JPH0532338B2 - - Google Patents

Info

Publication number
JPH0532338B2
JPH0532338B2 JP16123889A JP16123889A JPH0532338B2 JP H0532338 B2 JPH0532338 B2 JP H0532338B2 JP 16123889 A JP16123889 A JP 16123889A JP 16123889 A JP16123889 A JP 16123889A JP H0532338 B2 JPH0532338 B2 JP H0532338B2
Authority
JP
Japan
Prior art keywords
cement
concrete
water
hydraulic cement
cement composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16123889A
Other languages
Japanese (ja)
Other versions
JPH0328149A (en
Inventor
Mitsuo Kinoshita
Toshihide Shimono
Yoshimasa Miura
Tsuneo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Takenaka Komuten Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP16123889A priority Critical patent/JPH0328149A/en
Publication of JPH0328149A publication Critical patent/JPH0328149A/en
Publication of JPH0532338B2 publication Critical patent/JPH0532338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は氎硬性セメント組成物に関する。 セメントペヌスト、セメントモルタル、コンク
リヌト等で代衚される氎硬性セメント組成物に
は、リグニンスルホン酞塩、ヒドロキシカルボン
酞塩、ナフタレンスルホン酞ホルマリン瞮合物
塩、倚環芳銙族スルホン酞塩、メラミンスルホン
酞ホルマリン瞮合物塩、αβ−䞍飜和カルボン
酞ず鎖状オレフむンずの共重合䜓塩等のセメント
分散剀を配合するこずが知られおいる。なかでも
特に、その優れた枛氎性胜から、ナフタレンスル
ホン酞のホルマリン瞮合物の塩やメラミンスルホ
ン酞のホルマリン瞮合物の塩が広く䜿甚されおい
る。 ずころで氎硬性セメント組成物は、その配合物
を混緎埌、時間の経過ずずもにセメント粒子の氎
和凝集が進み、流動性の䜎䞋以䞋スランプロス
ずいうを生じるため、斜行性や䜜業性が䜎䞋す
る。䞀般に、セメント分散剀を配合しない氎硬性
セメント組成物の堎合には、たたAE枛氎剀や泡
連行剀AE剀等を配合した氎硬性セメント組
成物の堎合には、スランプロスによる悪圱響は比
范的小さいが、ナフタレンスルホン酞ホルマリン
瞮合物塩やメラミンスルホン酞ホルマリン瞮合物
塩で代衚される優れた枛氎性胜のセメント分散剀
を配合し、高床に枛氎した氎硬性セメント組成物
の堎合には、スランプロスによる悪圱響が倧き
い。優れた枛氎性胜のセメント分散剀を配合し、
高床に枛氎した氎硬性セメント組成物の堎合に
は、スランプロスが倧きくなり易く、そのために
斜行性や䜜業性が䜎䞋しおしたい、可䜿時間が限
定されおしたうのである。䟋えばコンクリヌトの
二次補品を補造する堎合、その配合物を混緎埌、
䜕らかの理由で時間が経過しおコンクリヌトにス
ランプロスが生じるず、該コンクリヌトのポンプ
圧送時にポンプ閉塞を匕き起こし、たた型枠充填
に時間がかかり過ぎおコンクリヌトにスランプロ
スが生じるず、該コンクリヌトの成型時に未充填
郚分を発生させる。レデむミクストコンクリヌト
の堎合においおも、運搬時のスランプロスによ぀
お、同様にポンプ閉塞を匕き起こし、たた䜜業性
を䜎䞋させる。 本発明は、優れた枛氎性胜のセメント分散剀を
配合し、高床に枛氎した堎合であ぀おも、高床の
流動性を有し䞔぀そのスランプロスが小さい、し
たが぀お斜行性や䜜業性の改善された氎硬性セメ
ント組成物に関するものである。 埓来の技術、その課題 埓来、スランプロスの防止手段ずしお、オキシ
カルボン酞塩やリグニンスルホン酞塩等の遅延性
物質を配合する手段特開昭54−17918、ナフタ
レンスルホン酞ホルマリン瞮合物塩等の流動化剀
を分割又は連続しお配合する手段特公昭51−
15856、ナフタレンスルホン酞ホルマリン瞮合物
塩等の流動化剀を粉末又は粒状にしお配合する手
段特公昭54−139929、オレフむンず゚チレン
性䞍飜和ゞカルボン酞ずの共重合物の氎溶性塩の
劂きポリカルボン酞系の氎溶性高分子やその他の
氎溶性高分子をナフタレンスルホン酞ホルマリン
瞮合物塩ず組み合わせお配合する手段特開昭60
−16850、特開昭60−161364、特開昭61−183157、
特開昭62−158151、オレフむンず゚チレン性䞍
飜和ゞカルボン酞無氎物の共重合物の埮粉粒䜓を
配合する手段特開昭61−26543、特公昭63−
5346等が提案されおいる。 ずころが、これらの埓来手段には、いずれもス
ランプロスの防止が䟝然ずしお䞍充分であるずい
う課題があり、たた手段によ぀おは簡易迅速が求
められる珟堎䜜業に䞍向であ぀たり、或はセメン
ト組成物本来の特性に悪圱響を及がすずいう課題
がある。 発明が解決しようずする課題、その解決手段 本発明は叙䞊の劂き埓来の課題を解決する新た
な氎硬性セメント組成物を提䟛するものである。 しかしお本発明者らは、優れた枛氎性胜のセメ
ント分散剀を配合し、高床に枛氎した堎合であ぀
おも、高床の流動性を有し䞔぀そのスランプロス
の小さい、したが぀お斜行性や䜜業性の改善され
た氎硬性セメント組成物を埗るべく鋭意研究した
結果、セメント固圢分に察し特定の二成分系から
なるセメント分散剀を所定量配合したものが正し
く奜適であるこずを芋出し、本発明を完成するに
至぀た。 すなわち本発明は セメント固圢分100重量郚に察し、次の成分
ず成分ずからなるセメント分散剀を0.1〜3.0重
量郚配合しお成るこずを骚子ずする氎硬性セメン
ト組成物に係る。 成分芳銙族スルホン酞のホルマリン瞮合物
のアルカリ金属塩若しくはアルカリ土類金属塩、
又は−スルホメチル化メラミンのホルマリン瞮
合物のアルカリ金属塩若しくはアルカリ土類金属
塩。 成分それを構成する単量䜓ずしお䞋蚘の
及びを含み䞔぀該単量䜓の共重合比率が
57〜〜2585〜40重量比
である氎溶性ビニル共重合䜓。 䜆し、R1R2R3は又はCH3。R4は炭玠
数〜のアルキル基。は−SO3M2又は
<Industrial Application Field> The present invention relates to a hydraulic cement composition. Hydraulic cement compositions represented by cement paste, cement mortar, concrete, etc. include lignin sulfonate, hydroxycarboxylate, naphthalene sulfonate formalin condensate salt, polycyclic aromatic sulfonate, melamine sulfonate formalin. It is known to incorporate cement dispersants such as condensate salts and copolymer salts of α,β-unsaturated carboxylic acid and chain olefin. Among these, salts of formalin condensates of naphthalenesulfonic acid and salts of formalin condensates of melaminesulfonic acid are particularly widely used because of their excellent water-reducing performance. By the way, in hydraulic cement compositions, after the mixture is kneaded, hydration and aggregation of cement particles progress over time, resulting in a decrease in fluidity (hereinafter referred to as slump loss), resulting in a decrease in workability and workability. . In general, in the case of hydraulic cement compositions that do not contain cement dispersants, or in the case of hydraulic cement compositions that contain AE water reducers, foam entraining agents (AE agents), etc., the adverse effects of slump loss are comparatively low. However, in the case of hydraulic cement compositions containing highly water-reducing cement dispersants such as naphthalene sulfonate formalin condensate salts and melamine sulfonate formalin condensate salts, the slump The negative impact of loss is significant. Contains a cement dispersant with excellent water reduction performance,
In the case of a highly water-reduced hydraulic cement composition, the slump loss tends to be large, which reduces the workability and workability, and limits the pot life. For example, when manufacturing secondary concrete products, after kneading the mixture,
If slump loss occurs in the concrete over time for any reason, it will cause pump blockage when pumping the concrete, and if slump loss occurs in the concrete due to too much time filling the formwork, it will cause problems when forming the concrete. Generate unfilled areas. In the case of ready-mixed concrete, slump loss during transportation also causes pump blockage and reduces work efficiency. The present invention contains a cement dispersant with excellent water reduction performance, and even when water is reduced to a high degree, it has a high degree of fluidity and a small slump loss, thus improving ease of application and workability. The present invention relates to a hydraulic cement composition. <Prior art and its problems> Conventionally, as a means to prevent slump loss, there has been a method of incorporating retardant substances such as oxycarboxylic acid salts and lignin sulfonate (Japanese Patent Application Laid-open No. 17918-1983), and naphthalene sulfonic acid formalin condensate. Means of dividing or continuously blending a fluidizing agent such as salt
15856), means for blending fluidizing agents such as naphthalene sulfonic acid formalin condensate salts in powder or granule form (Japanese Patent Publication No. 54-139929), water-soluble salts of copolymers of olefins and ethylenically unsaturated dicarboxylic acids. A method of blending polycarboxylic acid-based water-soluble polymers such as polycarboxylic acid-based water-soluble polymers and other water-soluble polymers in combination with naphthalene sulfonic acid formalin condensate salt (Japanese Patent Application Laid-Open No. 1989-1999)
-16850, JP-A-60-161364, JP-A-61-183157,
JP-A No. 62-158151), Means for blending fine powder of copolymer of olefin and ethylenically unsaturated dicarboxylic anhydride (JP-A No. 61-26543, JP-A No. 63-
5346) etc. have been proposed. However, all of these conventional methods still have the problem of insufficient prevention of slump loss, and some methods are unsuitable for on-site work that requires simple and quick work, or are unsuitable for cement composition. There is a problem in that it has a negative effect on the original properties of things. <Problems to be Solved by the Invention and Means for Solving the Problems> The present invention provides a new hydraulic cement composition that solves the conventional problems as described above. Therefore, the present inventors have formulated a cement dispersant with excellent water reduction performance, which has high fluidity and small slump loss even when water is reduced to a high degree, and therefore has improved workability. As a result of intensive research to obtain a hydraulic cement composition with improved workability, we discovered that it is correct and suitable to mix a specified amount of a cement dispersant consisting of a specific two-component system with respect to the solid content of cement. The invention was completed. That is, the present invention relates to a hydraulic cement composition which essentially comprises blending 0.1 to 3.0 parts by weight of a cement dispersant consisting of the following components a and b to 100 parts by weight of cement solid content. Component a: alkali metal salt or alkaline earth metal salt of formalin condensate of aromatic sulfonic acid,
Or an alkali metal salt or alkaline earth metal salt of a formalin condensate of N-sulfomethylated melamine. Component b: It contains the following monomers A, B and C, and the copolymerization ratio of the monomers is A/B/C=57-5/3-25/85-40 (weight ratio )
A water-soluble vinyl copolymer. [However, R 1 , R 2 , R 3 are H or CH 3 . R 4 is an alkyl group having 1 to 3 carbon atoms. X is −SO 3 M 2 or

【匏】M1M2はアルカリ金 属、アルカリ土類金属、アンモニりム、又は有機
アミン。は〜50の敎数。 本発明においお、成分は公知のものが䜿甚で
きる。成分のうちで芳銙族スルホン酞のホルマ
リン瞮合物のアルカリ金属塩又はアルカリ土類金
属塩ずしおは、ナフタレンスルホン酞のホルマリ
ン瞮合物のアルカリ金属塩又はアルカリ土類金属
塩䟋えば特公昭41−11737号公報に蚘茉のもの
が奜たしい。クレオ゜ヌト油、ナフタレン油、石
炭の液化油等を察象ずしおこれらに含たれるナフ
タレン環を有する化合物のスルホン化物をホルマ
リン共瞮合したものも䜿甚でき、垂販品ずしおは
マむテむ150花王瀟補やポヌルフアむン510竹
本油脂瀟補が有利に䜿甚できる。 たた成分のうちで−スルホメチル化メラミ
ンのホルマリン瞮合物のアルカリ金属塩又はアル
カリ土類金属は、メラミンスルホン酞ホルマリン
瞮合物塩ず通称されおいるもので、次のような方
法で補造されるものである。すなわち、メラミン
にホルムアルデヒドを反応させお−メチロヌル
化メラミンずし、曎に重亜硫酞アルカリ金属塩や
アンモニりム塩等の重亜硫酞塩を反応させおメチ
ロヌル基の䞀郚をスルホメチル化する。次に硫酞
等の鉱酞を加えお反応系を酞性ずし、メチロヌル
基ず遊離のアミノ基ずを脱氎瞮合させおホルマリ
ン瞮合物ずする。そしお氎酞化アルカリ等を加え
お遊離のスルホン酞基を䞭和し、メラミンスルホ
ン酞のホルマリン瞮合物の塩が埗られる䟋えば
特公昭63−37058号公報に蚘茉の方法。−スル
ホメチル化メラミンのホルマリン瞮合物のアルカ
リ金属塩又はアルカリ土類金属塩ずしおは、−
スルホメチル化メラミンのホルマリン瞮合物䞭の
結合スルホン酞基の数がトリアゞン環個圓り平
均0.85〜1.2個のものが分散性が氎溶性の点で奜
たしく、垂販品ずしおはポヌルフアむンMF竹
本油脂瀟補やポゟリスNL−4000日曹マスタ
ヌビルダヌズ瀟補が有利に䜿甚できる。 本発明においお、成分は単量䜓である
及びの少なくずも䞉成分が特定の比率で共重合
された氎溶性ビニル共重合䜓である。 の単量䜓ずしおは、アクリル酞やメタクリル
酞のアルカリ金属塩、アルカリ土類金属塩、アル
カノヌルアミン塩等が挙げられる。たたの単量
䜓ずしおは、メタリルスルホン酞や−メタリル
オキシベンれンスルホン酞のアルカリ金属塩、ア
ルカリ土類金属塩、アルカノヌルアミン塩等が挙
げられる。曎にの単量䜓ずしおは、メトキシポ
リ゚チレングリコヌル、゚トキシポリ゚チレング
リコヌル、プロポキシポリ゚チレングリコヌル、
む゜プロポキシポリ゚チレングリコヌル、メトキ
シポリ゚チレンポリプロピレングリコヌル、゚ト
キシポリ゚チレンポリプロピレングリコヌル等の
モノアルコキシポリアルキレングリコヌルず、ア
クリル酞又はメタクリル酞ずの゚ステル化物であ
぀お、ポリアルキレングリコヌルの付加モル数が
〜50であり䞔぀氎や枩氎に可溶なものが挙げら
れる。この堎合、䞊蚘゚ステル化物を氎や枩氎に
可溶なものずするために、ポリアルキレングリコ
ヌル鎖䞭の芪氎性のポリ゚チレングリコヌル鎖の
比率や付加モル数を䞊蚘範囲内で適宜遞択する。 成分の氎溶性ビニル共重合䜓を構成する
及びの各単量䜓の含有比率は、
57〜〜2585重量比である。及
びの各単量䜓の含有比率がこの範囲から倖れた
ビニル共重合䜓を甚いるず該ビニル共重合䜓を
成分ず混合したずきに盞溶性が䞍足しお沈殿分離
を生じ、たた該ビニル共重合䜓を成分ず混合し
おセメント甚分散剀ずしお䜿甚したずきに充分な
スランプロス防止効果を埗るこずができない。 成分である氎溶性ビニル共重合䜓を構成する
及びの各単量䜓の䞭では特に、その性胜
䞊、の単量䜓が極めお重芁である。の単量䜓
ずの単量䜓ずから構成されるビニル共重合䜓で
は、該ビニル共重合䜓を成分ず混合しおセメン
ト分散剀ずしお䜿甚したずきに充分なスランプロ
ス防止効果を埗るこずができない。しかし、の
単量䜓ずの単量䜓ず曎に加えおの単量䜓ずか
ら構成される氎溶性ビニル共重合䜓を成分ず混
合しおセメント甚分散剀ずしお䜿甚したずきに
は、優れたスランプロス防止効果を埗るこずがで
きるからである。 成分である氎溶性ビニル共重合䜓は、その本
来の効果を損なわない範囲内においお、皮々の目
的で、䟋えば成分ずの盞溶性をさらに良くする
等の目的で、アクリルアミド、メタクリルアミ
ド、アクリロニトリル、アクリル酞゚ステル等の
他の単量䜓成分を10重量以䞋含たせたものでも
よい。 成分である氎溶性ビニル共重合䜓の数平均分
子量は、通垞3000〜50000GPC法、ポリ゚チレ
ングリコヌル換算、以䞋同じであるが、成分
を成分ず混合しおセメント甚分散剀ずしお所定
量配合した氎硬性セメント組成物のスランプロス
防止効果や該氎硬性セメント組成物から埗られる
成型品の匷床の点で、5000〜30000のものが奜た
しい。 本発明においお、セメント固圢分に察し所定量
配合するセメント甚分散剀は、成分ず成分ず
を任意に混合しおなるものであるが、成分ず
成分ずの盞溶性や該セメント甚分散剀を䜿甚した
ずきのスランプロス防止効果の点で、双方の混合
比は、成分成分98〜7525重量比
が奜たしく、95〜8020重量比が曎に奜
たしい。 本発明に係る氎硬性セメント組成物は、セメン
ト固圢分100重量郚に察し、以䞊説明したセメン
ト甚分散剀を0.1〜3.0重量郚配合しお成るもので
ある。セメント分散剀の配合量が少なすぎるず、
充分な分散効果及びスランプロス防止効果が埗ら
れず、たた配合量が倚ぎるず、ペヌスト分離した
り、硬化䞍良を匕き起こしたりする。 本発明に係る氎硬性セメント組成物は、セメン
トペヌストの他、曎に砂や砂利等を加えお混緎し
お埗られるセメントモルタルやコンクリヌトを包
合するものであるが、ずりわけ高床に枛氎された
コンクリヌトにおいお顕著な効果を奏する。具䜓
的に、セメント分散剀を添加しおいないプレヌン
コンクリヌトの単䜍氎量に察しお18〜40の枛氎
率で本発明の分散剀を添加し、混緎しお埗られる
コンクリヌトは、本発明の栞心をなすものの䞀぀
である。たた本発明に係わる氎硬性セメント組成
物は、氎セメント比ず単䜍氎量の双方が小さい
こずが特城ずされる高匷床〜超高匷床コンクリヌ
トにおいお曎に顕著な効果を奏する。具䜓的に、
単䜍氎量が120〜170Kgm3䞔぀氎セメント比が
20〜40で本発明のセメント分散剀を適正量含ん
でなるコンクリヌトは、斜行性、䜜業性、流動性
及びスランプロスの改善された際に立぀た特長を
有し、硬化埌の圧瞮匷床が1000Kgcm2前埌である
高匷床〜超高匷床コンクリヌトずしおの特性を有
するものずなる。この堎合、セメントの䞀郚、䟋
えばセメントの〜25をシリカ質超埮粒粉末に
おきかえお甚いたものは、流動性及びスランプロ
スが曎に䞀局改善された高匷床〜超高匷床コンク
リヌトの特性を有するものずなる。かかる氎硬性
セメント組成物に甚いるセメントずしおは、各皮
ポルトランドセメントの他、フラむアツシナセメ
ント、高炉セメント、アルミナセメント、シリカ
セメント、各皮混合セメント等が挙げられる。た
た本発明に係る氎硬性セメント組成物は、以䞊説
明したセメント甚分散剀の他、曎に合目的的に、
空気量調敎剀、凝結促進剀、凝結遅延剀、膚匵
剀、防腐剀等を配合し埗るものである。 以䞊本発明の構成を説明したが、成分ず成
分ずからなるセメント甚分散剀が優れたスランプ
ロス防止効果を発揮する理由は、次のように掚察
される。すなわち、先ず成分がセメント粒子に
優先的に吞着しおセメント粒子に荷電を䞎え、セ
メント粒子が分散する。次いで成分に比范しお
分子量が倧きく、たた氎䞭での分子の取り埗る圢
態の拡がりが倧きい、しかも嵩高い基を有する
成分が成分の近くに吞着しお吞着局を圢成する
こずにより、セメント粒子同士の接觊による物理
的な凝集の進行を劚げる。このように、セメント
粒子に荷電を䞎え、該荷電を持続させるこずによ
぀お、スランプロスを防止するものず掚察され
る。以䞋、本発明の構成及び効果をより具䜓的に
するため実斜䟋等を挙げるが、本発明が該実斜䟋
に限定されるずいうものではない。 実斜䟋等 ● 補造参考䟋氎溶性ビニル共重合䜓−の
合成 メタクリル酞80郚重量郚、以䞋同じ、メタ
クリルスルホン酞ナトリりム40郚及びメトキシポ
リ゚チレングリコヌルモノメタアクリレヌト゚
チレンオキサむド付加モル数260郚をフ
ラスコに仕蟌み、曎に氎620郚を投入した。続い
お30氎酞化ナトリりム氎溶液124郚を投入しお
メタクリル酞を䞭和し、系のPHを8.5に調敎した。
次いで、系の枩床を枩氎济にお60℃に保ち、反応
系内を充分に窒玠眮換した埌、過硫酞アンモニり
ムの20氎溶液45郚を投入しお重合を開始し、
時間反応を継続しお、重合を完結した。その埌、
酞性分解物の䞭和のために30氎酞化ナトリりム
氎溶液郚を投入しお完党䞭和を行ない、生成物
を埗た。埗られた生成物100郚を゚バポレヌタヌ
にお濃床50wtになるたで濃瞮した埌、未反応
モノマヌを取り陀くために500郚のむ゜プロピル
アルコヌル䞭に、沈殿させた。沈殿物を炉別し、
真空也燥しお、粟補された氎溶性ビニル共重䜓
−を埗た。氎溶性ビニル共重合䜓−の数平
均分子量は4200GPC法、ポリ゚チレングリコヌ
ル換算、カルボキシル䟡は140、元玠分析による
むオり含有量は2.0wtであ぀た。 これらの分析結果より、氎溶性ビニル共重合䜓
−の共重合比率は、メタクリル酞ナトリりム
塩メタリルスルホン酞ナトリりム塩メトキシ
ポリ゚チレングリコヌルメタクリレヌ
ト251065重量比であ぀た。 同様にしお、第衚蚘茉の各氎溶性ビニル共重
合䜓を埗た。
[Formula] M 1 and M 2 are alkali metals, alkaline earth metals, ammonium, or organic amines. n is an integer from 5 to 50. ] In the present invention, known components can be used as component a. Among component a, the alkali metal salts or alkaline earth metal salts of formalin condensates of aromatic sulfonic acids include alkali metal salts or alkaline earth metal salts of formalin condensates of naphthalene sulfonic acids (for example, Japanese Patent Publication No. 41-11737 (as stated in the issue)
is preferred. For creosote oil, naphthalene oil, liquefied coal oil, etc., sulfonated compounds containing naphthalene rings contained in these oils can be co-condensed with formalin. Commercially available products include Mighty 150 (manufactured by Kao Corporation) and Paul Fine 510 (manufactured by Takemoto Yushi Co., Ltd.) can be advantageously used. Among component a, the alkali metal salt or alkaline earth metal of formalin condensate of N-sulfomethylated melamine is commonly known as melamine sulfonic acid formalin condensate salt, and is produced by the following method. It is something. That is, melamine is reacted with formaldehyde to form N-methylolated melamine, and further a bisulfite such as an alkali metal bisulfite salt or an ammonium salt is reacted to sulfomethylate a portion of the methylol groups. Next, a mineral acid such as sulfuric acid is added to make the reaction system acidic, and the methylol group and free amino group are dehydrated and condensed to form a formalin condensate. Then, the free sulfonic acid groups are neutralized by adding an alkali hydroxide or the like to obtain a salt of a formalin condensate of melamine sulfonic acid (for example, the method described in Japanese Patent Publication No. 37058/1983). As the alkali metal salt or alkaline earth metal salt of formalin condensate of N-sulfomethylated melamine, N-
It is preferable that the formalin condensate of sulfomethylated melamine has an average number of bonded sulfonic acid groups of 0.85 to 1.2 per triazine ring in terms of dispersibility and water solubility. ) and Pozolith NL-4000 (manufactured by Nisso Master Builders) can be used advantageously. In the present invention, component b is a monomer of A, B
and C are copolymerized in a specific ratio. Examples of the monomer A include alkali metal salts, alkaline earth metal salts, and alkanolamine salts of acrylic acid and methacrylic acid. Examples of the monomer B include alkali metal salts, alkaline earth metal salts, and alkanolamine salts of methallylsulfonic acid and P-methallyloxybenzenesulfonic acid. Furthermore, as the monomer of C, methoxypolyethylene glycol, ethoxypolyethylene glycol, propoxypolyethylene glycol,
An esterified product of monoalkoxypolyalkylene glycol such as isopropoxypolyethylene glycol, methoxypolyethylenepolypropylene glycol, ethoxypolyethylenepolypropylene glycol, and acrylic acid or methacrylic acid, the number of moles of polyalkylene glycol added is 5 to 50, and Examples include those soluble in water or hot water. In this case, in order to make the esterified product soluble in water or hot water, the ratio of the hydrophilic polyethylene glycol chain in the polyalkylene glycol chain and the number of added moles are appropriately selected within the above range. A constituting the water-soluble vinyl copolymer of component b,
The content ratio of each monomer of B and C is A/B/C=
It is 57-5/3-25/85 (weight ratio). If a vinyl copolymer in which the content ratio of each monomer A, B, and C is outside this range is used, the vinyl copolymer
When mixed with component A, precipitation separation occurs due to insufficient compatibility, and when the vinyl copolymer is mixed with component a and used as a dispersant for cement, sufficient slump loss prevention effect cannot be obtained. . Among the monomers A, B, and C constituting the water-soluble vinyl copolymer that is component b, monomer B is particularly important in terms of its performance. A vinyl copolymer composed of monomer A and monomer C has a sufficient slump loss prevention effect when mixed with component a and used as a cement dispersant. I can't. However, when a water-soluble vinyl copolymer composed of monomers A, monomers C, and monomer B is mixed with component a and used as a dispersant for cement, it has excellent properties. This is because the effect of preventing slump loss can be obtained. The water-soluble vinyl copolymer, which is component b, may be mixed with acrylamide, methacrylamide, or acrylonitrile for various purposes, such as improving compatibility with component a, within a range that does not impair its original effect. It may also contain 10% by weight or less of other monomer components such as acrylic acid ester. The number average molecular weight of the water-soluble vinyl copolymer that is component b is usually 3,000 to 50,000 (GPC method, polyethylene glycol equivalent, the same applies hereinafter), but component b can be mixed with component a to be used as a dispersant for cement. From the viewpoint of the slump loss prevention effect of the hydraulic cement composition mixed in a fixed amount and the strength of the molded product obtained from the hydraulic cement composition, it is preferably 5,000 to 30,000. In the present invention, the cement dispersant that is mixed in a predetermined amount with respect to the solid content of cement is a mixture of component a and component b.
In terms of compatibility with the components and the effect of preventing slump loss when using this cement dispersant, the mixing ratio of both components is component a/component b = 98/2 to 75/25 (weight ratio).
is preferable, and 95/5 to 80/20 (weight ratio) is more preferable. The hydraulic cement composition according to the present invention contains 0.1 to 3.0 parts by weight of the above-described cement dispersant to 100 parts by weight of cement solid content. If the amount of cement dispersant blended is too small,
A sufficient dispersion effect and slump loss prevention effect cannot be obtained, and if the amount is too large, the paste may separate or cause curing failure. The hydraulic cement composition according to the present invention includes cement mortar and concrete obtained by adding and kneading sand, gravel, etc. in addition to cement paste, but it is especially suitable for highly water-reduced concrete. It has a remarkable effect. Specifically, the concrete obtained by adding the dispersant of the present invention at a water reduction rate of 18 to 40% with respect to the unit water volume of plain concrete without adding a cement dispersant and kneading the core of the present invention. It's one of the things you do. Furthermore, the hydraulic cement composition according to the present invention exhibits even more remarkable effects in high-strength to ultra-high-strength concrete, which is characterized by a small water/cement ratio and a small unit water amount. specifically,
Unit water volume is 120-170Kg/ m3 and water/cement ratio is
Concrete containing an appropriate amount of the cement dispersant of the present invention at 20 to 40% has outstanding features such as improved workability, workability, fluidity, and slump loss, and has a high compressive strength after hardening. It has the characteristics of high-strength to ultra-high strength concrete with a strength of around 1000 Kg/cm 2 . In this case, if a part of the cement, for example 5 to 25% of the cement, is replaced with ultrafine siliceous powder, the characteristics of high-strength to ultra-high-strength concrete with even further improved fluidity and slump loss can be achieved. Become what you have. Examples of the cement used in such a hydraulic cement composition include various Portland cements, fly ash cement, blast furnace cement, alumina cement, silica cement, and various mixed cements. In addition to the above-described cement dispersant, the hydraulic cement composition according to the present invention further has the following properties:
Air amount regulators, setting accelerators, setting retarders, swelling agents, preservatives, etc. may be added. The structure of the present invention has been explained above, and the reason why the cement dispersant comprising component a and component b exhibits an excellent slump loss prevention effect is surmised as follows. That is, first, the component a preferentially adsorbs to the cement particles, imparts a charge to the cement particles, and the cement particles are dispersed. Next is component b, which has a larger molecular weight than component a, has a larger range of possible molecular forms in water, and has a bulkier group.
By adsorbing the component near component a and forming an adsorption layer, progress of physical aggregation due to contact between cement particles is inhibited. It is presumed that slump loss is prevented by charging the cement particles and sustaining the charge in this way. Examples are given below to make the structure and effects of the present invention more concrete, but the present invention is not limited to these Examples. <Examples, etc.> ● Production reference example (synthesis of water-soluble vinyl copolymer b-1) 80 parts of methacrylic acid (parts by weight, the same applies hereinafter), 40 parts of sodium methacrylsulfonate, and methoxypolyethylene glycol monomethacrylate (ethylene oxide) 260 parts (number of moles added = 9) were placed in a flask, and further 620 parts of water was added. Subsequently, 124 parts of a 30% aqueous sodium hydroxide solution was added to neutralize the methacrylic acid, and the pH of the system was adjusted to 8.5.
Next, the temperature of the system was maintained at 60°C in a hot water bath, and after the inside of the reaction system was sufficiently purged with nitrogen, 45 parts of a 20% aqueous solution of ammonium persulfate was added to start polymerization.
The reaction was continued for an hour to complete the polymerization. after that,
To neutralize the acidic decomposition product, 5 parts of a 30% aqueous sodium hydroxide solution was added to complete neutralization, and a product was obtained. 100 parts of the obtained product was concentrated using an evaporator to a concentration of 50 wt%, and then precipitated in 500 parts of isopropyl alcohol to remove unreacted monomers. Separate the precipitate by furnace,
Water-soluble vinyl copolymer b purified by vacuum drying
-1 was obtained. The water-soluble vinyl copolymer b-1 had a number average molecular weight of 4200 (GPC method, polyethylene glycol equivalent), a carboxyl value of 140, and a sulfur content of 2.0 wt% by elemental analysis. From these analysis results, the copolymerization ratio of water-soluble vinyl copolymer b-1 is methacrylic acid sodium salt/methallylsulfonic acid sodium salt/methoxypoly(n=9) ethylene glycol methacrylate = 25/10/65 (by weight) ratio). In the same manner, each water-soluble vinyl copolymer listed in Table 1 was obtained.

【衚】 ● 実斜䟋〜10、比范䟋〜 ・・ コンクリヌト組成物の調補 普通ポルトランドセメント小野田瀟補普通ポ
ルトランドセメントず䜏友瀟補普通ポルトランド
セメントの等量混合物を320Kgm3、现骚材
倧井川砂、比重2.62を859Kgm3、粗骚材鉢
地山砕石、比重2.65を975Kgm3现骚材率
47ずし、たた単䜍氎量を163Kgm3氎セ
メント比51ずした。この堎合のプレヌンコ
ンクリヌトの単䜍氎量は200Kgm3埌述する比
范䟋10であり、各䟋ずもに枛氎率は18.5ずな
る。 セメント甚分散剀は、各䟋いずれも目暙スラン
プ倀が21cmずなるように、セメントに察しお固圢
分換算で0.55〜2.0重量の範囲で添加した。た
た空気量調敎は、各䟋いずれも目暙空気量が±
ずなるように、AE調敎剀竹本油脂瀟補の
AE−200を䜿甚するこずにより行な぀た。 党材料緎り混ぜ量40を䞊蚘の配合条件
䞋、第衚及び第衚に蚘茉の通り60傟胎ミキ
サヌに投入し、20r.p.m.×分間緎り混ぜを行な
い、均䞀状態ずし、コンクリヌト組成物を調補し
た。 ・・ 詊隓方法 調補されたコンクリヌト組成物に぀いお、次の
方法でコンクリヌト詊隓を行な぀お、スランプず
空気量、これらの経時倉化及び圧瞮匷床を枬定し
た。結果を第衚実斜䟋及び第衚比范
䟋に瀺した。 ・・・ 方法 コンクリヌト組成物に぀いお、緎り䞊がり盎埌
にサンプリングしお、そのスランプ及び空気量を
20℃×80RHの調湿䞋で枬定した。匕き続き2r.
p.m.の回転数で所時間緎り混ぜ、サンプリングし
お、同様にそのスランプ及び空気量を枬定した。
たた緎り䞊がり盎埌にサンプリングしたコンクリ
ヌトに぀いお、週及び週埌の圧瞮匷床を枬定
した。尚、スランプ、空気量、及び圧瞮匷床の枬
定は、JIS−A1101、JIS−A1128、及びJIS−
A1108に準拠しお行な぀た。
[Table] ● Examples 1 to 10, Comparative Examples 1 to 7 Preparation of concrete composition Ordinary Portland cement (mixture of equal amounts of ordinary Portland cement manufactured by Onoda Corporation and ordinary Portland cement manufactured by Sumitomo Corporation) at 320 kg/m 3 , Fine aggregate (Oigawa sand, specific gravity 2.62) is 859Kg/ m3 , coarse aggregate (Hachiyama crushed stone, specific gravity 2.65) is 975Kg/ m3 (Fine aggregate ratio =
47%), and the unit water amount was 163Kg/m 3 (water/cement ratio = 51%). In this case, the unit water amount of plain concrete is 200 Kg/m 3 (Comparative Example 10 described later), and the water reduction rate is 18.5% in each example. The cement dispersant was added to the cement in an amount of 0.55 to 2.0% by weight in terms of solid content so that the target slump value was 21 cm in each case. In addition, for air volume adjustment, the target air volume is 4± in each example.
Add an AE adjuster (manufactured by Takemoto Yushi Co., Ltd.) so that the concentration is 1%.
AE-200). All materials (kneaded amount: 40) were put into a 60° tilting mixer under the above mixing conditions as shown in Tables 2 and 3, mixed at 20 rpm for 3 minutes, and made into a uniform state. A composition was prepared. ... Test method Concrete tests were conducted on the prepared concrete compositions using the following method to measure slump and air content, their changes over time, and compressive strength. The results are shown in Table 2 (Examples) and Table 3 (Comparative Examples). ... Method The concrete composition was sampled immediately after mixing, and its slump and air content were measured.
Measured under controlled humidity of 20°C x 80% RH. Continue 2r.
The mixture was mixed at a rotational speed of pm for a certain period of time, sampled, and the slump and air amount were similarly measured.
Furthermore, the compressive strength of concrete sampled immediately after mixing was measured after 1 week and 4 weeks. In addition, measurements of slump, air volume, and compressive strength are based on JIS-A1101, JIS-A1128, and JIS-A1101, JIS-A1128, and JIS-
Conducted in accordance with A1108.

【衚】【table】

【衚】【table】

【衚】 ● 比范䟋 −−9010固圢分重量比のセ
メント分散剀を、セメント固圢分100郚に察し
0.05郚添加した以倖は、実斜䟋〜10の堎合ず同
様にしおコンクリヌト組成物を調補し、JIS−
A1101に準拠しおスランプを枬定したずころ、ス
ランプ倀がcm未満の著るしく流動性に乏しい硬
いコンクリヌトしか埗られなか぀た。 ● 比范䟋 −−9010固圢分重量比のセ
メント分散剀を、セメント固圢分100郚に察し3.5
郚添加した以倖は、実斜䟋〜10の堎合ず同様に
しおコンクリヌト組成物を調補し、JIS−A1101
に準拠しおスランプを枬定したずころ、スランプ
倀が25cm以䞊を瀺し、砂利等の粗骚材が党く分離
した状態ずな぀お、均質なコンクリヌトが埗られ
なか぀た。 ●比范䟋10実斜䟋〜10、比范䟋〜に察応
するプレヌンコンクリヌトの調補 普通ポルトランドセメント小野田瀟補普通ポ
ルトランドセメントず䜏友瀟補普通ポルトランド
セメントの等量混合物を320Kgm3、现骚材
倧井川砂、比重2.62を886Kgm3、粗骚材鉢
地山砕石、比重2.65を937Kgm3现骚材率
49ずし、たた単䜍氎量を200Kgm3氎セ
メント比62.5ずしお、プレヌンコンクリヌ
トを調補した。このプレヌンコンクリヌトの緎り
䞊がり盎埌におけるスランプは18.8cm、空気量は
1.3であ぀た。 ● 実斜䟋11〜14、比范䟋11〜14 普通ポルトランドセメント小野田瀟補普通ポ
ルトランドセメントず䜏友瀟補普通ポルトランド
セメントの等量混合物を550Kgm3、现骚材
倧井川砂、比重2.62を605Kgm3、粗骚材岡
厎産砕石、比重2.66を1040Kgm3现骚材率
37ずし、たた単䜍氎量を165Kgm3氎セ
メント比30ずした。セメント甚分散剀は各
䟋いずれも目暙スランプ倀が21cmずなるように添
加した。たた空気量調敎は、各䟋いずれも目暙空
気量が±ずなるように、AE調敎剀竹本
油脂瀟補のAE−200を䜿甚するこずにより行な
぀た。 党材料緎り混ぜ量30を䞊蚘の配合条件
䞋、第衚及び第衚に蚘茉の通り50匷制ミキ
サヌに投入し、76r.p.m.×90秒間緎り混ぜを行な
い、均䞀状態ずし、コンクリヌト組成物を調補し
た。 ・・ 詊隓方法 緎り䞊がり盎埌にサンプリングした埌、コンク
リヌト組成物を60傟胎ミキサヌに移しかえお匕
き続き2r.p.m.の回転数で所定時間緎り混ぜ、サ
ンプリングした以倖は、前述の方法ず同様にしお
行な぀た。結果を第衚実斜䟋及び第衚
比范䟋に瀺した。
[Table] ● Comparative Example 8 A-1/b-1 = 90/10 (solid content weight ratio) cement dispersant was added to 100 parts of cement solid content.
Concrete compositions were prepared in the same manner as in Examples 1 to 10, except that 0.05 part was added, and JIS-
When the slump was measured in accordance with A1101, only hard concrete with a slump value of less than 5 cm and extremely poor fluidity was obtained. ● Comparative Example 9 A-1/b-1 = 90/10 (solid content weight ratio) cement dispersant was added at 3.5 parts per 100 parts of cement solid content.
Concrete compositions were prepared in the same manner as in Examples 1 to 10, except that part of the concrete was added, and JIS-A1101
When the slump was measured according to the following, the slump value was 25 cm or more, and the coarse aggregate such as gravel was completely separated, and homogeneous concrete could not be obtained. ●Comparative Example 10 (Preparation of plain concrete corresponding to Examples 1 to 10 and Comparative Examples 1 to 9) Ordinary Portland cement (mixture of equal amounts of ordinary Portland cement manufactured by Onoda Corporation and ordinary Portland cement manufactured by Sumitomo Corporation) at 320 kg/m 3. Fine aggregate (Oigawa sand, specific gravity 2.62) is 886Kg/ m3 , coarse aggregate (Hachiyama crushed stone, specific gravity 2.65) is 937Kg/ m3 (fine aggregate ratio =
49%) and the unit water amount was 200Kg/m 3 (water/cement ratio = 62.5%) to prepare plain concrete. The slump of this plain concrete immediately after mixing is 18.8 cm, and the amount of air is
It was 1.3%. ● Examples 11 to 14, Comparative Examples 11 to 14 550 kg/m 3 of ordinary Portland cement (mixture of equal amounts of ordinary Portland cement manufactured by Onoda Corporation and ordinary Portland cement manufactured by Sumitomo Corporation), fine aggregate (Oigawa sand, specific gravity 2.62) 605Kg/m 3 , coarse aggregate (crushed stone from Okazaki, specific gravity 2.66) 1040Kg/m 3 (fine aggregate ratio =
37%), and the unit water amount was 165Kg/m 3 (water/cement ratio = 30%). The cement dispersant was added in each case so that the target slump value was 21 cm. Further, the air amount was adjusted by using an AE regulator (AE-200 manufactured by Takemoto Yushi Co., Ltd.) so that the target air amount was 4±1% in each case. All materials (kneading amount: 30) were put into a forced mixer under the above mixing conditions as shown in Tables 4 and 5, and mixed at 76 rpm for 90 seconds to obtain a uniform state, and the concrete composition was determined. I prepared something.・・Test method After sampling immediately after mixing, the concrete composition was transferred to a 60 tilt mixer and continued to be mixed at a rotation speed of 2 rpm for a specified period of time. Summer. The results are shown in Table 4 (Examples) and Table 5 (Comparative Examples).

【衚】【table】

【衚】 ● 実斜䟋15〜18、比范䟋15〜17 普通ポルトランドセメント小野田瀟補普通ポ
ルトランドセメントず䜏友瀟補普通ポルトランド
セメントの等量混合物を450Kgm3、现骚材
倧井川砂、比重2.62を726Kgm3、粗骚材岡
厎産砕石、比重2.66を1102Kgm3现骚材率
40ずし、たた単䜍氎量を155Kgm3氎セ
メント比34.4ずした。セメント甚分散剀は
各䟋いずれも目暙スランプがcmずなるように添
加し、たた空気量は未満のノンAEコンクリ
ヌトずしお、その他、緎り混ぜ方法及び詊隓方法
は前述した実斜䟋11〜14の堎合ず同様にしお行な
぀た。結果を第衚実斜䟋及び第衚比范
䟋に瀺した。
[Table] ● Examples 15 to 18, Comparative Examples 15 to 17 450 kg/m 3 of ordinary Portland cement (mixture of equal amounts of ordinary Portland cement manufactured by Onoda Corporation and ordinary Portland cement manufactured by Sumitomo Corporation), fine aggregate (Oigawa sand, 726Kg/m 3 (specific gravity 2.62) and 1102Kg/m 3 (fine aggregate ratio = coarse aggregate (crushed stone from Okazaki, specific gravity 2.66)
40%), and the unit water amount was 155Kg/m 3 (water/cement ratio = 34.4%). The cement dispersant was added to each example so that the target slump was 8 cm, and the air content was less than 2%, making it a non-AE concrete.Other than that, the mixing method and testing method were as described in Examples 11 to 14 above. I did it in the same way as in the case. The results are shown in Table 6 (Examples) and Table 7 (Comparative Examples).

【衚】【table】

【衚】 ● 実斜䟋19〜22、比范䟋18〜19 普通ポルトランドセメント小野田瀟補普通ポ
ルトランドセメントず䜏友瀟補普通ポルトランド
セメントの等量混合物を512Kgm3、マむクロ
シリカ940US゚ルケム瀟補シリカヒナヌムを
128m3、现骚材倧井川砂、比重2.62を576
Kgm3、粗骚材鉢地山砕石、比重2.65を1034
Kgm3现骚材率36ずし、たた単䜍氎量を
160Kgm3ずした。この堎合の比
は25であり、は20である。 䜆し、単䜍氎量 単䜍セメント量 単䜍シリカヒナヌム量 セメント甚分散剀は、各䟋いずれも目暙スラン
プ倀が21cmずなるように添加し、たた空気量は
未満のノンAEコンクリヌトずしお、その他、
緎り混ぜ方法及び詊隓方法は前述した実斜䟋11〜
14の堎合ず同様にしお行な぀た。結果を第衚
実斜䟋及び第衚比范䟋に瀺した。
[Table] ● Examples 19 to 22, Comparative Examples 18 to 19 512 Kg/m 3 of ordinary Portland cement (mixture of equal amounts of ordinary Portland cement manufactured by Onoda Corporation and ordinary Portland cement manufactured by Sumitomo Corporation), and microsilica 940US (manufactured by Elkem Corporation). silica hume)
128/ m3 , 576 fine aggregate (Oigawa sand, specific gravity 2.62)
Kg/ m3 , coarse aggregate (Hachiyama crushed stone, specific gravity 2.65) 1034
Kg/m 3 (fine aggregate ratio = 36%), and the unit water volume is
The weight was set at 160Kg/ m3 . In this case, the W/(C+S) ratio is 25% and S/(C+S) is 20%. [However, W: unit amount of water C: unit amount of cement S: unit amount of silica hume] The dispersant for cement was added so that the target slump value was 21 cm in each case, and the amount of air was 2.
As non-AE concrete of less than %, others,
The kneading method and test method are as described in Example 11~
This was done in the same manner as in case 14. The results are shown in Table 8 (Examples) and Table 9 (Comparative Examples).

【衚】【table】

【衚】 発明の効果 各比范䟋に察する各実斜䟋の結果からも明らか
なように、以䞊説明した本発明には、優れた枛氎
性胜のセメント分散剀を配合し、高床に枛氎した
堎合であ぀おも、適正な空気量ず良奜な圧瞮匷床
を䞎え぀぀、優れた分散流動性を発珟し、しかも
該分散流動性の経時倉化も極めお少ないずいう効
果がある。
[Table] <Effects of the Invention> As is clear from the results of each Example with respect to each Comparative Example, the present invention described above contains a cement dispersant with excellent water reduction performance, and when highly water reduced. Even in the case of dispersion, the dispersion fluidity exhibits excellent dispersion fluidity while providing an appropriate amount of air and good compressive strength, and there is also an extremely small change in the dispersion fluidity over time.

Claims (1)

【特蚱請求の範囲】  セメント固圢分100重量郚に察し、次の成
分ず成分ずからなるセメント甚分散剀を0.1〜
3.0重量郚配合しお成る氎硬性セメント組成物。 成分芳銙族スルホン酞のホルマリン瞮合物
のアルカリ金属塩若しくはアルカリ土類金属塩、
又は−スルホメチル化メラミンのホルマリン瞮
合物のアルカリ金属塩若しくはアルカリ土類金属
塩。 成分それを構成する単量䜓ずしお䞋蚘の
及びを含み䞔぀該単量䜓の共重合比率が
57〜〜2585〜40重量比
である氎溶性ビニル共重合䜓。 䜆し、R1R2R3は又はCH3。R4は炭玠
数〜のアルキル基。は−SO3M2又は
【匏】M1M2はアルカリ金 属、アルカリ土類金属、アンモニりム、又は有機
アミン。は〜50の敎数。  成分成分98〜7525重量比
である請求項蚘茉の氎硬性セメント組成物。  芳銙族スルホン酞のホルマリン瞮合物がナフ
タレンスルホン酞のホルマリン瞮合物である請求
項又は蚘茉の氎硬性セメント組成物。  氎硬性セメント組成物がコンクリヌトである
請求項又は蚘茉の氎硬性セメント組成
物。  枛氎率察プレヌンコンクリヌトが18〜40
のコンクリヌトである請求項蚘茉の氎硬性セ
メント組成物。  単䜍氎量が120〜170Kgm3䞔぀氎セメント
比が20〜40のコンクリヌトである請求項蚘茉
の氎硬性セメント組成物。  シリカ質超埮粒粉末を混合したコンクリヌト
である請求項蚘茉の氎硬性セメント組成物。
[Claims] 1. 0.1 to 0.1 to 0.1 to 100 parts of a cement dispersant consisting of the following components a and b to 100 parts by weight of cement solid content.
A hydraulic cement composition containing 3.0 parts by weight. Component a: alkali metal salt or alkaline earth metal salt of formalin condensate of aromatic sulfonic acid,
Or an alkali metal salt or alkaline earth metal salt of a formalin condensate of N-sulfomethylated melamine. Component b: It contains the following monomers A, B and C, and the copolymerization ratio of the monomers is A/B/C=57-5/3-25/85-40 (weight ratio )
A water-soluble vinyl copolymer. [However, R 1 , R 2 , R 3 are H or CH 3 . R 4 is an alkyl group having 1 to 3 carbon atoms. X is -SO 3 M 2 or [Formula] M 1 and M 2 are alkali metals, alkaline earth metals, ammonium, or organic amines. n is an integer from 5 to 50. ] 2 component a/component b = 98/2 to 75/25 (weight ratio)
The hydraulic cement composition according to claim 1. 3. The hydraulic cement composition according to claim 1 or 2, wherein the formalin condensate of aromatic sulfonic acid is a formalin condensate of naphthalenesulfonic acid. 4. The hydraulic cement composition according to claim 1, 2 or 3, wherein the hydraulic cement composition is concrete. 5 Water reduction rate (vs. plain concrete) is 18-40
% of concrete. 5. The hydraulic cement composition of claim 4. 6. The hydraulic cement composition according to claim 4, which is concrete having a unit water amount of 120 to 170 Kg/m 3 and a water/cement ratio of 20 to 40%. 7. The hydraulic cement composition according to claim 6, which is concrete mixed with ultrafine siliceous powder.
JP16123889A 1989-06-24 1989-06-24 Hydraulic cement composition Granted JPH0328149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16123889A JPH0328149A (en) 1989-06-24 1989-06-24 Hydraulic cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16123889A JPH0328149A (en) 1989-06-24 1989-06-24 Hydraulic cement composition

Publications (2)

Publication Number Publication Date
JPH0328149A JPH0328149A (en) 1991-02-06
JPH0532338B2 true JPH0532338B2 (en) 1993-05-14

Family

ID=15731270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16123889A Granted JPH0328149A (en) 1989-06-24 1989-06-24 Hydraulic cement composition

Country Status (1)

Country Link
JP (1) JPH0328149A (en)

Also Published As

Publication number Publication date
JPH0328149A (en) 1991-02-06

Similar Documents

Publication Publication Date Title
JP3336456B2 (en) Cement dispersant and concrete composition containing the dispersant
JP5479478B2 (en) Dynamic copolymers for maintaining workability of cementitious compositions
US20030144384A1 (en) Superplasticizer for concrete and self-leveling compounds
JPH0511057B2 (en)
JP2001316152A (en) Admixture for cement for improving slump value
JP2002003256A (en) Cement-dispersing polymer for high flow, high-strength and self-compacting concrete
JP6821250B2 (en) Method for producing a cured product of hydraulic composition
JP2008223041A (en) Air controlling polymer super-plasticizer
JP2008133176A (en) Cement admixture
JP3181226B2 (en) Fluidity decrease inhibitor for hydraulic cement composition and method for preventing fluidity decrease of hydraulic cement composition
JP2000143313A (en) Cement additive and cement composition
JP2008105867A (en) Cement admixture
JP2001302307A (en) Cement additive and concrete composition produced by using the same
JPH0536377B2 (en)
JP2017206393A (en) Chemical admixture for hydraulic composition
JP2002047051A (en) Composition having self-leveling ability
JPH0558696A (en) Additive for cement and production of concrete using the same
JPH05238795A (en) Cement admixture and production of concrete by using this admixture
JPH0532338B2 (en)
JPH09194244A (en) Cement admixture
JP4421194B2 (en) Admixture for hydraulic composition
JP3206982B2 (en) Admixture for concrete
JPH09241058A (en) Cement additive
JP3415419B2 (en) Concrete composition
JP2004256321A (en) Admixture for hydraulic composition