JPH05326010A - Stacked type solid polymer electrolytic fuel cell - Google Patents

Stacked type solid polymer electrolytic fuel cell

Info

Publication number
JPH05326010A
JPH05326010A JP4121914A JP12191492A JPH05326010A JP H05326010 A JPH05326010 A JP H05326010A JP 4121914 A JP4121914 A JP 4121914A JP 12191492 A JP12191492 A JP 12191492A JP H05326010 A JPH05326010 A JP H05326010A
Authority
JP
Japan
Prior art keywords
gas
cathode
anode
plate
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4121914A
Other languages
Japanese (ja)
Other versions
JP3031781B2 (en
Inventor
Kenro Mitsuta
憲朗 光田
Hideo Maeda
秀雄 前田
Toshiaki Murahashi
俊明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4121914A priority Critical patent/JP3031781B2/en
Publication of JPH05326010A publication Critical patent/JPH05326010A/en
Application granted granted Critical
Publication of JP3031781B2 publication Critical patent/JP3031781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a stacked-type solid polymer electrolytic fuel cell which can be utilized as a compact and small size electric power source. CONSTITUTION:Single cell plates 1 wherein single cells consisting of a solid polymer electrolytic film are arranged toward the same plane direction and gas separating plates 3, 4 in which a cathode gas flow line and an anode gas flow line are formed are successively stacked and small stacked bodies 10a, 10b are formed between a pair of electricity collecting plates 6, 7 to give a stacked body 10 and the small stacked bodies 10a, 10b are divided by an electrically insulating layer 11 and connected electrically in series. Then, two pairs of a gas inlet hole 12 and a cathode outlet hole 13 which are communicated with the cathode gas flowing line and the anode gas flowing line of the gas separating plates 3, 4 are formed for the cathode gas and the anode gas in the small stacked bodies 10a, 10b. In the end sides of the small stacked bodies 10a, 10b, a gas communicating plate 7 to communucate the gas inlet hole and the gas outlet hole of the small stacked bodies 10a, 10b is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体高分子電解質膜
を使用した積層式の固体高分子電解質型燃料電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked solid polymer electrolyte fuel cell using a solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術】アノードとカソード間に固体高分子電解
質膜を有する単電池を、この単電池のアノード側にアノ
ードガスを流すアノードガス流路が形成されたアノード
ガス分離板と、そのカソード側にカソードガスを流すカ
ソードガス流路が形成されたカソードガス分離板とで挟
みつけて構成されるセルユニットを複数個積層した積層
式の固体高分子電解質型燃料電池は知られている(特開
平2−86071号公報等)。
2. Description of the Related Art A unit cell having a solid polymer electrolyte membrane between an anode and a cathode is provided with an anode gas separation plate in which an anode gas flow path for flowing an anode gas is formed on the anode side of the unit cell, and on the cathode side thereof. A stack type solid polymer electrolyte fuel cell is known in which a plurality of cell units, which are sandwiched by a cathode gas separation plate in which a cathode gas flow path for flowing cathode gas is formed, are stacked (Japanese Patent Application Laid-Open No. HEI 2). -86071 gazette etc.).

【0003】図9乃至図12はこのような積層式固体高
分子電解質型燃料電池の一例を示すものであり、図9は
その平面図、図10はその側面図、図11は単電池およ
びガス分離板周りの斜視図、図12の(a),(b)は
それぞれアノードガス分離板およびカソードガス分離板
の平面図である。
9 to 12 show an example of such a laminated solid polymer electrolyte fuel cell, FIG. 9 is a plan view thereof, FIG. 10 is a side view thereof, and FIG. 11 is a unit cell and a gas. 12A and 12B are plan views of the anode gas separation plate and the cathode gas separation plate, respectively.

【0004】図において、100は固体高分子電解質膜
100aを多孔質の導電体であるアノード板100bと
カソード板100cとで挟みつけて構成される単電池、
101は単電池100のアノード板100b側に網目状
の溝であるアノードガス流路101aが形成された導電
性のアノードガス分離板、102は単電池板100のカ
ソード板100c側に同様な網目状の溝であるカソード
ガス流路102aが形成された導電性のカソードガス分
離板である。なお、アノードガス分離板101のアノー
ドガス流路101aとカソードガス分離板102のカソ
ードガス流路102aはそれぞれ全体的に凹状に形成さ
れ、単電池100のアノード板100bおよびカソード
板100cが中に落としこまれるようになっている。
In the figure, reference numeral 100 is a unit cell constituted by sandwiching a solid polymer electrolyte membrane 100a between an anode plate 100b and a cathode plate 100c which are porous conductors,
Reference numeral 101 denotes a conductive anode gas separation plate in which an anode gas flow channel 101a, which is a mesh-shaped groove, is formed on the anode plate 100b side of the unit cell 100, and 102 has a similar mesh shape on the cathode plate 100c side of the unit cell plate 100. Is a conductive cathode gas separation plate in which a cathode gas flow channel 102a which is a groove of is formed. It should be noted that the anode gas flow channel 101a of the anode gas separation plate 101 and the cathode gas flow channel 102a of the cathode gas separation plate 102 are formed in a generally concave shape, and the anode plate 100b and the cathode plate 100c of the unit cell 100 are dropped inside. I'm supposed to get stuck.

【0005】103は単電池100をアノードガス分離
板101とカソードガス分離板101とで挟みつけて構
成されるセルユニット、104は上部集電板、105は
下部集電板、106は上部押え板、107は下部押え
板、108は一対の集電板104,105間に複数のセ
ルユニット103を複数積層し、これを一対の押え板1
06,107で挟みつけた積層体、109は積層体10
8の角部の上下方向に上部押え板106から最下部のカ
ソードガス分離板102までの貫通するように形成され
たアノードガス供給孔である。
Reference numeral 103 is a cell unit constructed by sandwiching the unit cell 100 between an anode gas separation plate 101 and a cathode gas separation plate 101, 104 is an upper collector plate, 105 is a lower collector plate, and 106 is an upper holding plate. , 107 is a lower holding plate, 108 is a plurality of cell units 103 stacked between a pair of current collecting plates 104, 105,
Laminated body sandwiched between 06 and 107, and 109 is a laminated body 10
8 is an anode gas supply hole formed so as to penetrate from the upper holding plate 106 to the lowermost cathode gas separation plate 102 in the vertical direction of the corner portion of 8.

【0006】110は積層体108のアノードガス供給
孔109の対角位置に同様に形成されたアノードガス排
出孔であり、このアノードガス供給孔109とアノード
ガス排出孔110は図12の(a)で示されるように、
アノードガス分離板101のアノードガス流路101a
に溝を介して連通されている。111はアノードガス供
給孔109と同様なカソードガス供給孔、112はアノ
ードガス排出孔110と同様なカソードガス排出孔であ
り、このカソードガス供給孔111とカソードガス排出
孔112とは図12の(b)で示されるように、カソー
ドガス分離板102のカソードガス流路102aに溝を
介して連通している。
Reference numeral 110 denotes an anode gas discharge hole similarly formed at a diagonal position of the anode gas supply hole 109 of the laminated body 108. The anode gas supply hole 109 and the anode gas discharge hole 110 are shown in FIG. As indicated by
Anode gas flow path 101a of the anode gas separation plate 101
Are communicated with each other via a groove. Reference numeral 111 denotes a cathode gas supply hole similar to the anode gas supply hole 109, and reference numeral 112 denotes a cathode gas discharge hole similar to the anode gas discharge hole 110. The cathode gas supply hole 111 and the cathode gas discharge hole 112 are shown in FIG. As shown in b), it communicates with the cathode gas flow channel 102a of the cathode gas separation plate 102 via a groove.

【0007】つぎにこの積層式固体高分子電解質型燃料
電池の動作について説明する。なお、説明を解りやすく
するため、例えばアノードガスが水素、カソードガスが
空気の場合について説明する。アノードガス供給孔10
9から積層体108内に送り込まれた水素は各単電池1
00のアノード板100b側にあるアノードガス分離板
101のアノードガス流路101aを通ってアノードガ
ス排出孔110から積層体108外へ排出される。ま
た、カソードガス供給孔111から積層体108内に送
り込まれた空気は各単電池100のカソード板100c
側にあるカソードガス分離板102のカソードガス流路
102aを通って、カソードガス排出孔112から積層
体108外へ排出される。
Next, the operation of this laminated solid polymer electrolyte fuel cell will be described. In order to make the description easier to understand, a case where the anode gas is hydrogen and the cathode gas is air will be described. Anode gas supply hole 10
Hydrogen sent from the stack 9 into the laminated body 108 corresponds to each unit cell 1
No. 00 through the anode gas flow path 101a of the anode gas separation plate 101 on the side of the anode plate 100b, and is discharged from the anode gas discharge hole 110 to the outside of the laminated body 108. Further, the air sent into the laminated body 108 from the cathode gas supply hole 111 is the cathode plate 100c of each unit cell 100.
It is discharged from the cathode gas discharge hole 112 to the outside of the laminated body 108 through the cathode gas flow path 102a of the cathode gas separation plate 102 on the side.

【0008】この場合、単電池100のアノード板10
0b側を流れる水素は一部イオンとなって固体高分子電
解質膜100aを通過してカソード板100c側に達
し、このカソード板100c側を流れる空気中の酸素と
反対して水となる。そしてこのときアノード板100b
とカソード板100c間にユニット直流電圧(例えば1
V)が生じるが、このユニット直流電圧を積層されたセ
ルユニット103の数だけ(この場合16個)加えた直
流電圧(16V)が上部集電板104と下部集電板10
5間から取り出される。
In this case, the anode plate 10 of the unit cell 100
The hydrogen flowing on the 0b side becomes a part of ions, passes through the solid polymer electrolyte membrane 100a, reaches the cathode plate 100c side, and becomes water as opposed to oxygen in the air flowing on the cathode plate 100c side. And at this time, the anode plate 100b
Unit DC voltage (for example, 1
V) is generated, but a DC voltage (16 V) obtained by adding the unit DC voltage by the number of the cell units 103 (16 in this case) stacked is the upper current collecting plate 104 and the lower current collecting plate 10.
It is taken out from between 5.

【0009】なお、積層式固体高分子電解質型燃料電池
は高電流密度を得ることができるという特徴を有してい
るため、主に小型電源として使用される。
Since the laminated solid polymer electrolyte fuel cell has a feature that it can obtain a high current density, it is mainly used as a small power source.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の積層式固体高分子電解質型燃料電池では、交流電圧
に変換するに適した100V以上の直流電圧を得るには
セルユニット103を100個以上積層しなければなら
ないが、このような場合、1つの積層体108にて積層
できるセルユニット103の数には限度があるため、積
層体108を複数個直列に長く連結する必要があった。
また、複数個の積層式固体高分子電解質型燃料電池を直
列に連結した場合、アノードガスおよびカソードガス用
の連結配管やバルブ等を必要となる。
However, in the above-mentioned conventional laminated solid polymer electrolyte fuel cell, 100 or more cell units 103 are laminated in order to obtain a DC voltage of 100 V or more suitable for conversion into an AC voltage. However, in such a case, since the number of cell units 103 that can be stacked in one stacked body 108 is limited, it is necessary to connect a plurality of stacked bodies 108 in series for a long time.
Further, when a plurality of laminated solid polymer electrolyte fuel cells are connected in series, connecting pipes and valves for anode gas and cathode gas are required.

【0011】このためこの積層式固体高分子電解質型燃
料電池を小型電源として用いる場合、この積層式固体高
分子電解質型燃料電池はコンパクト性に欠けるという課
題があった。
Therefore, when the laminated solid polymer electrolyte fuel cell is used as a small power source, there is a problem that the laminated solid polymer electrolyte fuel cell lacks compactness.

【0012】この発明は、上記のような課題を解決する
ためになされたものであり、コンパクトな小型電源とし
て利用できる積層式固体高分子電解質型燃料電池を提供
することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a laminated solid polymer electrolyte fuel cell which can be used as a compact and compact power source.

【0013】[0013]

【課題を解決するための手段】この発明の第1発明に係
る積層式固体高分子電解質型燃料電池は、固体高分子電
解質膜をカソードとアノードとで挟みつけた単電池が交
互にカソードとアノードとを入れ替えた状態で同一面方
向に複数個設けられた単電池板を、単電池板の各単電池
のカソードとアノードに対応する位置にそれぞれカソー
ドガス流路およびアノードガス流路が形成された一対の
導電性のガス分離板で挟着してセル板ユニットを構成
し、セル板ユニットを一対の集電極板間に複数積層し
て、単電池板内の各単電池に対応する複数の小積層体が
並列状態で形成された積層体を形成し、かつ、積層体の
積層方向に電気絶縁層を設けて、各小積層体を電気的に
分割すると共に同一の単電池板内でカソードとアノード
との位置が異なる小積層体同士を互いに隣接させて小積
層体を電気的に直列に連結し、さらに、各小積層体の積
層方向にガス分離板のカソードガス流路またはアノード
ガス流路に連通する一対のガス入口孔およびガス出口孔
をカソードガスおよびアノードガスについて2組形成
し、さらに、隣接する一対の小積層体の積層方向端部側
に、一方の小積層体のガス出口孔と他方の小積層体のガ
ス入口孔とを連結し、前記カソードガスおよび前記アノ
ードガスを各小積層体間の直列状態で流すガス連結板を
設けたことである。
A laminated solid polymer electrolyte fuel cell according to a first aspect of the present invention is a unit cell in which a solid polymer electrolyte membrane is sandwiched between a cathode and an anode, and the cathode and the anode are alternately arranged. A plurality of unit cell plates provided in the same plane direction with the and are replaced, and a cathode gas channel and an anode gas channel are formed at positions corresponding to the cathode and the anode of each unit cell of the unit cell plate. A cell plate unit is constructed by sandwiching it with a pair of conductive gas separation plates, and a plurality of cell plate units are laminated between a pair of collector electrode plates to form a plurality of small cells corresponding to each unit cell in the unit cell plate. Forming a laminated body in which the laminated bodies are formed in parallel, and providing an electrically insulating layer in the laminating direction of the laminated body to electrically divide each small laminated body and to form a cathode in the same unit cell plate. Small product with different position from anode A pair of gas inlet holes that electrically connect the small laminated bodies in series with the bodies adjacent to each other and communicate with the cathode gas passage or the anode gas passage of the gas separation plate in the laminating direction of each small laminated body. And two gas outlet holes are formed for the cathode gas and the anode gas, and the gas outlet hole of one small laminated body and the gas of the other small laminated body are further provided on the end side in the stacking direction of the pair of adjacent small laminated bodies. That is, a gas connecting plate is provided which is connected to the inlet hole and allows the cathode gas and the anode gas to flow in a serial state between the small laminated bodies.

【0014】この発明の第2発明に係る積層式固体高分
子電解質型燃料電池は、固体高分子電解質膜をカソード
とアノードとで挟みつけた単電池が交互にカソードとア
ノードとを入れ替えた状態で同一面方向に複数個設けら
れた単電池板を、単電池板の各単電池のカソードとアノ
ードに対応する位置にそれぞれカソードガス流路および
アノードガス流路が形成された一対の導電性のガス分離
板で挟着してセル板ユニットを構成し、セル板ユニット
を一対の集電極板間に複数積層して、単電池板内の各単
電池に対応する複数の小積層体が並列状態で形成された
積層体を形成し、かつ、積層体の積層方向に電気絶縁層
を設けて、各小積層体を電気的に分割すると共に同一の
単電池板内でカソードとアノードとの位置が異なる小積
層体同士を互いに隣接させて小積層体を電気的に直列に
連結し、さらに、各小積層体の積層方向にガス分離板の
カソードガス流路またはアノードガス流路に連通する一
対のガス入口孔およびガス出口孔をカソードガスおよび
アノードガスについて2組形成し、さらに、隣接する一
対の小積層体の一方の小積層体のガス出口孔と他方の小
積層体のガス入口孔とを連結してカソードガスおよびア
ノードガスを各小積層体間に直列状態で流すガス連結路
を集電極板に設けたことである。
In the laminated solid polymer electrolyte fuel cell according to the second aspect of the present invention, the unit cell in which the solid polymer electrolyte membrane is sandwiched between the cathode and the anode is replaced with the cathode and the anode alternately. A plurality of unit cell plates provided in the same plane direction, and a pair of electrically conductive gas in which a cathode gas channel and an anode gas channel are formed at positions corresponding to the cathode and anode of each unit cell of the unit cell plate. A cell plate unit is formed by sandwiching the separator plates, a plurality of cell plate units are stacked between a pair of collector electrodes, and a plurality of small stacks corresponding to each unit cell in the unit cell plate are arranged in parallel. The formed laminated body is formed, and an electric insulating layer is provided in the laminating direction of the laminated body to electrically divide each small laminated body and the positions of the cathode and the anode are different in the same single cell plate. Small stacks to each other A pair of gas inlet holes and gas outlet holes that are in contact with each other to electrically connect the small laminated bodies in series and communicate with the cathode gas passage or the anode gas passage of the gas separation plate in the laminating direction of each small laminated body. Two sets of the cathode gas and the anode gas are formed, and the gas outlet hole of one small laminated body of the pair of adjacent small laminated bodies and the gas inlet hole of the other small laminated body are connected to each other to form the cathode gas and the anode gas. That is, a gas connecting path for flowing the gas in a serial state between the small laminated bodies is provided in the collector electrode plate.

【0015】[0015]

【作用】この発明の第1発明の作用を説明する。単電池
板の単電池には例えば上部側にアノード(下部側にカソ
ード)を有するものと、上部側にカソード(下部側にア
ノード)を有するものがあるため、この単電池板と、単
電池のカソードおよびアノードに対応させてカソードガ
ス流路およびアノードガス流路を有する一対のガス分離
板とで構成されるセル板ユニットを複数積層した場合に
形成される各小積層体には、例えば上部側にアノードを
有するものと、上部側にカソードを有するものとの2種
類のものできることとなる。したがって、積層体を電気
絶縁層によって小積層体に電気的に分割し、例えばアノ
ードが上部側にある小積層体と、カソードが上部側にあ
る小積層体とを電気的に直列に連結すれば、この2つの
小積層体から、1つの小積層体から得られる電圧の2倍
の電圧が得られることとなる。
The operation of the first invention of the present invention will be described. There are, for example, those having an anode on the upper side (cathode on the lower side) and those having a cathode on the upper side (anode on the lower side) in the unit cell of the unit cell plate. Each of the small laminated bodies formed when a plurality of cell plate units each including a pair of gas separation plates having a cathode gas flow path and an anode gas flow path corresponding to the cathode and the anode are stacked, includes, for example, the upper side. Two types can be made, one having an anode on the one side and one having a cathode on the upper side. Therefore, if the stack is electrically divided into small stacks by an electrically insulating layer and, for example, the small stack having the anode on the upper side and the small stack having the cathode on the upper side are electrically connected in series. Therefore, a voltage that is twice as high as the voltage obtained from one small laminated body will be obtained from these two small laminated bodies.

【0016】なお、小積層体を電気的に直列に連結する
にはこの小積層体の積層方向の両端部側に設けられた集
電極板を電気絶縁層によって必要形状に分割すればよ
い。
In order to electrically connect the small laminated bodies in series, the collector electrode plates provided on both end sides in the laminating direction of the small laminated bodies may be divided into required shapes by the electric insulating layers.

【0017】また、各小積層体にはガス分離板のカソー
ドガス流路またはアノードガス流路に連通する一対のガ
ス入口孔およびガス出口孔がカソードガスおよびアノー
ドガスについて2組形成されているが、隣接する一対の
小積層体の一方の小積層体のガス出口孔と他方の小積層
体のガス入口孔とはガス連結板の連結路で連結されてい
るため、各小積層体間にアノードガスおよびカソードガ
スを直列状態で流すことができる。
Further, in each small laminated body, two pairs of gas inlet holes and gas outlet holes communicating with the cathode gas passage or the anode gas passage of the gas separation plate are formed for the cathode gas and the anode gas. , The gas outlet hole of one small laminated body of the pair of adjacent small laminated bodies and the gas inlet hole of the other small laminated body are connected by the connecting path of the gas connecting plate, so that the anode is provided between the small laminated bodies. The gas and cathode gas can be flowed in series.

【0018】また、この発明の第2発明は、集電極板
に、第1発明のガス連結板に設けたのと同様な連結路を
設けたもので、別途特別なガス連結板を不要とするもの
であり、その作用は第1発明と同一である。
Further, the second invention of the present invention is such that the collector electrode plate is provided with a connecting path similar to that provided in the gas connecting plate of the first invention, and a special gas connecting plate is not required separately. The operation is the same as that of the first invention.

【0019】[0019]

【実施例】以下、この発明の実施例を図について説明す
る。 実施例1.図1はこの発明の第1発明に係る一実施例を
示す積層式固体高分子電解質型燃料電池の平面図、図2
は同燃料電池の側面図、図3は単電池およびガス分離板
周りの斜視図、図4の(a),(b)はそれぞれ第1お
よび第2ガス分離板の平面図である。
Embodiments of the present invention will be described below with reference to the drawings. Example 1. FIG. 1 is a plan view of a stacked solid polymer electrolyte fuel cell showing one embodiment according to the first invention of the present invention, and FIG.
Is a side view of the fuel cell, FIG. 3 is a perspective view of the unit cell and the gas separation plate, and FIGS. 4 (a) and 4 (b) are plan views of the first and second gas separation plates, respectively.

【0020】図において、1は固体高分子電解質膜1a
をアノードまたはカソードとなる上下一対の多孔質の導
電体である電極板1b,1bで挟みつけて構成され、中
間部に固体高分子電解質膜1aのみからなるガスシール
層1Aを有する単電池板、2は単電池板1を中間部のガ
スシール層1Aで2つに分割した場合にこの単電池板1
に形成される個々の単電池であり、説明の都合上一方を
第1単電池2A、他方を第2単電池2Bとする。なお、
図3中単電池板1の一面側にある第1単電池2Aの電極
板1bはアノードとなり、第2単電池2Bの電極板1b
はカソードとなると共に、単電池板1の裏面側にある第
1単電池2Aの電極板1bはカソードとなり、第2単電
池2Bの電極板1bはアノードとなる。
In the figure, 1 is a solid polymer electrolyte membrane 1a.
Is sandwiched between a pair of upper and lower electrode plates 1b, which are porous electric conductors serving as an anode or a cathode, and has a gas seal layer 1A composed only of the solid polymer electrolyte membrane 1a in the middle portion, 2 is a unit cell plate 1 when the unit cell plate 1 is divided into two by the gas seal layer 1A in the middle part.
For convenience of explanation, one is a first cell 2A and the other is a second cell 2B. In addition,
The electrode plate 1b of the first unit cell 2A on one surface side of the unit cell plate 1 in FIG. 3 serves as an anode, and the electrode plate 1b of the second unit cell 2B.
Serves as the cathode, the electrode plate 1b of the first unit cell 2A on the back side of the unit cell plate 1 serves as the cathode, and the electrode plate 1b of the second unit cell 2B serves as the anode.

【0021】3は単電池板1の一面側に対応して単電池
2用の2つの網目状の溝であるアノードガス流路3aお
よびカソードガス流路3bが形成された導電性のガス分
離板である第1ガス分離板、4は単電池板1の裏面側に
対応して単電池2用の2つの網目状の溝であるアノード
ガス流路4aおよびカソードガス流路4bが形成された
導電性のガス分離板である第2ガス分離板である。この
場合、第1,第2ガス分離板3,4のアノードガス流路
3a,4aとカソードガス流路3b,4bはそれぞれ全
体的に凹状に形成され、この凹部に単電池2の電極板1
bが落とし込まれるようになっている。5は単電池板1
を第1および第2ガス分離板3,4で挟みつけて構成さ
れるセル板ユニットである。なお、このセル板ユニット
5は単電池板1の第1,第2単電池2A,2Bに対応し
た2つのセルユニットから構成される。
Reference numeral 3 is a conductive gas separation plate having an anode gas flow channel 3a and a cathode gas flow channel 3b, which are two mesh-shaped grooves for the unit cell 2 corresponding to one surface side of the unit cell plate 1. The first gas separation plate 4 is a conductive layer in which an anode gas flow path 4a and a cathode gas flow path 4b, which are two mesh-shaped grooves for the unit cells 2, are formed corresponding to the back surface side of the unit cell plate 1. It is a 2nd gas separation plate which is a gas separation plate of a nature. In this case, the anode gas flow paths 3a, 4a and the cathode gas flow paths 3b, 4b of the first and second gas separation plates 3, 4 are respectively formed in a concave shape as a whole, and the electrode plate 1 of the unit cell 2 is formed in the concave shape.
b is dropped. 5 is a single battery plate 1
Is a cell plate unit configured by being sandwiched between the first and second gas separation plates 3 and 4. The cell plate unit 5 is composed of two cell units corresponding to the first and second unit cells 2A and 2B of the unit cell plate 1.

【0022】6は上部集電板、7はガス連結板としての
機能をも兼ねたカーボン板からなる下部集電板、8は上
部押え板、9は下部押え板、10は上部集電板6と下部
集電板7間にセル板ユニット5を同一単電池2(例えば
第1単電池2Aどうし)が重なるように同一向きに複数
(具体的には16個)積層し、これを上部押え板6と下
部押え板7とで挟みつけた積層体、11は積層体10に
その積層方向に向かって挿入されたフッソ樹脂から構成
される電気絶縁層であり、単電池板1のガスシール層1
Aの位置にて上部集電板6とセル板ユニット5とを電気
的に2つの小積層体である第1,第2小積層体10a,
10bに分割するものである。なお、この電気絶縁層1
1により第1,第2小積層体10a,10bは下部集電
板7を介して電気的に直列に連結されることとなる。
6 is an upper collector plate, 7 is a lower collector plate made of a carbon plate which also functions as a gas connecting plate, 8 is an upper holding plate, 9 is a lower holding plate, and 10 is an upper collecting plate 6. A plurality (specifically 16) of cell plate units 5 are laminated in the same direction so that the same unit cell 2 (for example, the first unit cells 2A are overlapped) overlap each other between the lower holding plate 7 and the upper holding plate. A laminated body sandwiched between 6 and the lower holding plate 7, 11 is an electric insulating layer made of a fluorine resin inserted into the laminated body 10 in the laminating direction, and is a gas seal layer 1 of the unit cell plate 1.
At the position of A, the upper current collector plate 6 and the cell plate unit 5 are electrically connected to each other by the first and second small laminated bodies 10a, which are two small laminated bodies.
It is divided into 10b. In addition, this electrical insulation layer 1
1, the first and second small stacked bodies 10a and 10b are electrically connected in series via the lower collector plate 7.

【0023】12は積層体10の第1小積層体10a側
の角部に上下方向に向かって上部押え板8から最下部の
第2ガス分離板4までを貫通するように形成されたアノ
ードガス供給孔、13は第2小積層体10bの角部に上
下方向に向かってアノードガス供給孔12と同様に形成
されたアノードガス排出孔、14は第1小積層体10a
の角部に上下方向に向かって同様に形成されたカソード
ガス供給孔、15は第2小積層体10bの角部に上下方
向に向かって同様に形成されたカソードガス排出孔であ
る。
Reference numeral 12 denotes an anode gas formed in a corner portion of the laminated body 10 on the side of the first small laminated body 10a so as to penetrate vertically from the upper holding plate 8 to the lowermost second gas separation plate 4. Supply holes, 13 are anode gas discharge holes formed at the corners of the second small stacked body 10b in the vertical direction in the same manner as the anode gas supply holes 12, and 14 is the first small stacked body 10a.
Similarly, a cathode gas supply hole is formed in the corner portion of the second small stacked body 10b in the same manner in the vertical direction, and a cathode gas discharge hole 15 is formed in the corner portion of the second small stacked body 10b in the same manner in the vertical direction.

【0024】16は第1小積層体10aのアノードガス
供給孔12の対角位置にセル板ユニット5を貫通した設
けられたアノードガス連通孔、17は第2小積層体10
bのアノードガス排出孔13の対角位置にセル板ユニッ
ト5を貫通して設けられたアノードガス連通孔、18は
第1小積層体10aのカソードガス供給孔14の対角位
置にセル板ユニット5を貫通した設けられたカソードガ
ス連通孔、19は第2小積層体10bのカソードガス排
出孔15の対角位置にセル板ユニット5を貫通して設け
られたカソードガス連通孔である。なお、第1、第2小
積層体10a,10bに対して、アノードガス供給孔1
2、カソードガス供給孔14、アノードガス連通孔1
7、カソードガス連通孔19はガス入口孔として作用
し、アノードガス排出孔13、カソードガス排出孔1
5、アノードガス連通孔16、カソードガス連通孔18
はガス出口孔として作用する。
Reference numeral 16 is an anode gas communication hole provided at a diagonal position of the anode gas supply hole 12 of the first small laminated body 10a and penetrating the cell plate unit 5, and 17 is a second small laminated body 10.
b is an anode gas communication hole provided at a diagonal position of the anode gas discharge hole 13 penetrating the cell plate unit 5, and 18 is a cell plate unit at a diagonal position of the cathode gas supply hole 14 of the first small stacked body 10a. 5 is a cathode gas communication hole provided through 5 and 19 is a cathode gas communication hole provided through the cell plate unit 5 at a diagonal position of the cathode gas discharge hole 15 of the second small stacked body 10b. In addition, the anode gas supply hole 1 is provided for the first and second small laminated bodies 10a and 10b.
2, cathode gas supply hole 14, anode gas communication hole 1
7, the cathode gas communication hole 19 functions as a gas inlet hole, and the anode gas discharge hole 13 and the cathode gas discharge hole 1
5, anode gas communication hole 16, cathode gas communication hole 18
Acts as a gas outlet hole.

【0025】ここで、図4の(a),(b)で示される
ように、第1小積層体10aにおいて、アノードガス供
給孔12とアノードガス連通孔16とは第1ガス分離板
3のアノードガス流路3aを介して連通し、カソードガ
ス供給孔14とカソードガス連通孔18とは第2ガス分
離板4のカソードガス流路4bを介して連通している。
また、第2小積層体10bにおいて、アノードガス排出
孔13とアノードガス連通孔17とは第2ガス分離板4
のアノードガス流路4aを介して連通し、カソードガス
排出孔15とカソードガス連通孔19とは第1ガス分離
板3のカソードガス流路3bを介して連通している。
Here, as shown in FIGS. 4A and 4B, the anode gas supply hole 12 and the anode gas communication hole 16 in the first small laminated body 10a are formed in the first gas separation plate 3. The anode gas flow path 3a communicates with each other, and the cathode gas supply hole 14 and the cathode gas communication hole 18 communicate with each other via the cathode gas flow path 4b of the second gas separation plate 4.
Further, in the second small laminated body 10b, the anode gas discharge hole 13 and the anode gas communication hole 17 are formed by the second gas separation plate 4
The cathode gas discharge hole 15 and the cathode gas communication hole 19 communicate with each other through the cathode gas flow path 3b of the first gas separation plate 3.

【0026】20はアノードガス連通孔16とアノード
ガス連通孔17を連結するために下部集電板7に凹状に
設けられた連結流路、21はカソードガス連通孔18と
カソードガス連通孔19を連結するために下部集電板7
に凹状に設けられた連結流路である。したがって、下部
集電板7は電極として機能するだけでなく、第1小積層
体10aと第2小積層体10bとのガス連通孔を連結す
るガス連結板としての機能も有していることとなる。2
2はアノードガス供給孔12用の入口ポート、23はア
ノードガス排出孔13用の出口ポート、24はカソード
ガス供給孔14用の入口ポート、25はカソードガス排
出孔15用の出口ポートである。
Reference numeral 20 denotes a connecting flow path provided in a concave shape on the lower current collector plate 7 for connecting the anode gas communication hole 16 and the anode gas communication hole 17, and 21 denotes a cathode gas communication hole 18 and a cathode gas communication hole 19. Lower current collector plate 7 for connecting
It is a connection channel provided in a concave shape. Therefore, the lower collector plate 7 not only functions as an electrode, but also has a function as a gas connection plate that connects the gas communication holes of the first small stacked body 10a and the second small stacked body 10b. Become. Two
2 is an inlet port for the anode gas supply hole 12, 23 is an outlet port for the anode gas discharge hole 13, 24 is an inlet port for the cathode gas supply hole 14, and 25 is an outlet port for the cathode gas discharge hole 15.

【0027】次にこの積層式固体高分子電解質型燃料電
池の動作を説明する。なお、説明を解りやすくするため
アノードガスを水素、カソードガスを空気とする。
Next, the operation of this laminated solid polymer electrolyte fuel cell will be described. In order to make the description easier to understand, the anode gas is hydrogen and the cathode gas is air.

【0028】入口ポート22を介してアノードガス供給
孔12から第1小積層体10a内に送り込まれた水素
は、第1単電池2Aのアノードとなる電極板1b側にあ
る第1ガス分離板3のアノードガス流路3aを通ってア
ノードガス連通孔16に送られる。このアノードガス連
通孔16内の水素は下部集電板7に設けられた連結流路
20を通って第2小積層体10bのアノードガス連通孔
17に達し、さらに、この第2小積層体10b側の第2
単電池2Bのアノードとなる電極板1b側にある第2ガ
ス分離板4のアノードガス流路4aを通ってアノードガ
ス排出孔13に達して、出口ポート23を介して積層体
10から外部に排出される。
Hydrogen sent from the anode gas supply hole 12 into the first small stacked body 10a through the inlet port 22 has the first gas separation plate 3 on the side of the electrode plate 1b serving as the anode of the first unit cell 2A. Is sent to the anode gas communication hole 16 through the anode gas flow path 3a. Hydrogen in the anode gas communication hole 16 reaches the anode gas communication hole 17 of the second small laminated body 10b through the connection flow path 20 provided in the lower current collector plate 7, and further, the second small laminated body 10b. Second on the side
It reaches the anode gas discharge hole 13 through the anode gas flow path 4a of the second gas separation plate 4 on the side of the electrode plate 1b serving as the anode of the unit cell 2B, and discharges from the stack 10 through the outlet port 23 to the outside. To be done.

【0029】すなわち、アノードガスである水素は、ア
ノードガス供給孔12から第1ガス分離板3のアノード
ガス流路3aを介してアノードガス連通孔16に流れた
後、アノードガス連通孔17から第2ガス分離板4のア
ノードガス流路4aを介してアノードガス排出孔13に
流れることとなり、第1小積層体10aから第2小積層
体10b側に直列状態で流れることとなる。
That is, hydrogen, which is the anode gas, flows from the anode gas supply hole 12 to the anode gas communication hole 16 through the anode gas flow path 3a of the first gas separation plate 3, and then from the anode gas communication hole 17 to the first gas. It will flow to the anode gas discharge hole 13 via the anode gas flow path 4a of the two-gas separation plate 4, and will flow in a serial state from the 1st small laminated body 10a to the 2nd small laminated body 10b side.

【0030】同様に、入口ポート24を介してカソード
ガス供給孔14から第1小積層体10a内に送り込まれ
た空気は、第1単電池2Aのカソードとなる電極板1b
側にある第2ガス分離板4のカソードガス流路4bを通
ってカソードガス連通孔18に送られる。このカソード
ガス連通孔18内の空気は下部集電板7に設けられた連
結流路21を通って第2小積層体10b側のカソードガ
ス連通孔19に達し、さらに、この空気はこの第2小積
層体10b側の第2単電池2Bのカソードとなる電極板
1b側にある第1ガス分離板3のカソードガス流路3b
を通ってカソードガス排出孔15に達して、出口ポート
25を介して積層体10から外部に排出される。すなわ
ち、カソードガスである空気も、アノードガスと同様に
第1小積層体10aから第2小積層体10b側に直列状
態で流れることとなる。
Similarly, the air sent from the cathode gas supply hole 14 through the inlet port 24 into the first small stacked body 10a serves as the cathode of the first unit cell 2A.
It is sent to the cathode gas communication hole 18 through the cathode gas flow path 4b of the second gas separation plate 4 on the side. The air in the cathode gas communication hole 18 reaches the cathode gas communication hole 19 on the side of the second small stacked body 10b through the connection flow passage 21 provided in the lower current collector plate 7, and further this air flows in the second gas The cathode gas flow path 3b of the first gas separation plate 3 on the side of the electrode plate 1b which serves as the cathode of the second unit cell 2B on the side of the small stacked body 10b.
And reaches the cathode gas exhaust hole 15 and is exhausted from the laminated body 10 to the outside through the outlet port 25. That is, air, which is the cathode gas, also flows in series from the first small stacked body 10a to the second small stacked body 10b side similarly to the anode gas.

【0031】以上の場合、単電池2のアノードとなる電
極板1b側を流れる水素は一部イオンとなって固体高分
子電解質膜1aを通過してカソードとなる電極板1b側
に達し、このカソードとなる電極板1b側を流れる空気
中の酸素と反応して水となる。そしてこのときアノード
となる電極板1bとカソードとなる電極板1b間にユニ
ット直流電圧(例えば1ボルト)が生じる。したがっ
て、16個ずつのセルユニットが積層されている第1小
積層体10aと第2小積層体10bとにはそれぞれ16
ボルトずつの直流電圧が生じることとなる。
In the above case, hydrogen flowing on the side of the electrode plate 1b serving as the anode of the unit cell 2 becomes a part of ions and passes through the solid polymer electrolyte membrane 1a to reach the side of the electrode plate 1b serving as the cathode. And reacts with oxygen in the air flowing on the side of the electrode plate 1b to become water. At this time, a unit DC voltage (for example, 1 volt) is generated between the electrode plate 1b serving as the anode and the electrode plate 1b serving as the cathode. Therefore, each of the first small stacked body 10a and the second small stacked body 10b in which 16 cell units are stacked is 16
A DC voltage of each volt will be generated.

【0032】この場合、第1小積層体10aでは第1単
電池2Aの上部側の電極板1bがアノードとなり、下部
側の電極板1bがカソードとなるため、上部側から下部
側に16ボルトの電圧が生じることとなり、第2小積層
体10bでは第2単電池2Bの上部側の電極板1bがカ
ソードとなり、下部側の電極板1bがカソードとなるた
め、下部側から上部側に16ボルトの電圧が生じること
となる。また、第1、第2小積層体10a,10bは下
部集電板7を介して電気的に直列に連結されているた
め、この積層体10には16×2=32ボルトの電圧が
生じることとなり、この電圧が電気絶縁層11で電気的
に分離されている上部集電板6の右上部6aと左上部6
b間から取り出されることとなる。
In this case, in the first small stacked body 10a, the upper electrode plate 1b of the first cell 2A serves as an anode and the lower electrode plate 1b serves as a cathode, so that 16 V is applied from the upper side to the lower side. As a voltage is generated, the electrode plate 1b on the upper side of the second unit cell 2B serves as the cathode and the electrode plate 1b on the lower side serves as the cathode in the second small stacked body 10b, so that a voltage of 16 volts is applied from the lower side to the upper side. A voltage will be generated. Further, since the first and second small laminated bodies 10a and 10b are electrically connected in series via the lower collector plate 7, a voltage of 16 × 2 = 32 volts is generated in the laminated body 10. Therefore, this voltage is electrically separated by the electric insulating layer 11 from the upper right portion 6a and the upper left portion 6a of the upper collector plate 6.
It will be taken out from between b.

【0033】以上のように、2つの単電池2が形成され
た単電池板1を、アノードガス流路およびカソードガス
流路が形成された1対の第1、第2ガス分離板3,4で
挟み込んでセル板ユニット5を構成し、このセル板ユニ
ット5を複数積層して形成される積層体10を電気絶縁
層11にて2つの第1、第2小積層体10a,10bに
分けるようにしたため、積層体10の外形形状を従来の
ものとほとんど変えることなく、この積層体10から2
倍の電圧を取り出すことができる。したがって、従来の
積層式固体高分子電解質型燃料電池を直列に連結して2
倍の電圧を得る場合に要求されるアノードガスやカソー
ドガス連結用のバルブやチューブが一切不要となると共
に、この燃料電池も細長く直列に連結する必要はなく、
積層式固体高分子電解質型燃料電池のコンパクト化が図
れることとなる。
As described above, the unit cell plate 1 in which the two unit cells 2 are formed is replaced with the pair of first and second gas separation plates 3 and 4 in which the anode gas passage and the cathode gas passage are formed. The cell plate unit 5 is formed by sandwiching the cell plate unit 5 with each other, and the laminated body 10 formed by laminating a plurality of the cell plate units 5 is divided into two first and second small laminated bodies 10a and 10b by the electric insulating layer 11. Therefore, the outer shape of the laminated body 10 is almost the same as the conventional one, and
Double voltage can be taken out. Therefore, a conventional stacked solid polymer electrolyte fuel cell is connected in series to
No need for valves or tubes for connecting anode gas or cathode gas required to obtain double voltage, and it is not necessary to connect this fuel cell in an elongated series.
The stacked solid polymer electrolyte fuel cell can be made compact.

【0034】なお、数段のセル板ユニット5毎に冷却板
を挿入し、この冷却板の単電池2毎に設けられた冷却部
に冷媒を流して第1小積層体10aおよび第2小積層体
10bをこの冷却板によって冷却する場合には、第1小
積層体10aおよび第2小積層体10bに、その積層方
向に向かって、この冷却板の各冷却部にのみ連通する入
口および出口連通孔をそれぞれ設け、第1小積層体10
aの出口連通孔と第2小積層体10bの入口連通孔とを
結ぶ連結流路を同様に下部集電板5に設ければよい。こ
の場合、冷媒用の連結通路とアノードガスまたはカソー
ドガス用の連結通路とが交差するおそれがある場合は、
冷媒用の連結通路を下部集電板5の裏面側に設ければよ
い。
A cooling plate is inserted into each of the cell plate units 5 of several stages, and a cooling medium is caused to flow through a cooling portion provided for each unit cell 2 of the cooling plate to allow the first small laminated body 10a and the second small laminated body 10a. When the body 10b is cooled by this cooling plate, an inlet and an outlet communicating with the first small stacked body 10a and the second small stacked body 10b in the stacking direction are communicated only with each cooling part of the cooling plate. The first small laminated body 10 is provided with holes, respectively.
A connection flow path connecting the outlet communication hole of a and the inlet communication hole of the second small stacked body 10b may be similarly provided in the lower current collector plate 5. In this case, if there is a risk that the connecting passage for the refrigerant intersects with the connecting passage for the anode gas or the cathode gas,
The connection passage for the coolant may be provided on the back surface side of the lower current collector plate 5.

【0035】また、上記実施例1においては、下部集電
板7をカーボン板から構成し、これにガス連結板として
の機能を持たせたが、下部集電板7を金属性として、別
にフッソ樹脂からなるガス連結板を設けてもよい。さら
に、上記実施例1においては、電気絶縁層11をフッソ
樹脂から構成したが、これをフッソ系のゴムやシリコン
系のゴム、または100℃まで耐熱性を有するプラスチ
ックやセラミック、または電気絶縁性の被膜を形成した
金属板等により構成してもよい。
In the first embodiment, the lower current collecting plate 7 is made of a carbon plate and has a function as a gas connecting plate. However, the lower current collecting plate 7 is made of metal and is separately provided with a fluorine film. A gas connecting plate made of resin may be provided. Further, in the first embodiment, the electric insulation layer 11 is made of a fluorine resin, but it is made of a fluorine-based rubber, a silicon-based rubber, a plastic or ceramic having a heat resistance up to 100 ° C., or an electrically insulating layer. You may comprise by the metal plate etc. which formed the coating film.

【0036】また、上記実施例1においては、単電池板
1をアノードガス分離板3とカソードガス分離板4とで
挟み込むようにしたが、ガス分離板の表裏面にそれぞれ
アノードガス流路およびカソードガス流路を設け、この
ガス分離板にて単電池板1を挟み込むようにしてもよ
い。この場合、ガス分離板の一面側のアノードガス流路
3aに対応する裏面側にはカソードガス流路3bが形成
されている必要がある。
In the first embodiment, the unit cell plate 1 is sandwiched between the anode gas separation plate 3 and the cathode gas separation plate 4, but the anode gas passage and the cathode are provided on the front and back surfaces of the gas separation plate, respectively. A gas flow path may be provided, and the cell plate 1 may be sandwiched between the gas separation plates. In this case, the cathode gas flow channel 3b needs to be formed on the back surface side corresponding to the anode gas flow channel 3a on one surface side of the gas separation plate.

【0037】実施例2.図5はこの発明の第2発明に係
る一実施例を示す積層式固体高分子電解質型燃料電池の
平面図、図6は同燃料電池の側面図、図7は単電池およ
びガス分離板周りの斜視図、図8の(a),(b)はそ
れぞれ第1および第2ガス分離板の平面図である。図に
おいて、図1乃至図4に示した実施例1に係る積層式固
体高分子電解質型燃料電池と同一または相当部分には同
一符号を付し、その説明を省略する。
Example 2. FIG. 5 is a plan view of a laminated solid polymer electrolyte fuel cell showing one embodiment according to the second invention of the present invention, FIG. 6 is a side view of the fuel cell, and FIG. A perspective view and FIGS. 8A and 8B are plan views of the first and second gas separation plates, respectively. In the figure, the same or corresponding parts as those of the stacked solid polymer electrolyte fuel cell according to Example 1 shown in FIGS. 1 to 4 are designated by the same reference numerals, and the description thereof will be omitted.

【0038】図において、30は一対の電極板1b,1
b間に固体高分子電解質膜1aを有し、かつ固体高分子
電解質膜1aのみからなる十字型のガスシール層30A
にて同一面上に4つの単電池2(具体的には第1,第
2,第3,第4単電池2C,2D,2E,2F)が形成
された単電池板である。この単電池板30の一面側電極
板1bは各単電池2に対して第1,第2,第3,第4単
電池2C,2D,2E,2Fの順に例えばアノード、カ
ソード、アノード、カソードとして作用し、この単電池
板30の裏面側電極板1bは一面側がアノードからカソ
ードとして作用し、一面側がカソードからアノードとし
て作用する。
In the figure, 30 is a pair of electrode plates 1b, 1
Cross-shaped gas seal layer 30A having a solid polymer electrolyte membrane 1a between b and consisting only of the solid polymer electrolyte membrane 1a
Is a unit cell plate in which four unit cells 2 (specifically, the first, second, third and fourth unit cells 2C, 2D, 2E, 2F) are formed on the same surface. The one-side electrode plate 1b of the unit cell plate 30 is, for example, an anode, a cathode, an anode, and a cathode in order of the first, second, third, and fourth unit cells 2C, 2D, 2E, and 2F for each unit cell 2. In operation, one surface side of the back side electrode plate 1b of the unit cell plate 30 functions as an anode to a cathode, and one surface side functions as a cathode to an anode.

【0039】31は単電池板30の一面側に各単電池2
のアノードおよびカソードに対応して網目状の溝である
アノードガス流路31aおよびカソードガス流路31b
が2つずつ計4つ形成されている導電性のガス分離板で
ある第1ガス分離板、32は単電池板30の裏面側の各
単電池2のアノードおよびカソードに対応して網目状の
溝であるアノードガス流路32aおよびカソードガス流
路32bが2つずつ計4つ形成されている導電性のガス
分離板である第2ガス分離板である。この場合、第1,
第2ガス分離板31,32のアノードガス流路31a,
32aとカソードガス流路31b,32bはそれぞれ全
体的に凹状に形成され、この凹部に単電池2の電極板1
bが落とし込まれるようになっている。33は単電池板
30を第1および第2ガス分離板31,32で挟みつけ
て構成されるセル板ユニットである。なお、このセル板
ユニット33は単電池板30の第1,第2,第3,第4
単電池2C,2D,2E,2Fに対応した4つのセルユ
ニットから構成される。
Reference numeral 31 denotes each unit cell 2 on one side of the unit cell plate 30.
Anode gas channel 31a and cathode gas channel 31b, which are mesh-shaped grooves corresponding to the anode and cathode of
A first gas separation plate, which is a conductive gas separation plate in which two are formed in total of two, and 32 is a mesh-like shape corresponding to the anode and cathode of each unit cell 2 on the back surface side of the unit cell plate 30. It is a second gas separation plate which is a conductive gas separation plate in which a total of four anode gas flow paths 32a and two cathode gas flow paths 32b are formed. In this case,
Anode gas flow paths 31a of the second gas separation plates 31, 32,
32a and the cathode gas flow channels 31b and 32b are each formed in a concave shape as a whole, and the electrode plate 1 of the unit cell 2 is formed in this concave shape.
b is dropped. A cell plate unit 33 is configured by sandwiching the unit cell plate 30 between the first and second gas separation plates 31 and 32. The cell plate unit 33 includes the first, second, third and fourth cell plates 30.
It is composed of four cell units corresponding to the unit cells 2C, 2D, 2E and 2F.

【0040】34は下部集電板7と下部押え板9間に配
置されたフッサ樹脂から構成されるガス連結板、35は
上部集電板6と下部集電板7間にセル板ユニット33を
同一単電池2(例えば第1単電池2Cどうし)が重なる
ように同一向きに複数(具体的には16個)積層し、こ
れを上部押え板8と下部押え板9およびガス連結板34
とで挟みつけた積層体、36は積層体35にその積層方
向に向かって挿入された電気絶縁層であり、積層体35
の上部集電板6、下部集電板7およびセル板ユニット3
3をガスシール層30Aの位置にて4つの小積層体であ
る第1,第2,第3,第4小積層体35a,35b,3
5c,35dに分割するものである。
Reference numeral 34 denotes a gas connecting plate made of fussa resin arranged between the lower collector plate 7 and the lower holding plate 9, and 35 denotes a cell plate unit 33 between the upper collector plate 6 and the lower collector plate 7. A plurality (specifically 16) of the same unit cells 2 (for example, the first unit cells 2C) are stacked in the same direction so as to overlap with each other, and the upper holding plate 8, the lower holding plate 9, and the gas connecting plate 34 are stacked.
The laminated body sandwiched by and 36 is an electric insulating layer inserted in the laminated body 35 in the laminating direction.
Upper collector plate 6, lower collector plate 7 and cell plate unit 3 of
3 at the position of the gas seal layer 30A are four small laminated bodies, namely, first, second, third and fourth small laminated bodies 35a, 35b, 3
It is divided into 5c and 35d.

【0041】ここで、この電気絶縁層36の前後層部3
6aは上部集電板6の第1,第2小積層体35b,35
c間には設けられておらず、かつ、左右層部36bは下
部集電板7には設けられていないため、第1,第2,第
3,第4小積層体35a,35b,35c,35dは電
気絶縁層36によって電気的に互いに直列に連結される
こととなる。
Here, the front and rear layer portions 3 of the electric insulating layer 36
6a denotes the first and second small laminated bodies 35b, 35 of the upper collector plate 6.
Since it is not provided between c and the left and right layer portions 36b are not provided on the lower collector plate 7, the first, second, third and fourth small stacked bodies 35a, 35b, 35c, 35d will be electrically connected mutually in series by the electrically insulating layer 36.

【0042】37は積層体35の第1小積層体35a側
の角部の上下方向に上部押え板6から最下部のセル部ユ
ニット33までを貫通するように形成されたアノードガ
ス供給孔、38は第1小積層体35aの角部の上下方向
にアノードガス供給孔37と同様に形成されたカソード
ガス供給孔、39は第4小積層体35dの角部に上下方
向に同様に形成されたアノードガス排出孔、40は第4
小積層体35dの角部の上下方向に同様に形成されたカ
ソードガス排出孔である。
Reference numeral 37 denotes an anode gas supply hole formed so as to penetrate from the upper holding plate 6 to the lowermost cell unit 33 in the vertical direction of the corner of the laminated body 35 on the side of the first small laminated body 35a. Is a cathode gas supply hole formed in the same manner as the anode gas supply hole 37 in the vertical direction of the corner of the first small stacked body 35a, and 39 is formed in the same vertical direction in the corner of the fourth small stacked body 35d. Anode gas discharge hole, 40 is the fourth
It is a cathode gas discharge hole similarly formed in the vertical direction of the corner portion of the small stacked body 35d.

【0043】41は第1小積層体35aのアノードガス
供給孔37の対角角部にセル板ユニット33を貫通した
設けられたアノードガス連通孔、42および43は第2
小積層体35bの対角角部にセル板ユニット33を貫通
して設けられたアノードガス用のガス連通孔、44およ
び45は第3小積層体35cの対角角部にセル板ユニッ
ト33を貫通して設けられたアノードガス用のガス連通
孔、46は第4小積層体35dのアノードガス排出孔3
9の対角角部にセル板ユニット33を貫通して設けられ
たアノードガス連通孔である。また、47は第1小積層
体35aに設けられた同様なカソードガス連通孔、48
および49は第2小積層体35bに設けられた同様なカ
ソードガス連通孔、50および51は第3小積層体35
cに設けられた同様なカソードガス連通孔、52は第4
小積層体35dに設けられた同様なカソードガス連通孔
である。
Reference numeral 41 is an anode gas communication hole provided at a diagonal corner of the anode gas supply hole 37 of the first small laminated body 35a and penetrating the cell plate unit 33, and 42 and 43 are second holes.
Gas communication holes for the anode gas, which are provided at the diagonal corners of the small stacked body 35b so as to penetrate the cell plate unit 33, 44 and 45 are the cell plate units 33 at the diagonal corners of the third small stacked body 35c. A gas communication hole for anode gas provided penetrating therethrough, and 46 is an anode gas discharge hole 3 of the fourth small stacked body 35d.
9 is an anode gas communication hole provided at a diagonal corner of the cell plate 9 so as to penetrate the cell plate unit 33. Further, 47 is a similar cathode gas communication hole provided in the first small stacked body 35a,
And 49 are similar cathode gas communication holes provided in the second small laminated body 35b, and 50 and 51 are the third small laminated body 35.
Similar cathode gas communication hole provided in c, 52 is the fourth
It is a similar cathode gas communication hole provided in the small stacked body 35d.

【0044】ここで、図8の(a),(b)で示される
ように、第1小積層体35aにおいて、アノードガス供
給孔37とアノードガス連通孔41とは第1ガス分離板
31のアノードガス流路31aを介して連通し、カソー
ドガス供給孔38とカソードガス連通孔47とは第2ガ
ス分離板32のカソードガス流路32bを介して連通し
ている。また、第2小積層体35bにおいて、2つのア
ノードガス連通孔42,43は第2ガス分離板32のア
ノードガス流路32aを介して連通し、2つのカソード
ガス連通孔48,49は第1ガス分離板31のカソード
ガス流路31bを介して連通しており、第3小積層体3
5cにおいて、2つのアノードガス連通孔44,45は
第1ガス分離板31のアノードガス流路31aを介して
連通し、2つのカソードガス連通孔50,51は第2ガ
ス分離板32のカソードガス流路32bを介して連通し
ている。
Here, as shown in FIGS. 8A and 8B, in the first small laminated body 35a, the anode gas supply hole 37 and the anode gas communication hole 41 are formed in the first gas separation plate 31. The anode gas flow passage 31 a communicates with each other, and the cathode gas supply hole 38 and the cathode gas communication hole 47 communicate with each other via the cathode gas flow passage 32 b of the second gas separation plate 32. Further, in the second small stacked body 35b, the two anode gas communication holes 42 and 43 are communicated with each other through the anode gas flow channel 32a of the second gas separation plate 32, and the two cathode gas communication holes 48 and 49 are the first. The third small stacked body 3 communicates with each other through the cathode gas flow path 31b of the gas separation plate 31.
5c, the two anode gas communication holes 44 and 45 communicate with each other through the anode gas flow path 31a of the first gas separation plate 31, and the two cathode gas communication holes 50 and 51 correspond to the cathode gas of the second gas separation plate 32. It communicates via the flow path 32b.

【0045】さらに、第4小積層体35dにおいて、ア
ノードガス排出孔39とアノードガス連通孔46とは第
2ガス分離板32のカソードガス流路32aを介して連
通し、カソードガス排出孔40とカソードガス連通孔5
2とは第1ガス分離板31のカソードガス流路31bを
介して連通している。なお、各小積層体35a,35
b,35c,35dに対して、アノードガス供給孔3
7、カソードガス供給孔38、アノードガス連通孔4
2,44,46、カソードガス連通孔48,50,52
はガス入口孔として作用し、アノードガス排出孔39、
カソードガス排出孔40、アノードガス連通孔41,4
3,45、カソードガス連通孔47,49,51はガス
出口孔として作用する。
Further, in the fourth small laminated body 35d, the anode gas discharge hole 39 and the anode gas communication hole 46 communicate with each other through the cathode gas flow passage 32a of the second gas separation plate 32, and the cathode gas discharge hole 40. Cathode gas communication hole 5
2 is in communication with the first gas separation plate 31 via the cathode gas flow path 31b. In addition, each small laminated body 35a, 35
b, 35c, 35d, the anode gas supply hole 3
7, cathode gas supply hole 38, anode gas communication hole 4
2, 44, 46, cathode gas communication holes 48, 50, 52
Acts as a gas inlet hole, and the anode gas discharge hole 39,
Cathode gas discharge hole 40, anode gas communication holes 41, 4
3, 45 and the cathode gas communication holes 47, 49, 51 function as gas outlet holes.

【0046】53はアノードガス連通孔41とアノード
ガス連通孔42を連結するために、54はカソードガス
連通孔47とカソードガス連通孔48を連結するために
ガス連結板34にそれぞれ設けられた連結流路、55は
アノードガス連通孔43とアノードガス連通孔44を連
結するために、56はカソードガス連通孔49とカソー
ドガス連通孔50を連結するために上部集電板6にそれ
ぞれ設けられた連結流路、57はアノードガス連通孔4
5とアノードガス連通孔46を連結するために、58は
カソードガス連通孔51とカソードガス連通孔52を連
結するためにガス連結板34にそれぞれ設けられた連結
流路である。
Reference numeral 53 is a connection provided in the gas connection plate 34 for connecting the anode gas communication hole 41 and the anode gas communication hole 42, and 54 is provided in the gas connection plate 34 for connecting the cathode gas communication hole 47 and the cathode gas communication hole 48. A flow path 55 is provided on the upper collector plate 6 to connect the anode gas communication hole 43 and the anode gas communication hole 44, and 56 is provided on the upper collector plate 6 to connect the cathode gas communication hole 49 and the cathode gas communication hole 50. Connection channel, 57 is anode gas communication hole 4
Reference numeral 58 denotes a connection flow path provided in the gas connection plate 34 for connecting the cathode gas communication hole 51 and the cathode gas communication hole 52 to connect the anode gas communication hole 46 and the anode gas communication hole 46.

【0047】なお、上部集電板6はガス連結板を兼ねる
ものであるため、カーボン板から構成されるが、下部集
電板7はガス連結板を兼ねる必要がないため、カーボン
板である必要はなくこの場合、金メッキした銅板となっ
ている。
Since the upper collector plate 6 also serves as a gas connecting plate, it is made of a carbon plate, but the lower collector plate 7 does not have to serve as a gas connecting plate, and therefore needs to be a carbon plate. In this case, it is a copper plate plated with gold.

【0048】次にこの積層式固体高分子電解質型燃料電
池の動作を説明する。なお、説明を解りやすくするため
アノードガスを水素、カソードガスを空気とする。
Next, the operation of this laminated solid polymer electrolyte fuel cell will be described. In order to make the description easier to understand, the anode gas is hydrogen and the cathode gas is air.

【0049】アノードガスである水素は、第1小積層体
35aのアノードガス供給孔37から第1ガス分離板3
1のアノードガス流路31aを介してアノードガス連通
孔41に達した後、ガス連結板34の連結流路53を通
って第2小積層体35bのアノードガス連通孔42に達
し、ここから第2ガス分離板32のアノードガス流路3
2aを介してアノードガス連通孔43に達する。また、
上部集電板6の連結流路55を通って第3小積層体35
cのアノードガス連通孔44に達した水素は、ここから
第1ガス分離板31のアノードガス流路31aを介して
アノードガス連通孔45に達した後、ガス連結板34の
連結流路57を通って第4小積層体35dのアノードガ
ス連通孔46に達し、ここから第2ガス分離板32のア
ノードガス流路32aを介してアノードガス排出孔39
に達する。
Hydrogen as the anode gas is supplied from the anode gas supply hole 37 of the first small laminated body 35a to the first gas separation plate 3.
After reaching the anode gas communication hole 41 through the first anode gas flow path 31a, it reaches the anode gas communication hole 42 of the second small stacked body 35b through the connection flow path 53 of the gas connection plate 34, and from there 2 Anode gas flow path 3 of gas separation plate 32
The anode gas communication hole 43 is reached via 2a. Also,
The third small stacked body 35 passes through the connection flow path 55 of the upper collector plate 6.
The hydrogen that has reached the anode gas communication hole 44 of c reaches the anode gas communication hole 45 from here through the anode gas flow path 31a of the first gas separation plate 31, and then flows through the connection flow path 57 of the gas connection plate 34. To reach the anode gas communication hole 46 of the fourth small stacked body 35d, and from there, through the anode gas flow passage 32a of the second gas separation plate 32, the anode gas discharge hole 39.
Reach

【0050】同様に、カソードガスである空気は、第1
小積層体35aのカソードガス供給孔38から第2ガス
分離板32のカソードガス流路32bを介してカソード
ガス連通孔47に達した後、ガス連結板34の連結流路
54を通って第2小積層体35bのカソードガス連通孔
48に達し、ここから第1ガス分離板31のカソードガ
ス流路32bを介してカソードガス連通孔49に達す
る。また、上部集電板6の連結流路56を通って第3小
積層体35cのカソードガス連通孔50に流れた空気
は、ここから第2ガス分離板32のカソードガス流路3
2bを介してカソードガス連通孔51に達した後、ガス
連結板34の連結流路58を通って第4小積層体35d
のカソードガス連通孔52に達し、ここから第1ガス分
離板31のカソードガス流路31bを介してカソードガ
ス排出孔40に達する。
Similarly, the cathode gas, air, is
After reaching the cathode gas communication hole 47 from the cathode gas supply hole 38 of the small stacked body 35a through the cathode gas flow path 32b of the second gas separation plate 32, the second gas is passed through the connection flow path 54 of the gas connection plate 34. It reaches the cathode gas communication hole 48 of the small stacked body 35b, and from there reaches the cathode gas communication hole 49 via the cathode gas flow path 32b of the first gas separation plate 31. In addition, the air that has flowed into the cathode gas communication hole 50 of the third small stacked body 35c through the connection flow path 56 of the upper current collector plate 6 is from here to the cathode gas flow path 3 of the second gas separation plate 32.
After reaching the cathode gas communication hole 51 via 2b, the fourth small stacked body 35d passes through the connection flow path 58 of the gas connection plate 34.
To the cathode gas communication hole 52, and from there to the cathode gas discharge hole 40 via the cathode gas flow path 31b of the first gas separation plate 31.

【0051】以上の場合、単電池2のアノードとなる電
極板1bとカソードとなる電極板1b間にユニット直流
電圧(例えば1ボルト)が生じ、16個ずつのセルユニ
ットが積層されている第1,第2,第3,第4小積層体
35a,35b,35c,35dにはそれぞれ16ボル
トずつの直流電圧が生じることとなる。この場合、第1
小積層体35aでは例えば単電池2の上部側の電極板1
bがアノードとなり、下部側の電極板1bがカソードと
なるため、上部側から下部側に16ボルトの電圧が生
じ、第2小積層体35bでは単電池2の上部側の電極板
1bがカソードとなり、下部側の電極板1bがアノード
となるため、下部側から上部側に16ボルトの電圧が生
じることとなる。
In the above case, a unit DC voltage (for example, 1 volt) is generated between the electrode plate 1b that serves as the anode and the electrode plate 1b that serves as the cathode of the unit cell 2, and the first 16 cell units are stacked. , A DC voltage of 16 V is generated in each of the second, third, and fourth small stacked bodies 35a, 35b, 35c, and 35d. In this case, the first
In the small stacked body 35a, for example, the electrode plate 1 on the upper side of the unit cell 2 is used.
Since b serves as an anode and the lower electrode plate 1b serves as a cathode, a voltage of 16 V is generated from the upper side to the lower side, and in the second small stacked body 35b, the upper electrode plate 1b of the unit cell 2 serves as a cathode. Since the lower electrode plate 1b serves as the anode, a voltage of 16 V is generated from the lower side to the upper side.

【0052】また、第3小積層体35cでは単電池2の
上部側の電極板1bがアノードとなり、下部側の電極板
1bがアノードとなるため、上部側から下部側に16ボ
ルトの電圧が生じ、第4小積層体35dでは単電池2の
上部側の電極板1bがカソードとなり、下部側の電極板
1bがアノードとなるため、下部側から上部側に16ボ
ルトの電圧が生じることとなる。さらに、第1,第2,
第3,第4小積層体35a,35b,35c,35dは
上部集電板6および下部集電板7を介して電気的に直列
に連結されているため、この積層体35には16×4=
64ボルトの電圧が生じることとなり、この電圧が電気
絶縁層36で電気的に分離されている上部集電板6の右
上部6cと左上部6d間から取り出されることとなる。
In the third small stack 35c, the electrode plate 1b on the upper side of the unit cell 2 serves as the anode and the electrode plate 1b on the lower side serves as the anode, so that a voltage of 16 V is generated from the upper side to the lower side. In the fourth small stacked body 35d, the electrode plate 1b on the upper side of the unit cell 2 serves as the cathode and the electrode plate 1b on the lower side serves as the anode, so that a voltage of 16 V is generated from the lower side to the upper side. Furthermore, the first, second,
Since the third and fourth small laminated bodies 35a, 35b, 35c, 35d are electrically connected in series via the upper current collecting plate 6 and the lower current collecting plate 7, the 16 × 4 =
A voltage of 64 V is generated, and this voltage is taken out between the upper right portion 6c and the upper left portion 6d of the upper current collector plate 6 which are electrically separated by the electric insulating layer 36.

【0053】以上のように、この実施例2においても、
従来の積層式固体高分子電解質型燃料電池を直列に連結
して4倍の電圧を得る場合に要求されるアノードガスや
カソードガス連結用のバルブやチューブが一切不要とな
ると共に、この燃料電池も細長く直列に連結する必要は
なく、積層式固体高分子電解質型燃料電池のコンパクト
化が図れることとなる。したがって、1つの積層体に最
大50個のセルユニットがコンパクト性の観点から積層
できるとすれば、この実施例2における積層式固体高分
子電解質型燃料電池では4倍の200個のセルユニット
を積層できる事となり、交流出力に変換するのに適した
100ボルト以上の直流電圧を1つの積層体で得ること
ができることとなる。
As described above, also in the second embodiment,
Valves and tubes for connecting anode gas and cathode gas, which are required when a conventional laminated solid polymer electrolyte fuel cell is connected in series to obtain four times the voltage, are completely unnecessary, and this fuel cell also It is not necessary to connect them in series in a slender shape, and the stacked solid polymer electrolyte fuel cell can be made compact. Therefore, if a maximum of 50 cell units can be stacked in one stack from the viewpoint of compactness, the stacked solid polymer electrolyte fuel cell in Example 2 has four times as many stacks of 200 cell units. This makes it possible to obtain a DC voltage of 100 V or more, which is suitable for conversion into an AC output, with one laminated body.

【0054】特にこの実施例2では、ガス連結板34が
断熱作用を有す樹脂で構成されているため、このガス連
結板34により最下段のセル板ユニット33の下部押え
板9側への放熱を抑えることができるという効果が生じ
る。なお、上記実施例1と同様に下部集電板7をカーボ
ン板から構成し、この下部集電板7に連結流路を形成し
てガス連結板34を省略するようにしてもよい。
In particular, in the second embodiment, since the gas connecting plate 34 is made of a resin having a heat insulating function, the gas connecting plate 34 radiates heat to the lower holding plate 9 side of the cell plate unit 33 at the lowermost stage. The effect that it can suppress is produced. The lower current collector plate 7 may be made of a carbon plate as in the case of the first embodiment, and the gas connection plate 34 may be omitted by forming a connection channel in the lower current collector plate 7.

【0055】なお、この実施例2においても、実施例1
と同様に数段のセル板ユニット33毎に冷却板を挿入し
て、この冷却板により第1,第2,第3,第4小積層体
35a,35b,35c,35dを冷却することができ
ると共に、電気絶縁層36の材質も実施例1と同様に種
々のものを用いることができる。
In the second embodiment as well, the first embodiment
Similarly, a cooling plate can be inserted into each of the cell plate units 33 of several stages, and the first, second, third and fourth small stacked bodies 35a, 35b, 35c, 35d can be cooled by this cooling plate. At the same time, various materials can be used as the material of the electric insulating layer 36 as in the first embodiment.

【0056】また、この実施例2においては、単電池板
30を第1ガス分離板31と第2ガス分離板32とで挟
み込むようにしたが、ガス分離板の表裏面にそれぞれア
ノードガス流路およびカソードガス流路を設け、このガ
ス分離板にて単電池板30を挟み込むようにしてもよ
い。さらに、この実施例2では積層体35を4つに分割
する構成としたが、単電池板およびガス分離板等の構成
を僅かに変えれば積層体を任意の数の小積層体に分割で
きる。
Further, in the second embodiment, the unit cell plate 30 is sandwiched between the first gas separation plate 31 and the second gas separation plate 32. However, the anode gas passages are formed on the front and back surfaces of the gas separation plate, respectively. Alternatively, a cathode gas flow channel may be provided, and the cell separation plate 30 may be sandwiched between the gas separation plates. Further, although the laminated body 35 is divided into four in the second embodiment, the laminated body can be divided into an arbitrary number of small laminated bodies by slightly changing the constitutions of the unit cell plate and the gas separation plate.

【0057】[0057]

【発明の効果】この発明の第1発明によれば、固体高分
子電解質膜をカソードとアノードとで挟みつけた単電池
が交互にカソードとアノードとを入れ替えた状態で同一
面方向に複数個設けられた単電池板を、各単電池のカソ
ードとアノードに対応する位置にそれぞれカソードガス
流路およびアノードガス流路が形成された一対の導電性
のガス分離板で挟着してセル板ユニットを構成し、セル
板ユニットを一対の集電極板間に複数積層して、単電池
板内の各単電池に対応する複数の小積層体が並列状態で
形成された積層体を形成し、かつ、積層体の積層方向に
電気絶縁層を設けて、各小積層体を電気的に分割すると
共に同一の単電池板内でカソードとアノードとの位置が
異なる小積層体同士を互いに隣接させて小積層体を電気
的に直列に連結し、さらに、各小積層体の積層方向にガ
ス分離板のカソードガス流路またはアノードガス流路に
連通する一対のガス入口孔およびガス出口孔をカソード
ガスおよびアノードガスについて2組形成し、さらに、
隣接する一対の小積層体の積層方向端部側に、一方の小
積層体のガス出口孔と他方の小積層体のガス入口孔とを
連結し、カソードガスおよびアノードガスを各小積層体
間の直列状態で流すガス連結板を設けたので、この積層
式固体高分子電解質型燃料電池により高電圧を得ること
ができ、従来の同様な燃料電池のように高電圧を得るた
めにこの燃料電池を機械的に直列に連結する必要はな
い。したがって、この積層式固体高分子電解質型燃料電
池はコンパクトな小型電源として利用できる。
According to the first aspect of the present invention, a plurality of unit cells in which a solid polymer electrolyte membrane is sandwiched between a cathode and an anode are provided in the same plane direction with the cathode and the anode being alternately replaced. The unit cell plate thus prepared is sandwiched by a pair of conductive gas separation plates each having a cathode gas passage and an anode gas passage formed at positions corresponding to the cathode and the anode of each unit cell to form a cell plate unit. And a plurality of cell plate units are laminated between a pair of collector electrodes to form a laminated body in which a plurality of small laminated bodies corresponding to each unit cell in the unit cell plate are formed in a parallel state, and An electrical insulating layer is provided in the stacking direction of the stacks to electrically divide each small stack and small stacks in which the positions of the cathode and the anode in the same cell plate are different from each other are adjacent to each other. Connect the body electrically in series Furthermore, two pairs formed for a pair of gas inlet holes and the gas outlet holes of the cathode gas and the anode gas in communication with the cathode gas passage or the anode gas passage of the gas separator plate in the stacking direction of each small stack, further,
The gas outlet hole of one small laminated body and the gas inlet hole of the other small laminated body are connected to the end sides of the adjacent small laminated bodies in the stacking direction, and the cathode gas and the anode gas are connected between the small laminated bodies. Since a gas connecting plate that flows in a serial state is provided, it is possible to obtain a high voltage by this laminated solid polymer electrolyte fuel cell, and in order to obtain a high voltage like a conventional similar fuel cell, this fuel cell Need not be mechanically connected in series. Therefore, this laminated solid polymer electrolyte fuel cell can be used as a compact and compact power source.

【0058】またこの発明の第2発明によれば、集電極
板にガス連結板としての機能を持たせるようにしている
ため、この積層式固体高分子電解質型燃料電池の小型化
を図ることができる。
Further, according to the second aspect of the present invention, since the collector electrode plate is made to have a function as a gas connecting plate, it is possible to miniaturize the laminated solid polymer electrolyte fuel cell. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す積層式固体高分子電
解質型燃料電池の平面図である。
FIG. 1 is a plan view of a laminated solid polymer electrolyte fuel cell showing Example 1 of the present invention.

【図2】この発明の実施例1を示す積層式固体高分子電
解質型燃料電池の側面図である。
FIG. 2 is a side view of a laminated solid polymer electrolyte fuel cell showing Example 1 of the present invention.

【図3】この発明の実施例1を示す積層式固体高分子電
解質型燃料電池のセル板ユニットの分解斜視図である。
FIG. 3 is an exploded perspective view of a cell plate unit of a laminated solid polymer electrolyte fuel cell showing Example 1 of the present invention.

【図4】(a)および(b)はそれぞれこの発明の実施
例1を示す積層式固体高分子電解質型燃料電池の第1お
よび第2ガス分離板の平面図である。
FIGS. 4 (a) and 4 (b) are plan views of first and second gas separation plates of a laminated solid polymer electrolyte fuel cell showing Example 1 of the present invention, respectively.

【図5】この発明の実施例2を示す積層式固体高分子電
解質型燃料電池の平面図である。
FIG. 5 is a plan view of a laminated solid polymer electrolyte fuel cell showing Example 2 of the present invention.

【図6】この発明の実施例2を示す積層式固体高分子電
解質型燃料電池の側面図である。
FIG. 6 is a side view of a laminated solid polymer electrolyte fuel cell showing Example 2 of the present invention.

【図7】この発明の実施例2を示す積層式固体高分子電
解質型燃料電池のセル板ユニットの分解斜視図である。
FIG. 7 is an exploded perspective view of a cell plate unit of a laminated solid polymer electrolyte fuel cell showing Example 2 of the present invention.

【図8】(a)および(b)はそれぞれこの発明の実施
例2を示す積層式固体高分子電解質型燃料電池の第1お
よび第2ガス分離板の平面図である。
8 (a) and 8 (b) are plan views of first and second gas separation plates of a laminated solid polymer electrolyte fuel cell showing Example 2 of the present invention, respectively.

【図9】従来技術に係る積層式固体高分子電解質型燃料
電池の平面図である。
FIG. 9 is a plan view of a stacked solid polymer electrolyte fuel cell according to a conventional technique.

【図10】従来技術に係る積層式固体高分子電解質型燃
料電池の側面図である。
FIG. 10 is a side view of a stacked solid polymer electrolyte fuel cell according to a conventional technique.

【図11】従来技術に係る積層式固体高分子電解質型燃
料電池の単電池およびガス分離板の分解斜視図である。
FIG. 11 is an exploded perspective view of a unit cell and a gas separation plate of a stacked solid polymer electrolyte fuel cell according to a conventional technique.

【図12】(a)および(b)はそれぞれ従来技術に係
る積層式固体高分子電解質型燃料電池のアノードガス分
離板およびカソードガス分離板の平面図である。
12 (a) and 12 (b) are plan views of an anode gas separation plate and a cathode gas separation plate of a stacked solid polymer electrolyte fuel cell according to a conventional technique, respectively.

【符号の説明】[Explanation of symbols]

1 単電池板 1a 固体高分子電解質膜 1b 電極板(アノードまたはカソード) 2 単電池 3 第1ガス分離板(ガス分離板) 3a アノードガス流路 3b カソードガス流路 4 第2ガス分離板(ガス分離板) 4a アノードガス流路 4b カソードガス流路 5 セル板ユニット 6 上部集電板(集電極板) 7 下部集電板(集電極板) 10 積層体 10a 第1小積層体(小積層体) 10b 第2小積層体(小積層体) 11 電気絶縁層 12 アノードガス供給孔(ガス入口孔) 13 アノードガス排出孔(ガス出口孔) 14 カソードガス供給孔(ガス入口孔) 15 カソードガス排出孔(ガス出口孔) 16 アノードガス連通孔(ガス入口孔) 17 アノードガス連通孔(ガス出口孔) 18 カソードガス連通孔(ガス入口孔) 19 カソードガス連通孔(ガス出口孔) 30 単電池板 31 第1ガス分離板(ガス分離板) 31a アノードガス流路 31b カソードガス流路 32 第2ガス分離板(ガス分離板) 32a アノードガス流路 32b カソードガス流路 33 セル板ユニット 35 積層体 35a 第1小積層体(小積層体) 35b 第2小積層体(小積層体) 35c 第3小積層体(小積層体) 35d 第4小積層体(小積層体) 36 電気絶縁層 37 アノードガス供給孔(ガス入口孔) 38 アノードガス排出孔(ガス出口孔) 39 カソードガス供給孔(ガス入口孔) 40 カソードガス排出孔(ガス出口孔) 41 アノードガス連通孔(ガス出口孔) 42 アノードガス連通孔(ガス入口孔) 43 アノードガス連通孔(ガス出口孔) 44 アノードガス連通孔(ガス入口孔) 45 アノードガス連通孔(ガス出口孔) 46 アノードガス連通孔(ガス入口孔) 47 カソードガス連通孔(ガス出口孔) 48 カソードガス連通孔(ガス入口孔) 49 カソードガス連通孔(ガス出口孔) 50 カソードガス連通孔(ガス入口孔) 51 カソードガス連通孔(ガス出口孔) 52 カソードガス連通孔(ガス入口孔) 1 Single Battery Plate 1a Solid Polymer Electrolyte Membrane 1b Electrode Plate (Anode or Cathode) 2 Single Battery 3 First Gas Separation Plate (Gas Separation Plate) 3a Anode Gas Flow Path 3b Cathode Gas Flow Path 4 Second Gas Separation Plate (Gas Separation plate) 4a Anode gas flow path 4b Cathode gas flow path 5 Cell plate unit 6 Upper current collection plate (collection electrode plate) 7 Lower current collection plate (collection electrode plate) 10 Laminated body 10a First small laminated body (small laminated body) ) 10b 2nd small laminated body (small laminated body) 11 electric insulating layer 12 anode gas supply hole (gas inlet hole) 13 anode gas discharge hole (gas outlet hole) 14 cathode gas supply hole (gas inlet hole) 15 cathode gas discharge Hole (gas outlet hole) 16 Anode gas communication hole (gas inlet hole) 17 Anode gas communication hole (gas outlet hole) 18 Cathode gas communication hole (gas inlet hole) 19 Cathode gas communication Through hole (gas outlet hole) 30 Single cell plate 31 First gas separation plate (gas separation plate) 31a Anode gas flow path 31b Cathode gas flow path 32 Second gas separation plate (gas separation plate) 32a Anode gas flow path 32b Cathode Gas channel 33 Cell plate unit 35 Laminated body 35a First small laminated body (small laminated body) 35b Second small laminated body (small laminated body) 35c Third small laminated body (small laminated body) 35d Fourth small laminated body ( Small laminated body 36 Electric insulation layer 37 Anode gas supply hole (gas inlet hole) 38 Anode gas discharge hole (gas outlet hole) 39 Cathode gas supply hole (gas inlet hole) 40 Cathode gas discharge hole (gas outlet hole) 41 Anode Gas communication hole (gas outlet hole) 42 Anode gas communication hole (gas inlet hole) 43 Anode gas communication hole (gas outlet hole) 44 Anode gas communication hole (gas inlet hole) 45 Anode gas communication hole (gas outlet hole) 46 Anode gas communication hole (gas inlet hole) 47 Cathode gas communication hole (gas outlet hole) 48 Cathode gas communication hole (gas inlet hole) 49 Cathode gas communication hole (gas outlet hole) 50 Cathode gas communication hole (gas inlet hole) 51 Cathode gas communication hole (gas outlet hole) 52 Cathode gas communication hole (gas inlet hole)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜をカソードとアノー
ドとで挟みつけた単電池が交互に前記カソードと前記ア
ノードとを入れ替えた状態で同一面方向に複数個設けら
れた単電池板を、前記単電池板の前記各単電池の前記カ
ソードと前記アノードに対応する位置にそれぞれカソー
ドガス流路およびアノードガス流路が形成された一対の
導電性のガス分離板で挟着してセル板ユニットを構成
し、前記セル板ユニットを一対の集電極板間に複数積層
して、前記電池板内の前記各単電池に対応する複数の小
積層体が並列状態で形成された積層体を形成し、 かつ、前記積層体の積層方向に電気絶縁層を設けて、前
記各小積層体を電気的に分割すると共に同一の前記単電
池板内で前記カソードと前記アノードとの位置が異なる
前記小積層体同士を互いに隣接させて前記小積層体を電
気的に直列に連結し、 さらに、前記各小積層体の積層方向に前記ガス分離板の
前記カソードガス流路または前記アノードガス流路に連
通する一対のガス入口孔およびガス出口孔を前記カソー
ドガスおよび前記アノードガスについて2組形成し、 さらに、隣接する一対の前記小積層体の積層方向端部側
に、一方の小積層体の前記ガス出口孔と他方の小積層体
の前記ガス入口孔とを連結し、前記カソードガスおよび
前記アノードガスを前記各小積層体間の直列状態で流す
ガス連結板を設けたことを特徴とする積層式固体高分子
電解質型燃料電池。
1. A unit cell plate in which a plurality of unit cells each having a solid polymer electrolyte membrane sandwiched between a cathode and an anode are provided in the same plane direction with the cathode and the anode being interchanged, The cell plate unit is sandwiched by a pair of conductive gas separation plates having a cathode gas flow path and an anode gas flow path formed at positions corresponding to the cathode and the anode of each of the unit cells of the unit cell plate. And a plurality of the cell plate units are laminated between a pair of collector electrodes to form a laminated body in which a plurality of small laminated bodies corresponding to the individual cells in the battery plate are formed in a parallel state, Further, an electrical insulating layer is provided in the stacking direction of the stacked body to electrically divide the small stacked bodies, and the cathode and the anode are located at different positions within the same single cell plate. Each other A pair of gas inlets that are in contact with each other and electrically connect the small stacked bodies in series, and that communicate with the cathode gas flow path or the anode gas flow path of the gas separation plate in the stacking direction of the small stacked bodies. Two sets of holes and gas outlet holes are formed for the cathode gas and the anode gas, and further, the gas outlet holes of one of the small laminates and the other of the pair of adjacent small laminates are provided on the end side in the stacking direction. A laminated solid polymer electrolyte type, characterized in that a gas connecting plate is provided which is connected to the gas inlet hole of the small laminated body and flows the cathode gas and the anode gas in a serial state between the small laminated bodies. Fuel cell.
【請求項2】 固体高分子電解質膜をカソードとアノー
ドとで挟みつけた単電池が交互に前記カソードと前記ア
ノードとを入れ替えた状態で同一面方向に複数個設けら
れた単電池板を、前記単電池板の前記各単電池の前記カ
ソードと前記アノードに対応する位置にそれぞれカソー
ドガス流路およびアノードガス流路が形成された一対の
導電性のガス分離板で挟着してセル板ユニットを構成
し、前記セル板ユニットを一対の集電極板間に複数積層
して、前記電池板内の前記各単電池に対応する複数の小
積層体が並列状態で形成された積層体を形成し、 かつ、前記積層体の積層方向に電気絶縁層を設けて、前
記各小積層体を電気的に分割すると共に同一の前記単電
池板内で前記カソードと前記アノードとの位置が異なる
前記小積層体同士を互いに隣接させて前記小積層体を電
気的に直列に連結し、 さらに、前記各小積層体の積層方向に前記ガス分離板の
前記カソードガス流路または前記アノードガス流路に連
通する一対のガス入口孔およびガス出口孔を前記カソー
ドガスおよび前記アノードガスについて2組形成し、 さらに、隣接する一対の前記小積層体の一方の小積層体
の前記ガス出口孔と他方の小積層体の前記ガス入口孔と
を連結して前記カソードガスおよび前記アノードガスを
前記各小積層体間に直列状態で流すガス連結路を前記集
電極板に設けたことを特徴とする積層式固体高分子電解
質型燃料電池。
2. A unit cell plate in which a plurality of unit cells having a solid polymer electrolyte membrane sandwiched between a cathode and an anode are provided in the same plane direction with the cathode and the anode being interchanged, The cell plate unit is sandwiched by a pair of conductive gas separation plates having a cathode gas flow path and an anode gas flow path formed at positions corresponding to the cathode and the anode of each of the unit cells of the unit cell plate. And a plurality of the cell plate units are laminated between a pair of collector electrodes to form a laminated body in which a plurality of small laminated bodies corresponding to each of the unit cells in the battery plate are formed in parallel, Further, an electrical insulating layer is provided in the stacking direction of the stacked body to electrically divide the small stacked bodies, and the cathode and the anode are located at different positions within the same single cell plate. Each other A pair of gas inlets that are in contact with each other and electrically connect the small stacked bodies in series, and that communicate with the cathode gas flow path or the anode gas flow path of the gas separation plate in the stacking direction of the small stacked bodies. Two sets of holes and gas outlet holes are formed for the cathode gas and the anode gas, and further, the gas outlet hole of one small laminate of the pair of adjacent small laminates and the gas inlet of the other small laminate. A stack type solid polymer electrolyte fuel cell, characterized in that a gas connection path is provided in the collector electrode plate to connect the holes to flow the cathode gas and the anode gas in a serial state between the small stacks. ..
JP4121914A 1992-05-14 1992-05-14 Stacked solid polymer electrolyte fuel cell Expired - Fee Related JP3031781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121914A JP3031781B2 (en) 1992-05-14 1992-05-14 Stacked solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121914A JP3031781B2 (en) 1992-05-14 1992-05-14 Stacked solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH05326010A true JPH05326010A (en) 1993-12-10
JP3031781B2 JP3031781B2 (en) 2000-04-10

Family

ID=14823041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121914A Expired - Fee Related JP3031781B2 (en) 1992-05-14 1992-05-14 Stacked solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3031781B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750797A1 (en) * 1994-02-23 1997-01-02 William R. Richards Fuel cell having uniform compressive stress distribution over active area
JP2001236975A (en) * 2000-02-22 2001-08-31 Honda Motor Co Ltd Fuel cell stack
JP2002260710A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2007335213A (en) * 2006-06-14 2007-12-27 Kawamura Electric Inc Fuel cell stack
JP2008010302A (en) * 2006-06-29 2008-01-17 Electric Power Dev Co Ltd Fuel cell
JP2009054597A (en) * 2008-10-30 2009-03-12 Honda Motor Co Ltd Fuel cell stack and reaction gas supply method of fuel cell stack
JP2010165692A (en) * 2010-03-25 2010-07-29 Honda Motor Co Ltd Solid polymer cell assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750797A1 (en) * 1994-02-23 1997-01-02 William R. Richards Fuel cell having uniform compressive stress distribution over active area
EP0750797A4 (en) * 1994-02-23 2000-02-09 William R Richards Fuel cell having uniform compressive stress distribution over active area
JP2001236975A (en) * 2000-02-22 2001-08-31 Honda Motor Co Ltd Fuel cell stack
JP2002260710A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP4516229B2 (en) * 2001-03-06 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
JP2007335213A (en) * 2006-06-14 2007-12-27 Kawamura Electric Inc Fuel cell stack
JP2008010302A (en) * 2006-06-29 2008-01-17 Electric Power Dev Co Ltd Fuel cell
JP2009054597A (en) * 2008-10-30 2009-03-12 Honda Motor Co Ltd Fuel cell stack and reaction gas supply method of fuel cell stack
JP4572252B2 (en) * 2008-10-30 2010-11-04 本田技研工業株式会社 Fuel cell stack
JP2010165692A (en) * 2010-03-25 2010-07-29 Honda Motor Co Ltd Solid polymer cell assembly
JP4516630B2 (en) * 2010-03-25 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly

Also Published As

Publication number Publication date
JP3031781B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
CN100405645C (en) Stamped fuel cell bipolar plate
US5804326A (en) Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell
JP4344484B2 (en) Solid polymer cell assembly
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7615308B2 (en) Dual function, bipolar separator plates for fuel cells
JP3424223B2 (en) Fuel cell stack structure
JP4505204B2 (en) Fuel cell system
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
KR100534677B1 (en) Fuel cell
JP4630529B2 (en) Fuel cell system
JP2002532855A (en) Volume efficient layered manifold assembly for electrochemical fuel cell stacks
JP2007511664A (en) Symmetric shunt plate
JP3429585B2 (en) Polymer electrolyte fuel cell
KR20080053410A (en) Fuel cell
JPH11283637A (en) Fuel cell
JP2003068349A (en) Fuel cell stack and reactant gas supply method
US7585577B2 (en) Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods
JP3031781B2 (en) Stacked solid polymer electrolyte fuel cell
JP6228984B2 (en) Fuel cell
WO2000002281A2 (en) Internal cooling arrangement for undulate mea fuel cell stack
TW201036239A (en) A flow field plate of fuel cell with airflow guiding gastets
JP4185734B2 (en) Fuel cell stack
JPH10233220A (en) Solid high molecular type fuel cell
KR20050029284A (en) Plate elements for fuel cell stacks
JPH0227670A (en) Fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees