JPH05325194A - Optical disk apparatus - Google Patents

Optical disk apparatus

Info

Publication number
JPH05325194A
JPH05325194A JP13469992A JP13469992A JPH05325194A JP H05325194 A JPH05325194 A JP H05325194A JP 13469992 A JP13469992 A JP 13469992A JP 13469992 A JP13469992 A JP 13469992A JP H05325194 A JPH05325194 A JP H05325194A
Authority
JP
Japan
Prior art keywords
signal
light
optical
beam splitter
optical disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13469992A
Other languages
Japanese (ja)
Inventor
Seiji Nishiwaki
青児 西脇
Junichi Asada
潤一 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13469992A priority Critical patent/JPH05325194A/en
Priority to DE69220015T priority patent/DE69220015T2/en
Priority to EP92121866A priority patent/EP0548937B1/en
Priority to US07/997,569 priority patent/US5313450A/en
Publication of JPH05325194A publication Critical patent/JPH05325194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To provide an optical disk apparatus wherein a high-density signal can be reproduced. CONSTITUTION:A laser beam which is radiated from a laser light source 1 is converted into parallel beams by means of a collimation lens 2; the beams are transmitted through a beam splitter 3. Light near the optical axis is shielded by means of a light-shielding body 4. The light is condensed on an optical-disk signal face 7 which is situated on the rear of an optical-disk substrate 6. Its reflected light is condensed by means of an object lens 5; after that, the light near the optical axis is shielded again by means of the light-shielding body 4; it is reflected by the beam splitter 3; it reaches a beam splitter 8. Light reflected by the beam splitter 8 is photodetected by means of a control signal detector 10 via a control-signal-detection optical system 9; a focusing signal and a tracking signal with reference to the optical-signal face are detected. The light which has been transmitted through the beam splitter 8 is condensed; its transmitted light is photodetected by means of a detector 13; a reproduction signal is obtained. The signal is amplified by means of an amplifier; it is converted into a detection signal on the basis of a first-order differentiation signal by means of a signal processing circuit 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ディスクに形成された
信号を再生する光ディスク装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical disk device for reproducing a signal formed on an optical disk.

【0002】[0002]

【従来の技術】近年、光ディスク信号の高密度化への要
望が強く、様々な方式によるアプローチがなされてい
る。光ディスク表面に集光される光スポットの直径は一
般に次式で表される。
2. Description of the Related Art In recent years, there has been a strong demand for higher density optical disc signals, and various approaches have been taken. The diameter of the light spot focused on the optical disk surface is generally expressed by the following equation.

【0003】d=1.21λ/NA λは光源の波長、NAは対物レンズの開口数である。し
たがって、光ディスク信号の高密度化は半導体レーザー
光源の短波長化と対物レンズの高NA化によって達成で
きる。
D = 1.21λ / NA λ is the wavelength of the light source, and NA is the numerical aperture of the objective lens. Therefore, high density of the optical disc signal can be achieved by shortening the wavelength of the semiconductor laser light source and increasing the NA of the objective lens.

【0004】しかし現状のところ、短波長化はGaAs系II
I−V族で600nmまでは可能であるが、その後の目
度がたってない。高NA化も対物レンズの加工が困難な
ことや、ディスク傾きやディフォーカスなどの誤差に弱
いなどの課題がある。
However, at present, the wavelength is shortened by GaAs system II.
It is possible for the IV group to reach 600 nm, but it is not noticeable thereafter. High NA also has problems such as difficulty in processing the objective lens and weakness in errors such as disc tilt and defocus.

【0005】これに対し、高NA化の一形態でありその
欠点の一部を補う方式として、輪帯開口の採用による高
密度化の提案がある。
On the other hand, there is a proposal to increase the density by adopting an annular opening as a method of increasing the NA and compensating for some of the drawbacks.

【0006】以下図面を参照しながら、上記した輪帯開
口による従来の光ディスク装置の一例について説明す
る。例えば図4は日経エレクトロニクス(1991年、No52
8、p129)記載の光ディスク装置の構成図である。図4に
おいて、1は半導体レーザー光源、2はコリメートレン
ズ、3、8はビームスプリッター、4は遮光体、5は対
物レンズ、6は光ディスク基板、7は光ディスク信号
面、9は制御信号検出光学系、10は制御信号検出器、
11は収束レンズ、12はピンホール、13は再生信号
検出器、14は信号増幅器、23は信号処理回路であ
る。なお、遮光体4をコリメートレンズ2、ビームスプ
リッター3の間に置く方式もあるが、ここでは取り上げ
ない。
An example of a conventional optical disk device having the above-mentioned annular opening will be described below with reference to the drawings. For example, Figure 4 shows Nikkei Electronics (1991, No52
8 is a configuration diagram of the optical disc device described in p. In FIG. 4, 1 is a semiconductor laser light source, 2 is a collimator lens, 3 and 8 are beam splitters, 4 is a light shield, 5 is an objective lens, 6 is an optical disk substrate, 7 is an optical disk signal surface, and 9 is a control signal detection optical system. 10 is a control signal detector,
Reference numeral 11 is a converging lens, 12 is a pinhole, 13 is a reproduction signal detector, 14 is a signal amplifier, and 23 is a signal processing circuit. There is also a method in which the light shield 4 is placed between the collimator lens 2 and the beam splitter 3, but this is not taken up here.

【0007】図4においてレーザー光源1を出射するレ
ーザー光はコリメートレンズ2により平行ビームに変換
され、ビームスプリッター3を透過し、遮光体4により
光軸近傍の光が遮光され、対物レンズ5により光ディス
ク基板6の裏面にある光ディスク信号面7上に集光され
る。その反射光は対物レンズ5により集光された後、遮
光体4により再び光軸近傍の光が遮光され、ビームスプ
リッター3を反射してビームスプリッター8に至る。ビ
ームスプリッター8を反射する光は制御信号検出光学系
9を経て制御信号検出器10で受光され、光ディスク信
号面に対するフォーカス信号、トラッキング信号が検出
される。また、ビームスプリッター8を透過する光は収
束レンズ11によりピンホール12上に集光され、その
透過光を検出器13で受光して再生信号を得る。再生信
号は増幅器14により増幅され、信号処理回路23によ
り検出信号に変換される。
In FIG. 4, the laser light emitted from the laser light source 1 is converted into a parallel beam by the collimator lens 2, transmitted through the beam splitter 3, the light in the vicinity of the optical axis is shielded by the light shield 4, and the optical disk is formed by the objective lens 5. The light is focused on the optical disk signal surface 7 on the back surface of the substrate 6. After the reflected light is condensed by the objective lens 5, the light in the vicinity of the optical axis is shielded again by the light shield 4, and reflected by the beam splitter 3 to reach the beam splitter 8. The light reflected by the beam splitter 8 passes through the control signal detection optical system 9 and is received by the control signal detector 10, and the focus signal and the tracking signal for the signal surface of the optical disc are detected. The light transmitted through the beam splitter 8 is condensed on the pinhole 12 by the converging lens 11, and the transmitted light is received by the detector 13 to obtain a reproduction signal. The reproduction signal is amplified by the amplifier 14 and converted into a detection signal by the signal processing circuit 23.

【0008】図5は光ディスク信号面上の信号マークと
再生信号、検出信号の関係を示しており、信号マーク1
6a、16b、16c、16dの存在により再生信号1
7が変化する。この再生信号17をある検出レベル17
Rと比較して、これを越えるか否かで0と1の判定がな
され、検出信号22が得られる。
FIG. 5 shows the relationship between the signal mark on the signal surface of the optical disc, the reproduction signal and the detection signal.
Playback signal 1 due to the presence of 6a, 16b, 16c, 16d
7 changes. This reproduction signal 17 is detected at a certain detection level 17
Compared with R, 0 or 1 is determined depending on whether or not R is exceeded, and a detection signal 22 is obtained.

【0009】図6(a)は遮光体4を挿入することによ
る効果を示す説明図である。遮光体4の挿入により対物
レンズ開口面出射直後の光分布は輪帯上にあり、焦平面
上での光強度分布は24b(輪帯開口NA=0.45〜0.70
として計算)に相当する。なお参考として、円形開口(N
A0.54)による焦平面(信号面)上での光強度分布を24
aに示すが、開口面積を統一しているので、両者の光量
が等しい場合、Strehl強度も一致する。分布24bは分
布24aに比べメインローブ径は小さいが、サイドロー
ブが盛り上がる欠点がある。このためサイドローブ位置
に信号マークが存在する場合の影響は大きく、再生信号
にクロストークや符号間干渉が強く現われる。
FIG. 6A is an explanatory view showing the effect of inserting the light shield 4. The light distribution immediately after exiting the aperture surface of the objective lens is on the annular zone by inserting the light shield 4, and the light intensity distribution on the focal plane is 24b (annular aperture NA = 0.45 to 0.70).
Calculated as). For reference, circular opening (N
The light intensity distribution on the focal plane (signal surface) according to A0.54) is 24
As shown in a, since the opening areas are unified, the Strehl intensities also match when the light amounts of the two are equal. The distribution 24b has a smaller main lobe diameter than the distribution 24a, but has a drawback that the side lobes rise. Therefore, the influence of the presence of the signal mark at the side lobe position is large, and crosstalk and intersymbol interference appear strongly in the reproduced signal.

【0010】図6(b)はピンホール12を挿入するこ
とによる効果を示す説明図である。24cはピンホール
12上での光強度分布であり、信号面上での光強度分布
24bに相似する。従って、ピンホール12がその上の
集束光24cのメインローブのみを透過するようにして
おけば、信号面上集束光24bのサイドローブ位置に信
号マークがにあっても、その影響は現れないはずであ
る。このためクロストークや符号間干渉が小さく、高密
度信号の再生が可能であると考えられている。
FIG. 6B is an explanatory view showing the effect of inserting the pinhole 12. 24c is a light intensity distribution on the pinhole 12 and is similar to the light intensity distribution 24b on the signal surface. Therefore, if the pinhole 12 is made to transmit only the main lobe of the focused light 24c thereabove, even if the signal mark is at the side lobe position of the focused light 24b on the signal surface, the influence should not appear. Is. Therefore, it is considered that crosstalk and intersymbol interference are small and high-density signals can be reproduced.

【0011】高密度信号の再生が可能であるか否かを判
定するため、図7で示す信号マークパターンがどのよう
に再生されるかを見てみる。図7においてレーザースポ
ット18は0.9μmの間隔でならんだマーク長0.4
5μmのピット列上(トラックピッチ0.8μm)を走
査する。同図(a)は隣接トラックのピットパターンが
走査トラックでのそれと同期している場合であり、
(b)はその反転パターンである。
In order to judge whether or not it is possible to reproduce a high density signal, let us look at how the signal mark pattern shown in FIG. 7 is reproduced. In FIG. 7, the laser spots 18 have a mark length of 0.4 with the intervals of 0.9 μm.
Scanning is performed on a pit row of 5 μm (track pitch 0.8 μm). FIG. 6A shows the case where the pit pattern of the adjacent track is synchronized with that of the scanning track,
(B) is the reverse pattern.

【0012】図8は図5の原理に基づいて、これら図7
の2種類のパターンに対する、上記従来の光ディスク装
置による再生信号の観測波形(アイパターン)を理論計算
により描かせた図であり、光源の波長を780nm、輪
帯開口のNAを0.45〜0.70とした。同図(a)
は光学系に収差がない場合、(b)は1.14μmのデ
ィフォーカス(ビームスポットのStrehl強度が2割down
する程度のディフォーカス)を加えた場合で、縦軸は信
号振幅で、信号面を鏡面とした場合の検出光量で標準化
しており、横軸は時間軸である。図中記号aで示したx
印を取り囲むひし形状の領域がアイであり、x印に対し
信号レベルが大きいか小さいかで1と0の判定を行うた
め、アイは振幅方向(上下方向)、時間軸方向(左右方向)
とも開いている方が好ましい。
FIG. 8 is based on the principle of FIG.
FIG. 3 is a diagram in which the observed waveform (eye pattern) of the reproduced signal by the above-mentioned conventional optical disk device is drawn by theoretical calculation for the two types of patterns, the light source wavelength is 780 nm, and the annular aperture NA is 0.45 to 0. It was set to 70. The same figure (a)
Is a defocus of 1.14 μm (Strehl intensity of beam spot is 20% down)
The vertical axis is the signal amplitude, which is standardized by the amount of light detected when the signal surface is a mirror surface, and the horizontal axis is the time axis. X indicated by symbol a in the figure
The rhombus-shaped area surrounding the mark is the eye, and 1 or 0 is judged depending on whether the signal level is high or low for the x mark, so the eye is in the amplitude direction (vertical direction), the time axis direction (horizontal direction).
Both are preferably open.

【0013】[0013]

【発明が解決しようとする課題】このような従来の光デ
ィスク装置に於て以下の問題点があった。
The conventional optical disk device as described above has the following problems.

【0014】まず第1にピンホール12を挿入しても、
クロストークや符号間干渉を小さくする効果が得られな
いことである。計算の結果、ピンホール12の有無(有
の場合はピンホール径の大小)にかかわらず、図8に殆
ど変化のないことが確認されている(図8ではピンホー
ルなしの場合を示した)。
First, even if the pinhole 12 is inserted,
That is, the effect of reducing crosstalk and intersymbol interference cannot be obtained. As a result of the calculation, it is confirmed that there is almost no change in FIG. 8 regardless of the presence or absence of the pinhole 12 (the size of the pinhole diameter is the presence or absence) (FIG. 8 shows the case without the pinhole). ..

【0015】第2に、図8(a)から分かるように、隣
接トラックのピットパターンの違いで大きなジッターd
が発生する。図8(a)では単一周期の信号パターンを
示したが、ランダムな信号パターンを含めるとジッター
は更に増大する。さらに、図8(b)から分かるよう
に、ディフォーカスを加えることでアイが上方に大きく
シフトし、ジッターdが更に増大する。この傾向はディ
フォーカスだけでなく、他の誤差要因の場合にも共通す
る。この大きなジッターの発生は、従来の光ディスク装
置による高密度信号の再生を困難にしていた。
Second, as can be seen from FIG. 8A, a large jitter d is caused by the difference in the pit pattern of the adjacent tracks.
Occurs. Although the signal pattern of a single period is shown in FIG. 8A, the jitter further increases when a random signal pattern is included. Further, as can be seen from FIG. 8B, the eye is largely shifted upward by adding defocus, and the jitter d is further increased. This tendency is common not only to defocus but also to other error factors. The generation of this large jitter makes it difficult to reproduce a high-density signal by a conventional optical disk device.

【0016】本発明はかかる問題点に鑑み、高密度信号
の再生を可能とする光ディスク装置を提供することを目
的とする。
In view of the above problems, it is an object of the present invention to provide an optical disk device capable of reproducing high density signals.

【0017】[0017]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の光ディスク装置は、レーザー光源と、レー
ザー光源と、このレーザー光源からのレーザー光を信号
マークの形成された光ディスク信号面上に収束する集光
手段と、信号面を反射し、集光手段を経た戻り光を検出
する検出手段と、検出手段による再生信号を微分し1階
微分信号を得る微分回路とからなり、集光手段による収
束光の分布が開口面出射直後で輪帯上にあり、大きさが
均一な信号マークの中心位置を前記1階微分信号と検出
レベルとのクロス点によって検出することを特徴とす
る。
In order to solve the above problems, an optical disk device of the present invention is provided with a laser light source, a laser light source, and laser light from the laser light source on an optical disk signal surface on which signal marks are formed. The light collecting means includes a light collecting means for converging the light on the signal surface, a detecting means for reflecting the signal surface and detecting the return light passing through the light collecting means, and a differentiating circuit for differentiating the reproduction signal by the detecting means to obtain a first-order differential signal. The distribution of the converged light by the means is on the annular zone immediately after the exit from the aperture surface, and the center position of the signal mark having a uniform size is detected by the cross point between the first-order differential signal and the detection level.

【0018】[0018]

【作用】本発明は上記した構成によって、信号面上の集
束光のメインローブ径を小さくできるので、再生信号の
極値点を信号マークの中心位置によく対応させることが
でき、1階微分信号と検出レベルとのクロス点を検出す
ることで、信号マークの中心位置を正確に検出すること
ができる。
According to the present invention, since the main lobe diameter of the focused light on the signal surface can be reduced by the above-described structure, the extreme point of the reproduced signal can be made to correspond well to the center position of the signal mark, and the first-order differential signal. The center position of the signal mark can be accurately detected by detecting the cross point between the signal level and the detection level.

【0019】[0019]

【実施例】以下本発明の実施例の光ディスク装置につい
て、図面を参照しながら説明する。なお従来例と同一の
機能を有する部材には同一番号を付し、詳しい説明は省
略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical disk device according to an embodiment of the present invention will be described below with reference to the drawings. The members having the same functions as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0020】図1は本発明の実施例における光ディスク
装置の構成を示すものであり、信号処理回路15を除い
て従来例と全く同じである。図1においてレーザー光源
1を出射するレーザー光はコリメートレンズ2により平
行ビームに変換され、ビームスプリッター3を透過し、
遮光体4により光軸近傍の光が遮光され、対物レンズ5
により光ディスク基板6の裏面にある光ディスク信号面
7上に集光される。その反射光は対物レンズ5により集
光された後、遮光体4により再び光軸近傍の光が遮光さ
れ、ビームスプリッター3を反射してビームスプリッタ
ー8に至る。ビームスプリッター8を反射する光は制御
信号検出光学系9を経て制御信号検出器10で受光さ
れ、光ディスク信号面に対するフォーカス信号、トラッ
キング信号が検出される。また、ビームスプリッター8
を透過する光は収束レンズ11によりピンホール12上
に集光され、その透過光を検出器13で受光して再生信
号を得る。再生信号は増幅器14により増幅され、信号
処理回路15により1階微分信号に基づく検出信号に変
換される。
FIG. 1 shows the configuration of an optical disk device according to an embodiment of the present invention, which is exactly the same as the conventional example except for a signal processing circuit 15. In FIG. 1, laser light emitted from a laser light source 1 is converted into a parallel beam by a collimator lens 2 and transmitted through a beam splitter 3,
The light in the vicinity of the optical axis is blocked by the light shield 4, and the objective lens 5
Thus, the light is focused on the optical disk signal surface 7 on the back surface of the optical disk substrate 6. After the reflected light is condensed by the objective lens 5, the light in the vicinity of the optical axis is shielded again by the light shield 4, and reflected by the beam splitter 3 to reach the beam splitter 8. The light reflected by the beam splitter 8 passes through the control signal detection optical system 9 and is received by the control signal detector 10, and the focus signal and the tracking signal for the signal surface of the optical disc are detected. Also, the beam splitter 8
The light passing through is condensed on the pinhole 12 by the converging lens 11, and the transmitted light is received by the detector 13 to obtain a reproduction signal. The reproduction signal is amplified by the amplifier 14 and converted into a detection signal based on the first-order differential signal by the signal processing circuit 15.

【0021】図2は光ディスク信号面上の信号マークと
再生信号、検出信号の関係を示しており、ビームスポッ
ト18が単一長の信号マーク16上を走査することで再
生信号17が変化する(目盛りは左側)。信号19は再
生信号17の1階微分波形である(目盛りは右側)。再
生信号17と検出レベル17Rによりゲート信号20を
得、そのゲート内で1階微分信号19と検出レベル19
Rとのクロス点を検出し、クロス点を始点とするパルス
信号21を得る。検出信号22はパルス信号21の始点
で反転する信号として得られる。
FIG. 2 shows the relationship between the signal mark on the signal surface of the optical disc, the reproduction signal and the detection signal. When the beam spot 18 scans the signal mark 16 having a single length, the reproduction signal 17 changes ( (The scale is on the left). The signal 19 is a first-order differential waveform of the reproduction signal 17 (the scale is on the right side). A gate signal 20 is obtained from the reproduction signal 17 and the detection level 17R, and the first-order differential signal 19 and the detection level 19 are obtained in the gate.
A cross point with R is detected, and a pulse signal 21 having the cross point as a starting point is obtained. The detection signal 22 is obtained as a signal which is inverted at the starting point of the pulse signal 21.

【0022】なおこの検出方法そのものはPPM(Pit P
osition Modulation)の信号検出法として公知であり、
信号マーク16は均一な長さの信号マークである。PP
Mは従来例で示したEFMなどのPWM(Pit Width Mod
ulation)変調方式に比べ、ピットサイズの誤差によるジ
ッターへの影響が少ないと言われ、記録再生用の光ディ
スクシステムには有効である。
The detection method itself is PPM (Pit P
osition Modulation) signal detection method,
The signal mark 16 is a signal mark having a uniform length. PP
M is PWM (Pit Width Mod) such as EFM shown in the conventional example.
It is said that the influence of pit size error on jitter is less than that of the modulation method, and it is effective for an optical disc system for recording and reproduction.

【0023】図3は本実施例における光ディスク装置に
より高密度信号の再生が可能であるか否かを判定するた
め、図7で示した2種類のパターンに対する1階微分信
号の観測波形(アイパターン)を理論計算により描かせた
図であり、光源の波長を780nm、輪帯開口のNAを
0.45〜0.70とした。同図(a)は光学系に収差
がない場合、(b)は1.14μmのディフォーカス
(ビームスポットのStrehl強度が2割downする程度のデ
ィフォーカス)を加えた場合で、縦軸は信号振幅で、信
号面を鏡面とした場合の検出光量で標準化しており、横
軸は時間軸である。図中記号aで示したx印を取り囲む
ひし形状の領域がアイである。
FIG. 3 shows an observed waveform (eye pattern) of the first-order differential signal with respect to the two types of patterns shown in FIG. 7 in order to determine whether or not a high density signal can be reproduced by the optical disk device in this embodiment. ) Is drawn by theoretical calculation, and the wavelength of the light source is 780 nm and the NA of the annular aperture is 0.45 to 0.70. In the figure, (a) shows the case where there is no aberration in the optical system, and (b) shows the case where a defocus of 1.14 μm (a defocus at which the Strehl intensity of the beam spot is reduced by 20%) is added. The amplitude is standardized by the amount of light detected when the signal surface is a mirror surface, and the horizontal axis is the time axis. The diamond-shaped area surrounding the x mark indicated by the symbol a in the figure is the eye.

【0024】図8の場合と同様に、アイは振幅方向(上
下方向)、時間軸方向(左右方向)とも開いている方が好
ましいが、図3(a)は図8(a)に比べ明らかにジッ
ターdが小さく、この傾向はランダムな信号パターンで
あっても同じである。さらに、図3(b)から分かるよ
うに、ディフォーカスを加えてもアイは上下にシフトせ
ず、ジッターdも増大しない。この傾向はディフォーカ
スだけでなく、他の誤差要因の場合にも共通する。
As in the case of FIG. 8, it is preferable that the eye is open in both the amplitude direction (vertical direction) and the time axis direction (horizontal direction), but FIG. 3 (a) is clearer than FIG. 8 (a). The jitter d is small, and this tendency is the same even for a random signal pattern. Further, as can be seen from FIG. 3B, the eye does not shift up and down even if defocus is applied, and the jitter d does not increase. This tendency is common not only to defocus but also to other error factors.

【0025】これは次のように説明できる。図6(a)
に示したように、輪帯開口はサイドローブが大きく、メ
インローブ径が小さい。サイドローブが大きいことはク
ロストークや符号間干渉により再生信号にDC成分が加
わる(すなわち全体として上下する)効果として現れる。
ディフォーカスなどの誤差要因も、再生信号にDC成分
が加わる効果として現れる。したがって再生信号を微分
することでDC成分を除去でき、メインローブ径の小さ
い特長をいかすことができる。
This can be explained as follows. Figure 6 (a)
As shown in, the annular opening has a large side lobe and a small main lobe diameter. The large side lobe appears as an effect that a DC component is added to the reproduced signal (that is, it fluctuates overall) due to crosstalk or intersymbol interference.
Error factors such as defocus also appear as an effect of adding a DC component to the reproduction signal. Therefore, the DC component can be removed by differentiating the reproduction signal, and the feature of having a small main lobe diameter can be utilized.

【0026】一方、メインローブ径が小さいことは再生
信号の極値点が信号マークの中心位置によく対応する効
果として現れる。再生信号の極値点は1階微分信号と検
出レベルとのクロス点として現れるので、このクロス点
が信号マークの中心位置によく対応することになる。従
って1階微分信号に基づくアイパターンはサイドローブ
位置に信号マークが存在してもジッターが小さく、誤差
要因が加わってもジッターの増大はないので、高密度信
号の再生が可能となる。
On the other hand, the fact that the main lobe diameter is small appears as an effect that the extreme point of the reproduced signal corresponds well to the center position of the signal mark. Since the extreme point of the reproduction signal appears as a cross point between the first-order differential signal and the detection level, this cross point corresponds well to the center position of the signal mark. Therefore, the eye pattern based on the first-order differential signal has a small jitter even if a signal mark exists at the side lobe position, and the jitter does not increase even if an error factor is added, so that a high density signal can be reproduced.

【0027】なお、上記実施例ではピンホール12の有
無(有の場合はピンホール径の大小)にかかわらず、図3
に殆ど変化のないことが確認されており(図3ではピン
ホールなしの場合を示した)、ピンホール12を省いて
もその効果は同一である(ピンホールの効果は、信号面
がディフォーカスしても信号検出特性の劣化が少ないな
ど、別のところにある)。
In the above embodiment, the presence or absence of the pinhole 12 (the size of the pinhole diameter in the case of existence) is shown in FIG.
It has been confirmed that there is almost no change (Fig. 3 shows the case without a pinhole), and the effect is the same even if the pinhole 12 is omitted (the effect of the pinhole is that the signal surface is defocused). However, there is little deterioration in signal detection characteristics, etc.).

【0028】また、上記実施例では遮光体4をビームス
プリッター3と対物レンズ5の間に置いたが、コリメー
トレンズ2とビームスプリッター3の間にあってもよ
い。この場合、光ディスク信号面への集光は輪帯開口で
なされるが、反射光の検出は円形開口でなされ、上記実
施例とは異なった信号検出特性を示すが、微分検出と輪
帯開口との組合せで高密度信号の再生が可能となる原理
は変わらない。
Although the light shield 4 is placed between the beam splitter 3 and the objective lens 5 in the above embodiment, it may be placed between the collimator lens 2 and the beam splitter 3. In this case, the light is condensed on the signal surface of the optical disk by the annular aperture, but the reflected light is detected by the circular aperture, which shows the signal detection characteristics different from those of the above-mentioned embodiment, but the differential detection and the annular aperture are used. The principle that a high density signal can be reproduced by the combination of is not changed.

【0029】さらに、上記実施例ではレンズ、プリズム
等のバルクの光学素子を用いた光学系で説明したが、グ
レーティングレンズやフォーカシンググレーティングカ
プラ等の他の原理に基づく集光素子であっても、その集
光素子による収束光の分布が開口面出射直後で輪帯上に
あれば、これを微分検出と組合せることで高密度信号の
再生が可能となる。
Further, in the above embodiment, the optical system using the bulk optical element such as the lens and the prism has been described, but the condensing element based on the other principle such as the grating lens and the focusing grating coupler may be used. If the distribution of the converged light by the condensing element is on the annular zone immediately after exiting the aperture, it is possible to reproduce a high density signal by combining this with differential detection.

【0030】[0030]

【発明の効果】以上本発明の光ディスク装置により、光
ディスクの信号密度が高くなってもジッターの小さい安
定したアイパターンが得られ、大幅な信号の高密度化を
図ることができる。
As described above, according to the optical disk device of the present invention, a stable eye pattern with small jitter can be obtained even when the signal density of the optical disk is high, and a large increase in signal density can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における光ディスク装置の構
成図
FIG. 1 is a configuration diagram of an optical disk device according to an embodiment of the present invention.

【図2】(a)は、同実施例における光ディスク信号面
上の信号マークの説明図 (b)は、同実施例における再生信号と検出信号の関係
FIG. 2A is an explanatory diagram of a signal mark on an optical disk signal surface in the same embodiment, and FIG. 2B is a relationship diagram between a reproduction signal and a detection signal in the same embodiment.

【図3】(a)は、同実施例構成における、光学系に収
差の無い場合の1階微分信号のアイパターン図 (b)は、同実施例構成において、1.14μmのディ
フォーカスを加えた場合のアイパターン図
FIG. 3A is an eye pattern diagram of the first-order differential signal in the case where the optical system has no aberration in the configuration of the embodiment, and FIG. 3B is a diagram in which a defocus of 1.14 μm is added in the configuration of the embodiment. Eye pattern diagram

【図4】従来例における光ディスク装置の構成図FIG. 4 is a block diagram of an optical disk device in a conventional example.

【図5】従来例における光ディスク信号面上の信号マー
クと再生信号、検出信号の関係図
FIG. 5 is a relationship diagram of a signal mark on a signal surface of an optical disc, a reproduction signal, and a detection signal in a conventional example.

【図6】(a)は遮光体を挿入することによる効果を示
す説明図 (b)はピンホールを挿入することによる効果を示す説
明図
FIG. 6A is an explanatory view showing an effect of inserting a light shield, and FIG. 6B is an explanatory view showing an effect of inserting a pinhole.

【図7】(a)は、信号マークの配置を示す説明図 (b)は、信号マークの配置を示す説明図FIG. 7A is an explanatory diagram showing the arrangement of signal marks, and FIG. 7B is an explanatory diagram showing the arrangement of signal marks.

【図8】従来の光ディスク装置における再生信号のアイ
パターン図
FIG. 8 is an eye pattern diagram of a reproduction signal in a conventional optical disc device.

【符号の説明】[Explanation of symbols]

1 半導体レーザー光源 2 コリメートレンズ 3、8 ビームスプリッター 4 遮光体 5 対物レンズ 6 光ディスク基板 7 光ディスク信号面 9 制御信号検出光学系 10 制御信号検出器 11 収束レンズ 12 ピンホール 13 再生信号検出器 14 信号増幅器 15 信号処理回路 1 Semiconductor Laser Light Source 2 Collimator Lens 3, 8 Beam Splitter 4 Light Shield 5 Objective Lens 6 Optical Disc Substrate 7 Optical Disc Signal Surface 9 Control Signal Detection Optical System 10 Control Signal Detector 11 Converging Lens 12 Pinhole 13 Playback Signal Detector 14 Signal Amplifier 15 Signal processing circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】レーザー光源と、このレーザー光源からの
レーザー光を信号マークの形成された光ディスク信号面
上に収束する集光手段と、前記信号面を反射し、前記集
光手段を経た戻り光を検出する検出手段と、前記検出手
段による再生信号を微分し1階微分信号を得る微分回路
とからなり、前記集光手段による収束光の分布が開口面
出射直後で輪帯上にあり、前記信号マークの中心位置を
前記1階微分信号と検出レベルとのクロス点によって検
出することを特徴とする光ディスク装置。
1. A laser light source, a condensing means for converging laser light from the laser light source onto an optical disc signal surface on which a signal mark is formed, and return light reflected by the signal surface and passing through the condensing means. And a differentiation circuit for differentiating the reproduction signal by the detection means to obtain a first-order differential signal, and the distribution of the converged light by the condensing means is on the annular zone immediately after the exit from the aperture surface, and An optical disk device, wherein a center position of a signal mark is detected by a cross point between the first-order differential signal and a detection level.
【請求項2】信号マークの大きさが均一であることを特
徴とする請求項1記載の光ディスク装置。
2. The optical disk device according to claim 1, wherein the signal marks have a uniform size.
JP13469992A 1991-12-27 1992-05-27 Optical disk apparatus Pending JPH05325194A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13469992A JPH05325194A (en) 1992-05-27 1992-05-27 Optical disk apparatus
DE69220015T DE69220015T2 (en) 1991-12-27 1992-12-23 Optical disk reader
EP92121866A EP0548937B1 (en) 1991-12-27 1992-12-23 Optical disk reading apparatus
US07/997,569 US5313450A (en) 1991-12-27 1992-12-28 Optical disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13469992A JPH05325194A (en) 1992-05-27 1992-05-27 Optical disk apparatus

Publications (1)

Publication Number Publication Date
JPH05325194A true JPH05325194A (en) 1993-12-10

Family

ID=15134532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13469992A Pending JPH05325194A (en) 1991-12-27 1992-05-27 Optical disk apparatus

Country Status (1)

Country Link
JP (1) JPH05325194A (en)

Similar Documents

Publication Publication Date Title
US6353582B1 (en) Pickup device
US4815060A (en) Optical pickup device with tracking and focusing utilizing a photodetector having four regions
PL182121B1 (en) Apparatus for and method of recording and reading information on and from a carrier medium
JP2000057616A (en) Optical pickup, information reproducing device and information recorder
CA1324516C (en) Optical pickup apparatus
US7095686B2 (en) Defocus error signal detection apparatus having phase comparators and a matrix circuit for an optical recording/reproduction system
JP2580725B2 (en) Optical head device
KR100335408B1 (en) Optical pick-up capable of controlling focus offset
JPS62236152A (en) Optical pick-up
US5659534A (en) Apparatus for reproducing optical information contained disks of various recording densities
US5430704A (en) Reproducing system for an optical disc
JP2806113B2 (en) Optical disk drive
US7330418B2 (en) Optical disk with plural signal mark positions in a direction substantially perpendicular to tracks
JP3755731B2 (en) Optical recording / reproducing device
KR960013492B1 (en) Optical pick-up
JPH05325194A (en) Optical disk apparatus
US7075879B2 (en) Optical pickup device and a method to control an angle between a pit and a major axis of a laser beam
JP2765402B2 (en) Optical head device
US6577565B1 (en) Optical pickup for performing recording or reading operation on recording medium having prepits
JP2795963B2 (en) Optical pickup device
KR100354534B1 (en) Optical pickup for narrow-track optical disk
JPS63244419A (en) Tracking error detector
JPH0954971A (en) Optical pickup and reproducing device
KR100195082B1 (en) Optical head
JPH05217196A (en) Optical head