JPH05325665A - Oxide superconductive multi-conductor wire rod - Google Patents

Oxide superconductive multi-conductor wire rod

Info

Publication number
JPH05325665A
JPH05325665A JP4133649A JP13364992A JPH05325665A JP H05325665 A JPH05325665 A JP H05325665A JP 4133649 A JP4133649 A JP 4133649A JP 13364992 A JP13364992 A JP 13364992A JP H05325665 A JPH05325665 A JP H05325665A
Authority
JP
Japan
Prior art keywords
wire
oxide
critical current
current density
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4133649A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
一生 山本
Minoru Yamada
穣 山田
Masako Sato
正子 佐藤
Akira Murase
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4133649A priority Critical patent/JPH05325665A/en
Publication of JPH05325665A publication Critical patent/JPH05325665A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve superconducting stability and critical current density, and reduce anisotropy by forming an oxide superconductor in a prescribed cross sectional shape, burying at least three layers extendedly in the axial direction, and orienting the width direction to the outer peripheral surface side from the central axis. CONSTITUTION:In an oxide superconductive wire rod formed by embedding oxide superconductors (layers) 1 extendedly in the axial direction in an always conductive metallic sheath material 2, assuming that the layers 1 have a width (w) and a thickness (d), at least three layers having a cross sectional shape of 0.001w<=d<=0.3w are extendedly in the axial direction, and the width (w) direction is oriented to the outer peripheral surface side from the central axis. The cross section is formed in such a constitution as having line symmetrical axes as many as possible, and for example, when the layers 1 are arranged in the material 2 having a circular cross section, while orienting the width direction to the outer peripheral surface side with the axis as its center, the line symmetrical axes are formed innumerably in such a constitution as embedding the layers extendedly in the axial direction. Thereby, superconducting stability becomes excellent, and critical current density can be improved, and anisotropy can be also reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導多芯線材に
係り、特に異方性を解消して高い臨界電流密度を採り得
るようにした酸化物超電導多芯線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting multifilamentary wire, and more particularly to an oxide superconducting multifilamentary wire capable of eliminating anisotropy and achieving a high critical current density.

【0002】[0002]

【従来の技術】周知のように、臨界温度が 77.3Kを超え
る酸化物超電導体は、金属系超電導体の場合に比べて、
いわゆる極低温技術の問題も大幅に解消されるため、た
とえば電力・産業エレクトロニクス機器の分野などでの
利用が注目されている。そして、これらの分野で利用さ
れる酸化物超電導体の形態は、シース材を有する長尺の
線材と、シース材を有しない短尺のバルク材とに大別さ
れる。そして、シース材を有する長尺の線材は、たとえ
ば、送電ケーブルや超電導マグネットの構成用として利
用される。また、この種の超電導線材は、たとえば仮焼
した酸化物超電導体の粉末を、シース材となる金属管中
に充填した後、スウェージング、ドローイング、および
ロール加工によって減面加工を施して伸線し、最終的に
熱処理を施すことによって製造している。図10はこのよ
うにして得られたテープ状の超電導線材を断面的に示し
たもので、1は酸化物超電導体、2はシース材をそれぞ
れ示す。この製造工程で超電導線材が、一般的にテープ
状に加工・製造されるのは、酸化物超電導体層におい
て、結晶粒の方位が揃い易い(配向くし易い)からであ
る。 ところで、この種の酸化物超電導体においては、
個々の結晶粒の臨界電流密度Jcに大きな異方性が存在す
るので、線材全長に亘って臨界電流密度Jcの高い実用性
のある超電導線材を得るには、酸化物超電導体1中の結
晶粒を適性に配向させておくことが重要視される。この
よう問題に対応して、前記減面加工をテープ状の加工限
界(厚さの面から)である 0.1mm程度まで薄くすること
により、臨界電流密度Jcを向上し得るが、この薄形化し
たものに、さらに熱処理とプレス加工やロール加工など
を繰り返し施して、結晶配向の度合いを高めることによ
り、たとえばBi系テープ線材においては、最大54,000A/
cm2 の臨界電流密度Jc(77.3K,0T)を有するものも知ら
れている。しかし、この臨界電流密度Jcを高めたテープ
線材は、いわゆる単芯線(線材中に酸化物超電導体コア
が1つしかない線材)であり、この単芯線で超電導コイ
ルを構成した場合、酸化物超電導体のフィラメントが太
過ぎるため、構成された超電導コイルの超電導安定性が
低いという問題がある。 一方、このようなコイルの安
定性の問題を考慮して、多芯線材化することが試みられ
ている。つまり、多芯線材化することにより、線材の太
さを変えずにフィラメントの細線化を図り、超電導安定
な超電導コイルの構成に適する超電導線材として機能さ
せようとするものである。そして、この多芯線材は、酸
化物超電導体を、シース材を成す被覆材(管)内に挿入
してスエージング、ドローイングによって直径 1〜 2mm
まで減面加工を施して複合体とし、この複合体を第2の
被覆材(管)内に挿入・配置して、再度減面加工を施す
ことによって、図11に断面構造を示すような酸化物超電
導多芯線材を得ている。図11において1は酸化物超電導
体、2はシース材である。
2. Description of the Related Art As is well known, oxide superconductors having a critical temperature of more than 77.3K have a higher thermal conductivity than metal superconductors.
Since the problem of so-called cryogenic technology is largely solved, its use in the field of electric power / industrial electronic devices, for example, is drawing attention. The form of the oxide superconductor used in these fields is roughly classified into a long wire having a sheath material and a short bulk material having no sheath material. The long wire having the sheath material is used, for example, for forming a power transmission cable or a superconducting magnet. In addition, this type of superconducting wire is prepared by, for example, filling a powder of a calcined oxide superconductor into a metal tube that serves as a sheath material, and then subjecting it to surface-reducing processing by swaging, drawing, and rolling to draw a wire. Then, it is finally manufactured by heat treatment. FIG. 10 is a cross-sectional view of the tape-shaped superconducting wire obtained in this way, where 1 is an oxide superconductor and 2 is a sheath material. The reason why the superconducting wire is generally processed and manufactured into a tape shape in this manufacturing process is that the crystal grains in the oxide superconducting layer are easily aligned (orientated). By the way, in this kind of oxide superconductor,
Since there is a large anisotropy in the critical current density Jc of each crystal grain, in order to obtain a practical superconducting wire with a high critical current density Jc over the entire length of the wire, the crystal grains in the oxide superconductor 1 It is important to properly orient. In response to such a problem, the critical current density Jc can be improved by thinning the surface-reduction processing to a tape-shaped processing limit (from the surface of thickness) of about 0.1 mm. Heat treatment and press working or roll working are repeatedly applied to the formed product to increase the degree of crystal orientation. For example, in the case of Bi tape wire, a maximum of 54,000 A /
Those with a critical current density Jc (77.3K, 0T) of cm 2 are also known. However, the tape wire material having an increased critical current density Jc is a so-called single-core wire (a wire material having only one oxide superconductor core in the wire material). Since the filament of the body is too thick, there is a problem that the superconducting coil configured has low superconducting stability. On the other hand, in consideration of such a problem of coil stability, attempts have been made to make a multi-core wire. That is, by making the multi-core wire rod, it is possible to make the filament thin without changing the thickness of the wire rod and to make it function as a superconducting wire rod suitable for the construction of a superconducting coil having stable superconductivity. The multifilamentary wire has a diameter of 1 to 2 mm by swaging and drawing by inserting the oxide superconductor into the covering material (tube) that forms the sheath material.
By reducing the surface area to form a composite, inserting and arranging this composite in the second coating material (tube), and performing the surface reduction processing again, the oxidation as shown in the cross-sectional structure in Fig. 11 is performed. We have obtained superconducting multi-core wire. In FIG. 11, 1 is an oxide superconductor and 2 is a sheath material.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記構
成の酸化物超電導多芯線材の場合は、各酸化物超電導体
1の幅wと厚さdの比が 1に近く、各酸化物超電導体1
の結晶配向があまりよくないので、臨界電流密度Jcも高
々103 A/cm2 程度に過ぎない。この点を改善するため、
前記図11に図示した酸化物超電導多芯線材を圧延加工し
て、図12に断面を示すごとく多芯テープ線材とすること
も試みられている。この多芯テープ線材化により、各酸
化物超電導体1の結晶粒の配向性が向上し、臨界電流密
度Jcも104A/cm2 程度に向上するが、一方では磁界中で
の臨界電流密度Jcの異方性が問題になる。
However, in the case of the oxide superconducting multifilamentary wire having the above structure, the ratio of the width w to the thickness d of each oxide superconductor 1 is close to 1, and each oxide superconductor 1
Since the crystal orientation of is not so good, the critical current density Jc is no more than about 10 3 A / cm 2 . To improve this point,
It has also been attempted to roll the oxide superconducting multifilamentary wire shown in FIG. 11 into a multifilamentary tape wire as shown in FIG. This multifilamentary tape wire material improves the orientation of the crystal grains of each oxide superconductor 1 and improves the critical current density Jc to about 10 4 A / cm 2 , but on the other hand, the critical current density in a magnetic field is increased. The anisotropy of Jc becomes a problem.

【0004】ここで、異方性とは、外部磁界がテープ線
材面に垂直に印加されたときの臨界電流密度Jcが、外部
磁界をテープ線材面に平行に印加した場合に比べて、磁
界の増加とともに急激に減少するすることを示す。図13
は単芯テープ線材の場合の異方性の一例を示したもの
で、多芯テープ線材の場合も、単芯テープ線材の場合ほ
ど顕著でないが同様の傾向が認められる。なお、図13に
おいて、曲線aは外部磁界をテープ線材面に垂直に印加
したときの臨界電流密度Jcを、曲線bは外部磁界をテー
プ線材面に平行に印加したときの臨界電流密度Jcをそれ
ぞれ示す。
Here, the term "anisotropic" means that the critical current density Jc when an external magnetic field is applied perpendicularly to the tape wire surface is larger than that when the external magnetic field is applied parallel to the tape wire surface. It shows that it decreases sharply with increase. Figure 13
Shows an example of anisotropy in the case of a single-core tape wire, and the same tendency is observed in the case of a multi-core tape wire, although it is not so remarkable as in the case of a single-core tape wire. In FIG. 13, a curve a is the critical current density Jc when an external magnetic field is applied perpendicularly to the tape wire surface, and a curve b is a critical current density Jc when the external magnetic field is applied parallel to the tape wire surface. Show.

【0005】前記酸化物超電導線材の磁界中における異
方性は、たとえば円筒型のコイルを酸化物超電導線材で
構成した場合、コイル端部ではテープ面に垂直な磁界成
分が大きくなり、この部分で臨界電流密度Jcが小さく制
限(抑制)されて、コイルぜんたいに大きな電流を流す
ことができないという問題がある。また、テープ線材で
は、曲げ歪みによる劣化でも異方性が強く現れる。すな
わち、テープ線材の厚さ方向の曲げ(平曲げ)に対して
は、曲げ半径が小さくても曲げ歪みが小さく、臨界電流
密度Jcの劣化も小さいが、幅方向の曲げ(エッジ曲げ)
に対しては、曲げ半径が大きくても大きな曲げ歪みが生
じ臨界電流密度Jcの劣化が大きい。この曲げに対する異
方性は、テープ線材特有の問題であり、たとえばソレノ
イドコイルを構成した場合、両端の巻き返し部分におけ
る臨界電流密度Jcの劣化の原因となっている。
The anisotropy of the oxide superconducting wire in the magnetic field is large, for example, when the cylindrical coil is made of the oxide superconducting wire, the magnetic field component perpendicular to the tape surface becomes large at the coil end. There is a problem that the critical current density Jc is limited (suppressed) to a small value and a large current cannot flow through the coil. Further, in the tape wire, anisotropy appears strongly even if it is deteriorated by bending strain. That is, with respect to the bending (flat bending) of the tape wire in the thickness direction, even if the bending radius is small, the bending strain is small, and the deterioration of the critical current density Jc is also small, but the bending in the width direction (edge bending)
On the other hand, even if the bending radius is large, a large bending strain occurs and the critical current density Jc is greatly deteriorated. This anisotropy with respect to bending is a problem peculiar to the tape wire material, and, for example, when a solenoid coil is configured, it causes deterioration of the critical current density Jc in the rewound portions at both ends.

【0006】前記したように、超電導線材においては実
用上次のような特性、すなわち超電導安定性,高臨界電
流密度Jcを有すること,異方性を呈しないことなど実用
上望まれながら、これらの各特性を兼ね備えた超電導線
材は、未だ実現されていないのが実情である。
As described above, in the superconducting wire, the following characteristics are practically required, that is, the superconducting stability, the high critical current density Jc, the anisotropy, and the like are practically desired. The reality is that a superconducting wire having all the characteristics has not yet been realized.

【0007】本発明は上記事情に対処してなされたもの
で、超電導安定性,高臨界電流密度および異方性も低減
されて超電導コイルなどの構成に適する酸化物超電導多
芯線材の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide superconducting multifilamentary wire having a superconducting stability, a high critical current density, and anisotropy reduced and suitable for a superconducting coil or the like. And

【0008】[0008]

【課題を解決するための手段】本発明の酸化物超電導多
芯線材は、酸化物超電導体(層)を常電導体金属シース
材中に軸方向へ延伸埋設して成る酸化物超電導線材にお
いて、前記酸化物超電導体(層)は幅w,厚さdとした
とき、 0.001w≦d≦ 0.3wの断面形状を有する少なく
とも3本が軸方向へ延伸埋設され、かつその幅w方向が
中心軸から外周面側に配向されていることを特徴とす
る。
The oxide superconducting multifilamentary wire of the present invention is an oxide superconducting wire formed by axially extending and embedding an oxide superconductor (layer) in a normal conductor metal sheath material. When the oxide superconductor (layer) has a width w and a thickness d, at least three having a cross-sectional shape of 0.001w ≦ d ≦ 0.3w are axially embedded and the width w direction is the central axis. To the outer peripheral surface side.

【0009】本発明においては、常電導体金属シース材
中に軸方向へ延伸埋設された酸化物超電導体の幅w,厚
さdとしたときに、wに対するdの比(アスペクト比)
が0.001w≦d≦ 0.3wの断面形状を有する必要があ
る。すなわち、 d/w≦ 0.001では酸化物超電導体(層)
の厚さが薄くなり過ぎ、減面加工時に酸化物超電導体
(層)から成るフィラメント断線する恐れがあり、結果
的に導電機能の信頼性が損なわれ易いし、また d/w≧
0.3では酸化物超電導体(層)が厚くなり過ぎ、結晶粒
が所要の配向を行い難くなる傾向が認められる。たとえ
ば幅 2.5mmのテープ線材において、酸化物超電導体
(層)の幅wを 2mmと一定に設定し、厚さを 1〜1000μ
m の範囲で変化させたときの臨界電流密度Jcとの関係を
求めたところ図1に示すごとくであった。ここで、フィ
ラメントの断線を起こさず、かつ高い臨界電流密度Jcが
得られる酸化物超電導体(層)の厚さは、 2μm 〜 600
μm より好ましくは10μm 〜 200μm である。
In the present invention, when the width w and the thickness d of the oxide superconductor axially stretched and embedded in the normal conductor metal sheath material are taken, the ratio of d to w (aspect ratio) is obtained.
Must have a cross-sectional shape of 0.001w ≦ d ≦ 0.3w. That is, when d / w ≤ 0.001, oxide superconductor (layer)
Of the oxide superconductor (layer) may be broken during surface-reduction processing, and as a result the reliability of the conductive function is likely to be impaired, and d / w ≧
At 0.3, the oxide superconductor (layer) becomes too thick, and it tends to be difficult for the crystal grains to perform the required orientation. For example, in a tape wire with a width of 2.5 mm, the width w of the oxide superconductor (layer) is set to a constant value of 2 mm, and the thickness is 1 to 1000 μm.
When the relationship with the critical current density Jc when changing in the range of m was obtained, it was as shown in FIG. Here, the thickness of the oxide superconductor (layer) that does not cause filament breakage and that can obtain a high critical current density Jc is 2 μm to 600 μm.
More preferably, it is 10 μm to 200 μm.

【0010】本発明においては、異方性を可及的に小さ
くするために、横断面はできるだけ線対称軸の多い構成
が望ましく、たとえば図2に断面的に示すごとく、断面
が円形で、常電導体金属シース材2中に酸化物超電導体
(層)1を、その幅方向を軸を中心として外周面側に配
向させながら、かつ軸方向へ延伸埋設させた構成とし、
線対称軸を無数にして異方性を解消させ得る。なお、前
記異方性の解消は、断面が円形の場合に限られるもので
なく、シース材2中に延伸埋設させる酸化物超電導体
(層)1を3以上に選択・設定し、また横断面を 3≦n
の正n角形(nが大きいほどよい)とした場合は、その
程度差があるもののいずれも可能である。たとえば図3
に断面的に示すごとく、正六角形の場合は横断面が円形
の場合に比べて、断面の線対称軸は少ないが、前記のよ
うに酸化物超電導体(層)1を外周面側に配向させるこ
とにより、異方性の低減が可能となる。さらに、横断面
を楕円形としてもよいが、この場合は長軸aと短軸bと
の比を 1≦a/b≦ 2程度に設定することが好ましい。
In the present invention, in order to make the anisotropy as small as possible, it is desirable that the transverse section has as many axially symmetrical axes as possible. For example, as shown in the sectional view of FIG. A structure in which an oxide superconductor (layer) 1 is embedded in an electric conductor metal sheath material 2 while being oriented in the outer peripheral surface side about the axis in the width direction and extending in the axial direction,
Anisotropy can be eliminated by making the axis of line symmetry innumerable. The elimination of the anisotropy is not limited to the case where the cross section is circular, and the oxide superconductor (layer) 1 to be stretched and embedded in the sheath material 2 is selected and set to 3 or more, and the cross section is also set. For 3 ≦ n
In the case of a regular n-sided polygon (the larger n is, the better), it is possible to use any of those having different degrees. Figure 3
As shown in a sectional view in FIG. 3, the hexagonal shape has a smaller line symmetry axis in the cross section than the circular cross section, but the oxide superconductor (layer) 1 is oriented to the outer peripheral surface side as described above. As a result, the anisotropy can be reduced. Furthermore, the cross section may be elliptical, but in this case, it is preferable to set the ratio of the major axis a and the minor axis b to about 1 ≦ a / b ≦ 2.

【0011】本発明においては、異方性を小さくするた
めに、常電導体金属シース材2中に外周面側に配向させ
ながら、かつ軸方向へ延伸埋設する酸化物超電導体
(層)1を3以上に選択・設定される。つまり、2以下
では従来のテープ線材の場合と変わりがなく、3以上に
選択・設定することにより異方性の低減が図られる。た
とえば、図4に断面的に示すごとく、酸化物超電導体
(層)1の数が4つの場合でも、異方性は低減される。
すなわち、図5に示すように磁界を4つの酸化物層のう
ち2つに平行に、2つに垂直に印加したときの臨界電流
密度Jc(曲線a)と、全ての酸化物層に45°の角度をな
すように磁界を印加したときの臨界電流密度Jc(曲線
b)との差が比較的小さく異方性の低減されていること
が分かる。
In the present invention, in order to reduce the anisotropy, the oxide superconductor (layer) 1 is embedded in the normal conductor metal sheath material 2 while being oriented toward the outer peripheral surface side and being stretched and embedded in the axial direction. It is selected and set to 3 or more. That is, when the number is 2 or less, there is no difference from the case of the conventional tape wire, and the anisotropy can be reduced by selecting and setting the number 3 or more. For example, as shown in a sectional view in FIG. 4, even when the number of oxide superconductors (layers) 1 is four, the anisotropy is reduced.
That is, as shown in FIG. 5, the critical current density Jc (curve a) when a magnetic field is applied in parallel to two of the four oxide layers and perpendicular to the two, and 45 ° in all the oxide layers. It can be seen that the difference from the critical current density Jc (curve b) when a magnetic field is applied to form the angle is relatively small and the anisotropy is reduced.

【0012】さらに、本発明に係る線材では、線材自身
をツイストしたときの臨界電流密度Jcが小さいという特
長がある。現在使用されれている金属系超電導線材で
は、コイル化したときの超電導安定性をさらに高め、交
流損失を低減するために線材をツイストしているが、導
体にツイストを行うと一部のフィラメントに大きな曲げ
歪みがくわわって大幅な臨界電流密度Jcの劣化を招く。
これに対して本発明に係る線材の場合は、このようなツ
イストを行ったときに、酸化物超電導体の層にかかる歪
みが小さいので、臨界電流密度Jcの劣化がない。
Further, the wire rod according to the present invention is characterized in that the critical current density Jc when the wire rod itself is twisted is small. In the metal-based superconducting wire currently used, the wire is twisted to further improve the superconducting stability when coiled and to reduce AC loss. A large bending strain is added to cause a significant deterioration of the critical current density Jc.
On the other hand, in the case of the wire according to the present invention, when such twisting is performed, the strain applied to the layer of the oxide superconductor is small, so that the critical current density Jc does not deteriorate.

【0013】本発明においてシース材中に外周面側に配
向させながら、かつ軸方向へ延伸埋設される酸化物超電
導体(層)としては、たとえば Y系で代表される希土類
元素含有の酸化物超電導体、La-Sr-Cu-O系, Bi-Sr-Ca-
Cu-O系, Tl-Ba-Ca-Cu-O系,Nd-Ce-Cu-O系の酸化物超電
導体などが挙げられる。具体例としては、希土類元素含
有の酸化物超電導体の場合、Re M2 Cu3 O 7-δ(ただし
ReはY,La,Sc,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,Lu などの希
土類元素から選ばれた少なくとも1種の元素、MはBi,S
r,Caから選ばれた少なくとも1種の元素、δは酸素欠陥
を表し通常 1意かの数、Cuの一部はTi,V,Cr,Mn,Fe,Co,N
i,Znなどで置換が可能)例示される。また、Bi系酸化物
超電導体としては、Bi2 Sr2 Ca2 Cu3 O x ,Bi2 (Sr, C
a)3 Cu2O x などが例示され、Tl系酸化物超電導体とし
ては、Tl2 Ba2 Ca2 Cu3 O y ,Tl2 (Ba, Ca)3 Cu2 O y
などが例示され、さらにこれらにAgまたはAg2 0 添加し
たものなどでもよい。
In the present invention, the oxide superconductor (layer) that is embedded in the sheath material while being oriented on the outer peripheral surface side and stretched and embedded in the axial direction is, for example, an oxide superconductor containing a rare earth element represented by Y system. Body, La-Sr-Cu-O system, Bi-Sr-Ca-
Cu-O-based, Tl-Ba-Ca-Cu-O-based, and Nd-Ce-Cu-O-based oxide superconductors are examples. As a specific example, in the case of an oxide superconductor containing a rare earth element, Re M 2 Cu 3 O 7-δ (however,
Re is at least one element selected from rare earth elements such as Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and M is Bi, S
At least one element selected from r and Ca, δ is an oxygen deficiency and is usually a number, and a part of Cu is Ti, V, Cr, Mn, Fe, Co, N
i, Zn, etc. can be substituted). Bi-based oxide superconductors include Bi 2 Sr 2 Ca 2 Cu 3 O x and Bi 2 (Sr, C
a) 3 Cu 2 O x and the like are exemplified, and Tl-based oxide superconductors include Tl 2 Ba 2 Ca 2 Cu 3 O y and Tl 2 (Ba, Ca) 3 Cu 2 O y.
And the like, and may be the one in which Ag or Ag 2 0 is added.

【0014】本発明においてシース材は、室温,熱処理
温度などで内部に埋め込んだ酸化物超電導体によって酸
化されないことを要するとともに、超電導が破れたとき
に流れる電流をバイバスできる電気的な良導体であれば
よい。そして、具体的には、たとえばAg,Au,Pt,Pd,Cuも
しくはこれらの2種以上から成る合金、より好ましくは
Agが挙げられ、これらの金属の機械的な強度を上げるた
め、微量の金属酸化物、たとえば SnO2 ,ZnO, Al2 O 3
を添加した複合体であってもよい。.
In the present invention, the sheath material is required to be not oxidized by the oxide superconductor embedded therein at room temperature, heat treatment temperature, etc., and is an electrically good conductor which can bypass the current flowing when the superconductivity is broken. Good. And specifically, for example, Ag, Au, Pt, Pd, Cu or an alloy composed of two or more of these, more preferably
Ag is mentioned, and in order to increase the mechanical strength of these metals, trace amounts of metal oxides such as SnO 2 , ZnO, Al 2 O 3 are used.
It may be a complex to which is added. .

【0015】[0015]

【作用】本発明に係る酸化物超電導多芯線材において
は、多芯的に配置埋設される酸化物超電導体(層)を結
晶粒配向に好ましい形状として、高い臨界電流密度Jcを
流し得るばかりでなく、所定の方向性を持たせたことに
より、一方では異方性が大幅に低減ないし解消される。
つまり、超電導マグネットを構成するためコイル化する
に当たり、磁界と線材のなす角度による臨界電流密度Jc
の変化や、線材の曲げ方向の違いによる臨界電流密度Jc
の劣化度合いの違いが解消され、超電導安定性の大電流
型(大容量型)の超電導装置の構成に適するものといえ
る。
In the oxide superconducting multifilamentary wire according to the present invention, the oxide superconductor (layer) arranged and embedded in the multifilament is formed into a preferable shape for crystal grain orientation, and only a high critical current density Jc can be flowed. On the other hand, by giving a predetermined directionality, on the other hand, the anisotropy is significantly reduced or eliminated.
That is, when forming a coil to form a superconducting magnet, the critical current density Jc depends on the angle between the magnetic field and the wire.
Of the critical current density Jc
It can be said that this is suitable for the construction of a large-current type (large-capacity type) superconducting device with superconducting stability, since the difference in the degree of deterioration is eliminated.

【0016】[0016]

【実施例】以下図6〜図9を参照して本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0017】実施例1 蓚酸塩共沈法で調製した酸化物超電導体微粉末を先ず用
意した。この微粉末はIPC分析の結果、Bi:Pb:Sr:Ca:Cu
=1.72:0.34:1.83:1.97:3.13の組成を成していた。そし
て、この蓚酸塩共沈粉100gほどを MgO製試料皿に収容し
て大気中 800℃×40hr仮焼を行った。この仮焼後、 1〜
10μm 程度の径まで粉砕して仮焼粉を得、この仮焼粉の
相をX線回折によって調べたところ、(Bi, Pb)2 Sr2 Ca
Cu2 O x(低Tc相)とCa2 Pb O4 ,CuOとの混合相であっ
た。前記仮焼粉を外径 6mm,内径5mmのAg管に充填し、
引き抜き加工(ドローイング)と圧延加工(ローリン
グ)を施して幅 2.5mm,厚さ0.15mmのテープ線材を作成
した。このテープ線材を長さ100mmに切断し、 700℃×2
0hr熱処理を施して加工歪みを除去した。
Example 1 Oxide superconductor fine powder prepared by the oxalate coprecipitation method was first prepared. As a result of IPC analysis, this fine powder was Bi: Pb: Sr: Ca: Cu.
= 1.72: 0.34: 1.83: 1.97: 3.13. Then, about 100 g of this oxalate coprecipitated powder was placed in a MgO sample dish and calcined in the air at 800 ° C for 40 hours. After this calcination, 1 ~
A calcinated powder was obtained by crushing to a diameter of about 10 μm, and the phase of this calcinated powder was examined by X-ray diffraction. As a result, (Bi, Pb) 2 Sr 2 Ca
It was a mixed phase of Cu 2 O x (low Tc phase) and Ca 2 Pb O 4 , CuO. The above calcined powder was filled in an Ag tube having an outer diameter of 6 mm and an inner diameter of 5 mm,
A tape wire with a width of 2.5 mm and a thickness of 0.15 mm was created by applying drawing (drawing) and rolling (rolling). This tape wire is cut to a length of 100 mm and 700 ℃ x 2
The processing strain was removed by applying a heat treatment for 0 hr.

【0018】次いで、図6に斜視的に示すごとく、外径
8mm,内径 7mmのAg管内3に、外径2mmのAg芯線4を同
心円的に挿入配置する一方、上記で得たテープ線材をそ
の幅方向がAg管内3の外周面側に向かうように挿入・配
置した後、引き抜き加工によって、外径 2mmまで減面加
工するか(実施例1a)、あるいは外径 3mmまで減面加工
した時点で20hr中間熱処理し、その後外径 2mmまで再び
減面加工した(実施例1b)。前記外径 2mmまでそれぞれ
減面加工した後、酸素 7.7%含有のアルゴンガス系雰囲
気中で、 835℃,50hr熱処理を施して酸化物超電導多芯
線材を得た。このように構成された各酸化物超電導多芯
線材について、数箇所を切断してそれらの各断面ににお
ける酸化物超電導体(層)1の幅wおよび厚さdを、顕
微鏡写真で測定したところ、d/wは 0.038であった。
Next, as shown in a perspective view in FIG.
The Ag core wire 4 having an outer diameter of 2 mm is concentrically inserted and arranged in the Ag pipe 3 having an inner diameter of 8 mm and the inner diameter of 7 mm, while the tape wire obtained above is inserted so that the width direction thereof faces the outer peripheral surface side of the Ag pipe 3. After the placement, the surface is reduced to an outer diameter of 2 mm by drawing (Example 1a), or an intermediate heat treatment is performed for 20 hours when the outer diameter is reduced to 3 mm, and then the surface is reduced again to an outer diameter of 2 mm ( Example 1b). After surface-reducing each of the outer diameters to 2 mm, heat treatment was performed at 835 ° C. for 50 hours in an argon gas atmosphere containing 7.7% oxygen to obtain an oxide superconducting multifilamentary wire. With respect to each of the oxide superconducting multifilamentary wire rods configured as described above, several portions were cut and the width w and the thickness d of the oxide superconductor (layer) 1 in each cross section were measured by a micrograph. , D / w was 0.038.

【0019】また、前記酸化物超電導多芯線材につい
て、液体窒素中で4端子法により、臨界電流Icを測定し
た結果を、プレス加工で得た酸化物超電導単芯線材(比
較例1)、ロール加工で得た酸化物超電導単芯線材(比
較例2)、従来の酸化物超電導多芯線材(比較例3)の
場合と比較して表1に示す。
The critical current Ic of the oxide superconducting multifilamentary wire was measured in liquid nitrogen by the four-terminal method. The result was measured by pressing to obtain an oxide superconducting single-core wire (Comparative Example 1), roll. Table 1 shows a comparison with the case of the oxide superconducting single core wire obtained by processing (Comparative Example 2) and the conventional oxide superconducting multi-core wire (Comparative Example 3).

【0020】 表1 実施例1a 実施例1b 比較例1 比較例2 比較例3 臨界電流密度Jc (A/cm2 ) 8700 9800 33,000 10,200 2,300 実施例2 実施例1の場合において、引き抜き減面加工を六角ダイ
スを用いて行った他は、同様の条件によって、図7に断
面構成を示すような最終的な断面六角形の外径が、対角
線長 4mmの酸化物超電導多芯線材を得た。この酸化物超
電導多芯線材を大気中 700℃×20hr熱処理して加工歪み
を除去した後、図8に示すごとく外径12mmのAg管中に、
7本を挿入・配置して、再度線引き加工して最終的な外
径 2mmの酸化物超電導多芯線材を得た。この酸化物超電
導多芯線材について、数箇所を切断してそれらの各断面
ににおける酸化物超電導体(層)1の幅wおよび厚さd
(約 5μm )を、顕微鏡写真で測定したところ、d/w
は 0.034であった。
Table 1 Example 1a Example 1b Comparative Example 1 Comparative Example 2 Comparative Example 3 Critical Current Density Jc (A / cm 2 ) 8700 9800 33,000 10,200 2,300 Example 2 In the case of Example 1, drawing reduction was performed. Under the same conditions except that a hexagonal die was used, an oxide superconducting multi-core wire having a final hexagonal cross-section with an outer diameter of 4 mm was obtained under the same conditions as shown in FIG. This oxide superconducting multifilamentary wire was heat-treated in the air at 700 ° C for 20 hours to remove processing strain, and then placed in an Ag tube with an outer diameter of 12 mm as shown in Fig. 8.
Seven wires were inserted and arranged, and wire drawing was performed again to obtain a final multifilamentary oxide superconducting wire having an outer diameter of 2 mm. About this oxide superconducting multifilamentary wire, several places are cut and the width w and the thickness d of the oxide superconductor (layer) 1 in each cross section are cut.
(Approximately 5 μm) was measured with a micrograph, d / w
Was 0.034.

【0021】また、前記酸化物超電導多芯線材につい
て、液体窒素中で4端子法により、臨界電流Icを測定し
た結果を、一次の断面六角の酸化物超電導多芯線材の場
合とともに表2に示す。
Table 2 shows the results of measuring the critical current Ic of the above-mentioned oxide superconducting multifilamentary wire in liquid nitrogen by the four-terminal method together with the case of the oxide superconducting multifilamentary wire with a hexagonal cross section. ..

【0022】 表2 一次の断面六角線材 二次の多芯線材 臨界電流密度Jc (A/cm2 ) 7.200 4.300 実施例3 実施例1の場合において、Ag芯線4の代わりに SnO2
化Ag( SnO2 含有量 1%)…実施例3a…、もしくはAl2
O 3 強化Ag(Al2 O 3 含有量 1%)…実施例3b…を用い
た他は、同様の条件によって、外径 2mmの酸化物超電導
多芯線材を得た。この酸化物超電導多芯線材について、
数箇所を切断してそれらの各断面ににおける酸化物超電
導体(層)1の幅wおよび厚さd(約 5μm )を、顕微
鏡写真で測定したところ、d/wは 0.038であった。
Table 2 Primary cross-section hexagonal wire rod Secondary multi-core wire rod Critical current density Jc (A / cm 2 ) 7.200 4.300 Example 3 In the case of Example 1, SnO 2 reinforced Ag (SnO) was used instead of Ag core wire 4. 2 content 1%) ... Example 3a ... or Al 2
O 3 reinforced Ag (Al 2 O 3 content: 1%) ... An oxide superconducting multifilamentary wire having an outer diameter of 2 mm was obtained under the same conditions except that Example 3b was used. About this oxide superconducting multi-core wire,
When the width w and the thickness d (about 5 μm) of the oxide superconductor (layer) 1 in each cross section were cut at several positions and measured by a micrograph, d / w was 0.038.

【0023】また、前記酸化物超電導多芯線材につい
て、液体窒素中で4端子法により、臨界電流Icを測定し
た結果を表3に示す。さらに、これらの酸化物超電導多
芯線材に引っ張り応力を与えながら、液体窒素中で4端
子法により臨界電流Icを測定した結果を図9に示す。図
9において曲線aは実施例3aの場合を、また曲線bは実
施例3bの場合をそれぞれ示す。
Table 3 shows the results of measuring the critical current Ic of the above oxide superconducting multifilamentary wire in liquid nitrogen by the 4-terminal method. Further, FIG. 9 shows the results of measuring the critical current Ic by the four-terminal method in liquid nitrogen while applying tensile stress to these oxide superconducting multifilamentary wires. In FIG. 9, curve a shows the case of Example 3a, and curve b shows the case of Example 3b.

【0024】 なお、本発明に係る酸化物超電導多芯線材は、前記例示
した構成に限定されるものでなく、発明の要旨の範囲内
でいろいろの変形を採り得ることは勿論である。
[0024] The oxide superconducting multifilamentary wire according to the present invention is not limited to the above-exemplified constitution, and it is needless to say that various modifications can be made within the scope of the invention.

【0025】[0025]

【発明の効果】上記説明したように、本発明に係る酸化
物超電導多芯線材は、多芯線材であることに伴い臨界電
流密度Jcを減少ないし低下させずに、フィラメントを微
細化することが可能であるため、超電導安定のすぐれた
コイル形成も可能であるとともに、磁界中での異方性も
大幅に改善されている。つまり、超電導線材において実
用上要求される超電導安定性,高臨界電流密度Jc,およ
び異方性を呈しないことなどの各特性を兼ね備えた超電
導線材を提供するもので、酸化物超電導体を利用する産
業分野で多くの利点をもたらすものといえる。
As described above, since the oxide superconducting multifilamentary wire according to the present invention is a multifilamentary wire, it is possible to miniaturize the filament without reducing or lowering the critical current density Jc. Since it is possible, it is possible to form a coil with excellent superconducting stability, and the anisotropy in a magnetic field is greatly improved. In other words, the present invention provides a superconducting wire that has the characteristics of superconducting stability, high critical current density Jc, and the absence of anisotropy, which are required for practical use in superconducting wires. It can be said to bring many advantages in the industrial field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る酸化物超電導多芯線材における酸
化物超電導体層の厚さと高臨界電流密度との関係例を示
す曲線図。
FIG. 1 is a curve diagram showing an example of the relationship between the thickness of an oxide superconducting layer and a high critical current density in an oxide superconducting multifilamentary wire according to the present invention.

【図2】本発明に係る酸化物超電導多芯線材の横断面構
造例を示す断面図。
FIG. 2 is a cross-sectional view showing an example of a cross-sectional structure of an oxide superconducting multifilamentary wire according to the present invention.

【図3】本発明に係る酸化物超電導多芯線材の他の横断
面構造例を示す断面図。
FIG. 3 is a cross-sectional view showing another example of the cross-sectional structure of an oxide superconducting multi-core wire according to the present invention.

【図4】本発明に係る酸化物超電導多芯線材のさらに他
の横断面構造例を示す断面図。
FIG. 4 is a cross-sectional view showing still another example of the cross-sectional structure of the oxide superconducting multi-core wire according to the present invention.

【図5】本発明に係る酸化物超電導多芯線材の異方性例
を示す曲線図。
FIG. 5 is a curve diagram showing an example of anisotropy of the oxide superconducting multifilamentary wire according to the present invention.

【図6】本発明に係る酸化物超電導多芯線材の製造実施
態様例を模式的に示す斜視図。
FIG. 6 is a perspective view schematically showing an example of a manufacturing embodiment of an oxide superconducting multifilamentary wire according to the present invention.

【図7】本発明に係る酸化物超電導多芯線材の別の横断
面構造例を示す断面図。
FIG. 7 is a cross-sectional view showing another example of the cross-sectional structure of the oxide superconducting multifilamentary wire according to the present invention.

【図8】本発明に係る酸化物超電導多芯線材のさらに別
の横断面構造例を示す断面図。
FIG. 8 is a cross-sectional view showing still another example of the cross-sectional structure of the oxide superconducting multifilamentary wire according to the present invention.

【図9】本発明に係る酸化物超電導多芯線材の特性例を
示す曲線図。
FIG. 9 is a curve diagram showing a characteristic example of an oxide superconducting multifilamentary wire according to the present invention.

【図10】従来の酸化物超電導単芯線材の構造を示す斜
視図。
FIG. 10 is a perspective view showing a structure of a conventional oxide superconducting single-core wire.

【図11】従来の酸化物超電導多芯線材の構造を示す断
面図。
FIG. 11 is a cross-sectional view showing the structure of a conventional oxide superconducting multifilamentary wire.

【図12】従来の酸化物超電導多芯線材の他の構造を示
す斜視図。
FIG. 12 is a perspective view showing another structure of a conventional oxide superconducting multifilamentary wire.

【図13】従来の酸化物超電導単芯線材の異方性例を示
す曲線図。
FIG. 13 is a curve diagram showing an anisotropy example of a conventional oxide superconducting single-core wire.

【符号の説明】[Explanation of symbols]

1…酸化物超電導体 2…シース材 3…Ag管
4…Ag芯線 5…
1 ... Oxide superconductor 2 ... Sheath material 3 ... Ag tube
4 ... Ag core wire 5 ...

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村瀬 暁 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Murase 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体を常電導体金属シース材
中に軸方向へ延伸埋設して成る酸化物超電導線材におい
て、 前記酸化物超電導体は幅w,厚さdとしたとき、 0.001
w≦d≦ 0.3wの断面形状を有する少なくとも3本が軸
方向へ延伸埋設され、かつその幅w方向が中心軸から外
周面側に配向されていることを特徴とする酸化物超電導
多芯線材。
1. An oxide superconducting wire comprising an oxide superconductor which is axially stretched and embedded in a normal conductor metal sheath material, wherein the oxide superconductor has a width w and a thickness d of 0.001.
An oxide superconducting multifilamentary wire characterized in that at least three wires having a cross-sectional shape of w ≦ d ≦ 0.3w are embedded in an axial direction and the width w direction thereof is oriented from the central axis to the outer peripheral surface side. ..
JP4133649A 1992-05-26 1992-05-26 Oxide superconductive multi-conductor wire rod Pending JPH05325665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4133649A JPH05325665A (en) 1992-05-26 1992-05-26 Oxide superconductive multi-conductor wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4133649A JPH05325665A (en) 1992-05-26 1992-05-26 Oxide superconductive multi-conductor wire rod

Publications (1)

Publication Number Publication Date
JPH05325665A true JPH05325665A (en) 1993-12-10

Family

ID=15109735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133649A Pending JPH05325665A (en) 1992-05-26 1992-05-26 Oxide superconductive multi-conductor wire rod

Country Status (1)

Country Link
JP (1) JPH05325665A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007150A (en) * 2001-06-25 2003-01-10 Yokohama Tlo Co Ltd Minimizing method of alternating current loss of high- temperature superconductive wire
JP2010021068A (en) * 2008-07-11 2010-01-28 Sumitomo Electric Ind Ltd Precursor wire of oxide superconductive wiring member, its manufacturing method, and oxide superconductive wiring member using precursor wire
KR100940294B1 (en) * 2009-08-31 2010-02-05 (주)기봉계전 Arrangement strucyure of burs bars used in 3-phase power for decreasing impedance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007150A (en) * 2001-06-25 2003-01-10 Yokohama Tlo Co Ltd Minimizing method of alternating current loss of high- temperature superconductive wire
JP2010021068A (en) * 2008-07-11 2010-01-28 Sumitomo Electric Ind Ltd Precursor wire of oxide superconductive wiring member, its manufacturing method, and oxide superconductive wiring member using precursor wire
KR100940294B1 (en) * 2009-08-31 2010-02-05 (주)기봉계전 Arrangement strucyure of burs bars used in 3-phase power for decreasing impedance

Similar Documents

Publication Publication Date Title
JP2815091B2 (en) Manufacturing method of slender superconductor
US5929000A (en) Multifilamentary oxide superconducting wires
EP0472333B1 (en) Elongate superconductor elements comprising oxide superconductors and superconducting coils
EP0282286B1 (en) Superconducting wire and method of manufacturing the same
EP0358779B1 (en) High-strength superconductive wire and cable having high current density, and method of producing them
EP0380115B2 (en) Oxide superconducting wire
US5208215A (en) Process for fabricating flexible BI-PB-SR-CA-CU-O superconducting tape
JPH10512387A (en) Formation of torsional texture of superconducting oxide composite article
EP1187232B1 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH05325665A (en) Oxide superconductive multi-conductor wire rod
EP0964458B1 (en) Method of manufacturing a high temperature oxide superconducting wire
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH1050153A (en) Oxide supreconductive wire for alternating current, and cable
JP3657367B2 (en) Bismuth-based oxide multicore superconducting wire and method for producing the same
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP3001312B2 (en) Oxide superconducting coil
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH05334921A (en) Ceramic superconductor
JP3513915B2 (en) Oxide superconducting wire, method for producing the same, and oxide superconducting conductor
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
DE19621068C1 (en) Band-shaped high-t¶c¶ multifilament superconductor and process for its production
CA1341394C (en) Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body
JPH0877844A (en) Oxide superconductive multi-layer wire material, and manufacture of its material
JPS63232212A (en) Manufacture of superconductive wire

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020604