FIG. 3 is a list showing calculation results by the calculation device A.

【図4】 演算装置Aによる演算結果を示すグラフ。FIG. 4 is a graph showing a calculation result by the calculation device A.

【図5】 従来の磁石配置方法の一例における配置手順
を示すフローチャート。
FIG. 5 is a flowchart showing an arrangement procedure in an example of a conventional magnet arrangement method.

【図6】 遷移候補作成アルゴリズムを示すフローチャ
ート。
FIG. 6 is a flowchart showing a transition candidate creation algorithm.

【図7】 アンジュレータ磁石の配置例を示す模式図。FIG. 7 is a schematic diagram showing an arrangement example of undulator magnets.

【図8】 磁石用の座席を示す模式図。FIG. 8 is a schematic diagram showing a seat for a magnet.

【図9】 磁石と空間位置との関係を示す説明図。FIG. 9 is an explanatory diagram showing a relationship between a magnet and a spatial position.

【符号の説明】[Explanation of symbols]

A…演算装置 1…入力装置 2…中央演算処理装置 3…設定回路 4…記憶回路 5…比較回路 6…出力装置 A ... Arithmetic device 1 ... Input device 2 ... Central arithmetic processing unit 3 ... Setting circuit 4 ... Memory circuit 5 ... Comparison circuit 6 ... Output device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森岡 収 神戸市中央区脇浜町1丁目3番18号 株式 会社神戸製鋼所神戸本社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Osamu Morioka 1-3-18 Wakihamacho, Chuo-ku, Kobe City Kobe Steel, Ltd. Kobe Head Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁石列を構成する複数の磁石の配置を決
定するに際し,上記磁石の配置を組み替えて所定位置で
の磁場強度を演算し,少なくとも上記組み替え毎に上記
磁場強度を評価するための評価関数を上記磁場強度から
求め,上記評価関数から上記磁石の最適配置をシミュレ
ーテッド・アニーリング法を用いて決定する磁石配置方
法において,上記所定位置での磁場強度を該位置の磁石
とその廻りの所定距離内の磁石との相互関係に基づいて
演算することを特徴とする磁石配置方法。
1. When determining the arrangement of a plurality of magnets constituting a magnet row, the arrangement of the magnets is rearranged to calculate the magnetic field strength at a predetermined position, and the magnetic field strength is evaluated at least for each rearrangement. In a magnet placement method in which an evaluation function is obtained from the magnetic field strength and the optimum placement of the magnets is determined from the evaluation function using a simulated annealing method, the magnetic field strength at the predetermined position is determined by measuring the magnetic field strength at the predetermined position and the magnet around the position. A magnet arranging method, wherein calculation is performed based on a mutual relationship with a magnet within a predetermined distance.
【請求項2】 磁石列を構成する複数の磁石の配置を決
定するに際し,上記磁石の配置を組み替えて所定位置で
の磁場強度を演算し,少なくとも上記組み替え毎に上記
磁場強度を評価するための評価関数を上記磁場強度から
求め,上記評価関数から上記磁石の最適配置をシミュレ
ーテッド・アニーリング法を用いて決定する磁石配置方
法において,ある磁石位置と別の磁石位置との間で磁石
間の相互関係が等しい場合には,上記ある位置の磁石に
ついての磁場強度の演算を上記別の位置の磁石について
流用することを特徴とする磁石配置方法。
2. When determining the arrangement of a plurality of magnets forming a magnet row, the arrangement of the magnets is rearranged to calculate the magnetic field strength at a predetermined position, and the magnetic field strength is evaluated at least for each rearrangement. In a magnet placement method in which an evaluation function is obtained from the magnetic field strength and the optimum placement of the magnets is determined from the above evaluation function by using a simulated annealing method, the mutual interaction between magnets between a magnet position and another magnet position is determined. If the relations are equal, the method of arranging magnets is characterized in that the calculation of the magnetic field strength of the magnet at the certain position is applied to the magnet at the other position.
【請求項3】 磁石列を構成する複数の磁石の配置を決
定するに際し,上記磁石の配置を組み替えて所定位置で
の磁場強度を演算し,少なくとも上記組み替え毎に上記
磁場強度を評価するための評価関数を上記磁場強度から
求め,上記評価関数から上記磁石の最適配置をシミュレ
ーテッド・アニーリング法を用いて決定する磁石配置方
法において,上記所定位置での磁場強度を該位置の磁石
とその廻りの所定距離内の磁石との相互関係に基づいて
演算し,ある磁石位置と別の磁石位置との間で磁石間の
相互関係が等しい場合には,上記ある位置の磁石につい
ての磁場強度の演算を上記別の位置の磁石について流用
することを特徴とする磁石配置方法。
3. When determining the arrangement of a plurality of magnets constituting a magnet array, the arrangement of the magnets is rearranged to calculate the magnetic field strength at a predetermined position, and the magnetic field strength is evaluated at least for each rearrangement. In a magnet placement method in which an evaluation function is obtained from the magnetic field strength and the optimum placement of the magnets is determined from the evaluation function using a simulated annealing method, the magnetic field strength at the predetermined position is determined by measuring the magnetic field strength at the predetermined position and the magnet around the position. Calculation is performed based on the mutual relationship with the magnets within a predetermined distance, and when the mutual relationship between the magnets is equal between one magnet position and another magnet position, the calculation of the magnetic field strength for the magnet at the certain position is performed. A method for arranging magnets, wherein the magnets at different positions are used.
JP13464192A 1992-05-27 1992-05-27 Method of arranging magnet Pending JPH05326197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13464192A JPH05326197A (en) 1992-05-27 1992-05-27 Method of arranging magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13464192A JPH05326197A (en) 1992-05-27 1992-05-27 Method of arranging magnet

Publications (1)

Publication Number Publication Date
JPH05326197A true JPH05326197A (en) 1993-12-10

Family

ID=15133117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13464192A Pending JPH05326197A (en) 1992-05-27 1992-05-27 Method of arranging magnet

Country Status (1)

Country Link
JP (1) JPH05326197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818319A (en) * 1995-12-21 1998-10-06 The University Of Queensland Magnets for magnetic resonance systems
KR20170001483U (en) * 2014-09-19 2017-04-26 애플 인크. Balanced magnetic array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818319A (en) * 1995-12-21 1998-10-06 The University Of Queensland Magnets for magnetic resonance systems
KR20170001483U (en) * 2014-09-19 2017-04-26 애플 인크. Balanced magnetic array

Similar Documents

Publication Publication Date Title
Torgrimsson Resummation of quantum radiation reaction in plane waves
US20170255718A1 (en) Method and system for determing welding process parameters
Azarbonyad et al. A genetic algorithm for solving quadratic assignment problem (QAP)
Zhang et al. Online accelerator optimization with a machine learning-based stochastic algorithm
JP7139805B2 (en) Compound search device, compound search method, and compound search program
Berg et al. Deconfinement, gradient, and cooling scales for pure SU (2) lattice gauge theory
Casper et al. Validation of the thermal transport model used for ITER startup scenario predictions with DIII-D experimental data
JPH05326197A (en) Method of arranging magnet
Jensen A new transfer-matrix algorithm for exact enumerations: self-avoiding walks on the square lattice
CN114896729A (en) Method and system for designing magnet by using induced current
JPH05326195A (en) Method of arranging magnet
JP6379722B2 (en) Electric circuit simulation apparatus, electric circuit simulation method, and program
Britz et al. Reference values of the diffusion-limited current at a microdisk electrode
CN111859268B (en) Magnetic tensor abnormal spatial domain fast forward modeling method based on grid point lattice
Cavaliere et al. Robust design of high field magnets through Monte Carlo analysis
Uhlig et al. Simulation-based optimization for groups of cluster tools in semiconductor manufacturing using simulated annealing
Merminga RF stability in energy recovering free electron lasers: theory and experiment
Kripner et al. Equilibrium design for the compass-u tokamak
Loukil et al. Parallel hybrid genetic algorithms for solving Q3AP on computational grid
Aprile et al. NBImag: A useful tool in the design of magnetic systems for the ITER neutral beam injectors
Coutel et al. A comparative study of two methods for constrained optimisation with analytical models dealing with implicit parameters
Tanaka Numerical methods for free electron laser simulations
Bruhwiler et al. New developments in the simulation of advanced accelerator concepts
Crittenden Quantitative assessment of finite-element models for magnetostatic field calculations
WO2024047682A1 (en) Computation program, computation method, and information processing device