JPH05322914A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH05322914A
JPH05322914A JP14091491A JP14091491A JPH05322914A JP H05322914 A JPH05322914 A JP H05322914A JP 14091491 A JP14091491 A JP 14091491A JP 14091491 A JP14091491 A JP 14091491A JP H05322914 A JPH05322914 A JP H05322914A
Authority
JP
Japan
Prior art keywords
movable member
acceleration sensor
fixed rod
movable
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14091491A
Other languages
Japanese (ja)
Inventor
Hitoshi Morisawa
均 森澤
Atsushi Komura
敦 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP14091491A priority Critical patent/JPH05322914A/en
Publication of JPH05322914A publication Critical patent/JPH05322914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To adjust the initial value of a variable capacitor effectively and positively in a capacity-pickup type acceleration sensor. CONSTITUTION:An acceleration sensor is provided with a fixed rod member 1 having a, dielectric 2, which is embedded in the axial direction. In the fixed rod member 1, a movable member 3, which can be displaced in the axial direction in response to external acceleration, is mounted. A Pair of electrodes 4 and 5, which are arranged so as to face the dielectric 2 and constitute a variable capacitor, are formed in the movable member 3. A regulating means 6 is arranged so as to act on the movable member 3 elastically and regulates the initial position of the movable member 3. An adjusting member 7 is arranged so as to be separated from the movable member 3 with the regulating means 6 in-between. The adjusting member 7 is mounted on the fixed rod member 1 so that the position in the axial direction can be adjusted. The initial position of the movable member 3 is adjusted through the regulating means 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速度センサに関し、よ
り詳しくは外部加速度に応答する可動部材の変位量を電
気容量変化として検出するコンデンサピックアップ型の
加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to a capacitor pickup type acceleration sensor for detecting a displacement amount of a movable member in response to an external acceleration as a change in capacitance.

【0002】[0002]

【従来の技術】従来から広く用いられているコンデンサ
ピックアップ型の加速度センサは、差動コンデンサ方式
が一般的である。図4に従来の差動コンデンサ方式の加
速度センサを示す。この加速度センサは、互いに対向配
置された一対の固定基板101及び102とから構成さ
れている。固定基板101の内側表面には上側固定電極
103が形成されており、他方の固定基板102の内側
表面には下側固定電極104が形成されている。一対の
固定電極103及び104との間には可動電極105が
介在している。上側固定電極103と可動電極105と
の間に一方の可変容量106が形成され、下側固定電極
104と可動電極105との間に他方の可変容量107
が形成される。これら一対の可変容量106及び107
が差動コンデンサを構成する。可動電極105は一般に
導電性の薄板からなり、外部加速度に応答して一対の固
定電極103及び104の間を変位する。この変位によ
り、一対の容量106及び107の間に差動的な容量変
化が生じ外部加速度が検出される。
2. Description of the Related Art A conventional capacitor pickup type acceleration sensor which has been widely used has a differential capacitor system. FIG. 4 shows a conventional differential capacitor type acceleration sensor. This acceleration sensor is composed of a pair of fixed substrates 101 and 102 which are arranged to face each other. An upper fixed electrode 103 is formed on the inner surface of the fixed substrate 101, and a lower fixed electrode 104 is formed on the inner surface of the other fixed substrate 102. A movable electrode 105 is interposed between the pair of fixed electrodes 103 and 104. One variable capacitor 106 is formed between the upper fixed electrode 103 and the movable electrode 105, and the other variable capacitor 107 is formed between the lower fixed electrode 104 and the movable electrode 105.
Is formed. These pair of variable capacitors 106 and 107
Constitutes a differential capacitor. The movable electrode 105 is generally made of a conductive thin plate and is displaced between the pair of fixed electrodes 103 and 104 in response to external acceleration. Due to this displacement, a differential capacitance change occurs between the pair of capacitors 106 and 107, and external acceleration is detected.

【0003】図5に可動電極を構成する導電性薄板10
8の一般的な平面形状を示す。この薄板108は固定部
109と、可動部110と、両者を連結する梁部111
とからなる。この梁部111は可動部110に対して撓
みを付ける為のものであって、外部加速度に対する感度
を上げ且つ検出精度を高める為に極めて繊細な加工処理
及び精密な寸法形状が要求される。
FIG. 5 shows a conductive thin plate 10 constituting a movable electrode.
8 shows a general plane shape of No. 8. The thin plate 108 includes a fixed portion 109, a movable portion 110, and a beam portion 111 that connects them.
Consists of. The beam portion 111 is for bending the movable portion 110, and requires extremely delicate processing and precise dimension and shape in order to increase sensitivity to external acceleration and detection accuracy.

【0004】図6に薄板108の端面形状を示す。例え
ば、数G程度の比較的小さな外部加速度を検出する為に
は、梁部111は極めて繊細な弾性特性を要求され、可
動部110の自重によっても撓みが生ずる。
FIG. 6 shows an end face shape of the thin plate 108. For example, in order to detect a relatively small external acceleration of about several G, the beam portion 111 is required to have an extremely delicate elastic characteristic, and the movable portion 110 is bent due to its own weight.

【0005】[0005]

【発明が解決しようとする課題】上述した従来例におい
ては、導電性薄板部材の可動部を繊細な梁部で支持する
構造である為、様々な外的影響を受け、可動電極の中立
位置が安定しないという問題点があった。この為、一対
の可変容量の均衡を保つ為の初期設定が困難であった。
仮に、容量の不均衡を電気的に補正しようとしても、バ
ラツキ要因が多岐に亘る為有効な手段がなかった。特
に、周囲温度の影響を受け、可動電極に熱的変形が生じ
易く広い温度範囲に渡って容量の均衡を保つことが困難
であるばかりでなく、外部加速度の検出精度に悪影響を
与えていた。
In the above-mentioned conventional example, since the movable portion of the conductive thin plate member is supported by the delicate beam portion, the neutral position of the movable electrode is affected by various external influences. There was a problem that it was not stable. Therefore, it is difficult to perform the initial setting for keeping the pair of variable capacitors in balance.
Even if an attempt was made to electrically correct the capacity imbalance, there were various effective factors, and there was no effective means. In particular, due to the influence of the ambient temperature, the movable electrode is liable to be thermally deformed, it is difficult to keep the balance of the capacitance over a wide temperature range, and the detection accuracy of the external acceleration is adversely affected.

【0006】[0006]

【課題を解決するための手段】上述した従来の技術の問
題点に鑑み、本発明は安定した容量の初期設定が可能で
あり且つ検出精度の優れた構造を有する改良された容量
ピックアップ型加速度センサを提供する事を目的とす
る。この目的を達成する為に、本発明にかかる加速度セ
ンサは、軸方向に沿って埋設された誘電体を具備する固
定棒部材を用いている。この固定棒部材には、可動部材
が外部加速度に応答して軸方向に変位可能な様に装着さ
れている。この可動部材には、固定棒部材に埋設された
誘電体に対向して配置され可変容量を構成する一対の電
極が形成されている。さらに、規制手段を備えており、
可動部材に対して弾性的に作用可能な様に配置され可動
部材の初期位置を規制している。加えて、この規制手段
を間にして可動部材から軸方向に離間して調節部材が配
置されている。この調節部材は可動部材に対する軸方向
位置が調節可能な様に固定棒部材に装着されており、規
制手段を介して可動部材の初期位置を調節する。
In view of the above-mentioned problems of the prior art, the present invention is an improved capacitive pickup type acceleration sensor having a structure capable of stable initial setting of capacitance and having excellent detection accuracy. The purpose is to provide. In order to achieve this object, the acceleration sensor according to the present invention uses a fixed rod member having a dielectric material embedded along the axial direction. A movable member is mounted on the fixed rod member so as to be axially displaceable in response to an external acceleration. The movable member is provided with a pair of electrodes that face the dielectric embedded in the fixed rod member and that constitute a variable capacitance. Furthermore, it is equipped with regulation means,
The movable member is arranged so that it can act elastically to regulate the initial position of the movable member. In addition, an adjusting member is arranged axially away from the movable member with the restricting means in between. The adjusting member is mounted on the fixed rod member so that the axial position with respect to the movable member can be adjusted, and adjusts the initial position of the movable member via the restricting means.

【0007】好ましくは、該規制手段は調節部材と可動
部材との間に介在する所定の長さのスプリング部材から
なる。あるいは、該規制手段は調節部材と可動部材との
間の空間に位置するエアダンパを用いることもできる。
さらに好ましくは、該規制手段は、外部加速度に対する
可動部材の変位量を制御する為にその弾性力が調整可能
となっている。
Preferably, the regulating means is a spring member having a predetermined length interposed between the adjusting member and the movable member. Alternatively, the restricting means may use an air damper located in the space between the adjusting member and the movable member.
More preferably, the regulating means is capable of adjusting its elastic force in order to control the amount of displacement of the movable member with respect to external acceleration.

【0008】[0008]

【作用】上述した構造によれば、軸方向加速度に応答し
て、該可動部材は規制手段の有する弾性的作用もしくは
弾性力に均衡するまで変位する。この結果、可動部材に
設けられた一対の電極はその間に介在する誘電体に対し
て相対的に移動し容量変化が生ずる。この容量変化は可
動部材の変位量に比例しており外部加速度の大きさを表
わしている。外部加速度の印加されていない状態即ち初
期状態においては、可動部材は規制手段により初期位置
に保持されている。このとき、可変容量の初期値を予め
設定された値にする為、可動部材の初期位置もしくは休
止位置を微調整する必要がある。この為、容量値をモニ
タしながら、調節部材を軸方向に沿って移動し、規制手
段を介して可動部材の休止位置を微調節する。調節が完
了した時点で調節部材は固定棒部材に対して固定され
る。又、外部加速度に対する可動部材の変位量即ち感度
を制御する為に規制手段の弾性力を調整する事も可能で
ある。
According to the above-mentioned structure, the movable member is displaced in response to the axial acceleration until it is balanced with the elastic action or elastic force of the regulating means. As a result, the pair of electrodes provided on the movable member relatively move with respect to the dielectric material interposed therebetween, and a capacitance change occurs. This change in capacitance is proportional to the amount of displacement of the movable member and represents the magnitude of external acceleration. In a state where no external acceleration is applied, that is, in an initial state, the movable member is held at the initial position by the restricting means. At this time, in order to set the initial value of the variable capacitance to a preset value, it is necessary to finely adjust the initial position or rest position of the movable member. Therefore, while the capacitance value is being monitored, the adjusting member is moved along the axial direction, and the rest position of the movable member is finely adjusted via the restricting means. When the adjustment is completed, the adjusting member is fixed to the fixed rod member. It is also possible to adjust the elastic force of the restriction means in order to control the displacement amount of the movable member, that is, the sensitivity to external acceleration.

【0009】[0009]

【実施例】以下図面を参照して本発明にかかる加速度セ
ンサの好適な実施例を詳細に説明する。図1は本加速度
センサの一実施例を示す模式的断面図である。図示する
様に、加速度センサは絶縁材料からなる固定棒部材1を
利用して組み立てられる。固定棒部材1の内部にはその
軸方向に沿って誘電体2が埋設されている。この誘電体
2は固定棒部材1に比較して大きな誘電率を有する材料
例えば誘電体セラミックスから構成されている。固定棒
部材1には円筒形状を有する可動部材3が装着されてい
る。この可動部材3は固定棒部材1に対して実質的な運
動摩擦力を生ずる事なく自由に移動できる様に係合して
いる。この為、固定棒部材1の外周面と可動部材3の内
周面との間には潤滑処理が施されている。この潤滑処理
は潤滑被膜をコーティングしたり潤滑剤を接触面に含浸
させる事により行なわれる。かかる構造により、可動部
材3は外部加速度に応答して軸方向即ち固定棒部材1の
長手方向に対して変位可能である。可動部材3の内周面
には直径方向に離間した一対の電極4及び5が形成され
ており、誘電体2に対して各々対向配置され可変容量を
形成する。即ち、誘電体2に対して一対の電極4及び5
が相対的に変位する事により容量変化が生じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an acceleration sensor according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of the present acceleration sensor. As shown in the figure, the acceleration sensor is assembled using the fixed rod member 1 made of an insulating material. A dielectric 2 is embedded inside the fixed rod member 1 along the axial direction thereof. The dielectric 2 is made of a material having a larger dielectric constant than the fixed rod member 1, for example, dielectric ceramics. A movable member 3 having a cylindrical shape is attached to the fixed rod member 1. The movable member 3 is engaged with the fixed rod member 1 so as to be freely movable without generating a substantial kinetic frictional force. For this reason, the outer peripheral surface of the fixed rod member 1 and the inner peripheral surface of the movable member 3 are lubricated. This lubrication treatment is performed by coating a lubricating coating or impregnating the contact surface with a lubricant. With this structure, the movable member 3 can be displaced in the axial direction, that is, the longitudinal direction of the fixed rod member 1 in response to an external acceleration. A pair of electrodes 4 and 5 are formed on the inner peripheral surface of the movable member 3 and are separated from each other in the diametrical direction. That is, the pair of electrodes 4 and 5 with respect to the dielectric 2.
The capacitance changes due to the relative displacement of.

【0010】本加速度センサは、さらに、可動部材3に
対して弾性的に作用可能な様に配置され可動部材の初期
位置を規制する為の規制手段6を含んでいる。本実施例
においては、この規制手段6は所定の長さ寸法及び弾性
力を有するコイルスプリング部材からなる。このスプリ
ング部材はその一端において可動部材3に当接するとと
もに、その他端側で固定されている。従って、無加速度
状態即ち初期状態において、可動部材3はスプリング部
材6の一端に度当たりした状態でその初期位置が規制さ
れる。この時、一対の電極4及び5と誘電体2との間の
相対的位置関係に従って、所定の初期容量もしくは基準
容量が与えられる。しかしながら、この基準容量は一般
に調整を行なわない限り与えられた目標値からずれてい
るのが普通である。
The acceleration sensor further includes a regulating means 6 which is arranged so as to be elastically actable on the movable member 3 and regulates the initial position of the movable member. In this embodiment, the restricting means 6 is composed of a coil spring member having a predetermined length and elastic force. This spring member abuts the movable member 3 at one end and is fixed at the other end. Therefore, in the non-acceleration state, that is, in the initial state, the movable member 3 is regulated in its initial position in a state of hitting one end of the spring member 6. At this time, a predetermined initial capacitance or reference capacitance is given according to the relative positional relationship between the pair of electrodes 4 and 5 and the dielectric 2. However, this reference capacitance is generally deviated from a given target value unless adjustment is made.

【0011】調節部材7が、規制手段6を間にして可動
部材3から離間して配置されている。この調節部材7は
規制手段6を構成するスプリング部材の他端を固定して
いるとともに、可動部材3に対する軸方向位置が調節可
能な様に固定棒部材1に装着されている。本実施例にお
いては、調節部材7はナットからなり、固定棒部材1の
ボルト部分に螺合している。調節部材7を回動すること
により、その軸方向位置が調節できる。例えば、調節部
材7を図面上で左側に移動させると規制手段6もこれに
伴って左側に移動する。この結果、可動部材3の初期位
置も該規制手段6の一端に当接するまで左側に移動す
る。この様にして、調節部材7は規制手段6を介して可
動部材3の初期位置を微調節することができる。
The adjusting member 7 is arranged apart from the movable member 3 with the regulating means 6 in between. The adjusting member 7 fixes the other end of the spring member constituting the regulating means 6 and is attached to the fixed rod member 1 so that the axial position with respect to the movable member 3 can be adjusted. In this embodiment, the adjusting member 7 is a nut and is screwed to the bolt portion of the fixed rod member 1. By rotating the adjusting member 7, its axial position can be adjusted. For example, when the adjusting member 7 is moved to the left side in the drawing, the regulating means 6 is also moved to the left side accordingly. As a result, the initial position of the movable member 3 also moves to the left until it contacts one end of the regulating means 6. In this way, the adjusting member 7 can finely adjust the initial position of the movable member 3 via the regulating means 6.

【0012】本実施例においては規制手段6として所定
の弾性力を有するコイルスプリング部材が用いられてい
る。可動部材3は外部加速度に応答して弾性力に均衡す
るまで変位する。この弾性力を調整する事により可動部
材3の変位量を制御できる。即ち、スプリング部材の弾
性力を大きくすると、可動部材3の変位量は小さくな
り、検出感度が低くなる。逆に、弾性力を小さくする
と、単位外部加速度当たりの変位量が大きくなり検出感
度が増加する。
In this embodiment, a coil spring member having a predetermined elastic force is used as the regulating means 6. The movable member 3 is displaced in response to an external acceleration until it balances with the elastic force. The amount of displacement of the movable member 3 can be controlled by adjusting this elastic force. That is, when the elastic force of the spring member is increased, the displacement amount of the movable member 3 is decreased and the detection sensitivity is decreased. On the contrary, when the elastic force is reduced, the displacement amount per unit external acceleration increases and the detection sensitivity increases.

【0013】次に、図2を参照して本発明にかかる加速
度センサの他の実施例を詳細に説明する。図示する様
に、固定棒部材11が円筒ケース18の中心軸方向に沿
って取り付けられている。この固定棒部材11は比較的
誘電率の小さな絶縁体材料例えばポリカーボネート(ガ
ラス30%含有)あるいはガラスから構成されている。
固定棒部材11の内部には、軸方向に沿って誘電体12
が埋設されている。この誘電体12は比較的大きな誘電
率を有し例えば誘電体セラミックスから構成されてい
る。誘電体セラミックスは例えば数百程度の誘電率を有
し且つその温度変化が1度当り数%以下のものが用いら
れる。かかる材料を用いる事により、検出感度が良く温
度依存性の小さな加速度センサを得る事ができる。な
お、円筒ケース18の直径は数mm程度まで小型化が可能
である。固定棒部材11の周囲には軸方向に沿って変位
可能な様にリング状の可動部材13が取り付けられてい
る。この可動部材13も絶縁体材料成形品、例えばポリ
カーボネートからなる。外部加速度に対する応答性を確
保する為に、可動部材13はベアリング19を介して支
持されており、可動部材13の内周面と固定棒部材11
の外周面との間の運動摩擦を実質的に除去している。可
動部材13の内周面には、直径方向に分割された一対の
電極14及び15が形成されており、誘電体12を上下
から包む事により可変容量を構成している。可動部材1
3の変位に伴って、一対の電極14及び15の間に介在
する誘電体12の相対的位置が変動し容量変化を生じ
る。
Next, another embodiment of the acceleration sensor according to the present invention will be described in detail with reference to FIG. As illustrated, the fixed rod member 11 is attached along the central axis direction of the cylindrical case 18. The fixing rod member 11 is made of an insulating material having a relatively small dielectric constant, such as polycarbonate (containing 30% of glass) or glass.
Inside the fixed rod member 11, the dielectric 12 is provided along the axial direction.
Is buried. The dielectric 12 has a relatively large permittivity and is made of, for example, dielectric ceramics. As the dielectric ceramics, for example, those having a dielectric constant of several hundreds and a temperature change of several percent or less per degree are used. By using such a material, it is possible to obtain an acceleration sensor having high detection sensitivity and small temperature dependence. The diameter of the cylindrical case 18 can be reduced to about several mm. Around the fixed rod member 11, a ring-shaped movable member 13 is attached so as to be displaceable along the axial direction. This movable member 13 is also made of an insulating material molded product, for example, polycarbonate. In order to ensure responsiveness to external acceleration, the movable member 13 is supported via a bearing 19, and the inner peripheral surface of the movable member 13 and the fixed rod member 11 are supported.
It substantially eliminates kinetic friction with the outer peripheral surface. A pair of electrodes 14 and 15 divided in the diameter direction are formed on the inner peripheral surface of the movable member 13, and the dielectric 12 is wrapped from above and below to form a variable capacitance. Movable member 1
Along with the displacement of 3, the relative position of the dielectric 12 interposed between the pair of electrodes 14 and 15 fluctuates, causing a capacitance change.

【0014】可動部材13から軸方向に離間してリング
状の調節部材17が配置されている。この調節部材17
は固定棒部材11に沿って移動可能な様に装着されてい
る。即ち、調節部材17の側壁を貫通する螺子20を緩
める事により移動可能となり、これを締める事により所
望の位置に固定できる。調節部材17と可動部材13と
の間には規制手段が介在している。本実施例において
は、この規制手段はリング状のエアチューブ16からな
り、所望の軸方向寸法を有する。調節部材17の軸方向
位置を調節する事により、エアチューブ16を介して可
動部材13の初期位置が調節される。予め設定された初
期容量値が得られる様にこの調節を行なう。外部加速度
が印加された状態で、このエアチューブ16は可動部材
13に対して弾性的に作用し、弾性力と加速力が均衡す
るまで可動部材13が変位する。単位加速度当たりの変
位量は、エアチューブ16の内部圧力を変える事により
適宜調整される。即ち、エアチューブ16はエアダンパ
として作用する。なお、本実施例においてはエアチュー
ブ16が用いられているが、これに代えて調節部材と可
動部材との間の空間を気密封止してエアバックあるいは
エアダンパを構成してもよい。
A ring-shaped adjusting member 17 is arranged apart from the movable member 13 in the axial direction. This adjusting member 17
Are mounted so as to be movable along the fixed rod member 11. That is, it can be moved by loosening the screw 20 penetrating the side wall of the adjusting member 17, and can be fixed at a desired position by tightening it. A regulating means is interposed between the adjusting member 17 and the movable member 13. In the present embodiment, this restricting means comprises a ring-shaped air tube 16 and has a desired axial dimension. By adjusting the axial position of the adjusting member 17, the initial position of the movable member 13 is adjusted via the air tube 16. This adjustment is made so that a preset initial capacitance value is obtained. With the external acceleration applied, the air tube 16 elastically acts on the movable member 13, and the movable member 13 is displaced until the elastic force and the acceleration force are balanced. The displacement amount per unit acceleration is appropriately adjusted by changing the internal pressure of the air tube 16. That is, the air tube 16 acts as an air damper. Although the air tube 16 is used in the present embodiment, an air bag or an air damper may be formed by hermetically sealing the space between the adjusting member and the movable member instead.

【0015】図3は図2に示す加速度センサをAA線に
沿って切断した断面を示す。図示する様に、誘電体12
は円柱形状を有しており、且つ固定棒部材11の中心軸
に沿って埋設されており、成形加工等により得る事がで
きる。固定棒部材11の周囲にはリング状の可動部材1
3が装着されている。可動部材13の内周面には一対の
電極14及び15が形成されている。図から明らかな様
に、一対の固定電極14及び15とその間に介在する可
動誘電体12とから可変容量が構成される。容量変化を
検出する為に、電極14及び15は外部端子に接続され
ている。これら固定棒部材11と可動部材13との組み
合わせは保護用の円筒ケース18に収納されている。こ
の円筒ケース18は可変容量を外部ノイズから遮閉する
為に金属等の導電性材料を用いる事が好ましい。
FIG. 3 shows a cross section of the acceleration sensor shown in FIG. 2 taken along the line AA. As shown, the dielectric 12
Has a cylindrical shape and is embedded along the central axis of the fixed rod member 11, and can be obtained by molding or the like. A ring-shaped movable member 1 is provided around the fixed rod member 11.
3 is installed. A pair of electrodes 14 and 15 are formed on the inner peripheral surface of the movable member 13. As is apparent from the figure, the variable capacitance is composed of the pair of fixed electrodes 14 and 15 and the movable dielectric 12 interposed therebetween. The electrodes 14 and 15 are connected to external terminals in order to detect a capacitance change. The combination of the fixed rod member 11 and the movable member 13 is housed in a protective cylindrical case 18. The cylindrical case 18 is preferably made of a conductive material such as metal in order to shield the variable capacitance from external noise.

【0016】ところで、図4に示した従来の差動コンデ
ンサ方式の加速度センサにおいては、周囲温度の変化に
対して敏感な可動電極105を用いている為、センサの
出力特性に温度依存性が有り検出誤差が生じる事は前述
した通りである。検出誤差を除く為には回路的な手段を
用いて補正する必要がある。しかしながら、可動電極自
体の熱変形の態様が個々に異なっている上組立において
も微妙な差が生じる為、個々の加速度センサの温度依存
性にバラツキが有り、何ら予測性又は規則性が無い。従
って実際には有効な回路的補正手段が無いのが現状であ
る。
By the way, in the conventional differential capacitor type acceleration sensor shown in FIG. 4, since the movable electrode 105 which is sensitive to the change in ambient temperature is used, the output characteristic of the sensor has temperature dependency. As described above, the detection error occurs. In order to remove the detection error, it is necessary to correct it by using a circuit-like means. However, since the thermal deformation modes of the movable electrodes themselves are different from each other and a slight difference occurs in the assembling, the temperature dependence of each acceleration sensor varies, and there is no predictability or regularity. Therefore, in reality, there is currently no effective circuit correction means.

【0017】この点に鑑み、本発明においては、前述し
た初期容量の調節手段に加えて、温度依存性を実質的に
除去するか若しくは強制的に規則性のある温度依存性を
付与する為の機構的な補正手段を加速度センサに組み入
れる事ができる。その例を再び図2を参照して説明す
る。本例は補正手段として追加のエアチューブ21を利
用している。このエアチューブ21は可動部材13に関
して前述したエアチューブ16とは反対側に配置されて
いる。本例においては一対のエアチューブ16及び21
に挟まれた可動部材13の遊びを除く為、ケース18の
一方の端面部を軸方向に沿って、移動調節可能な構造に
する事が適当である。一対のエアチューブの間に直線的
な温度依存性の有る圧力差を持たせる事により効果的な
温度補償を行なう。
In view of this point, in the present invention, in addition to the above-mentioned means for adjusting the initial capacity, the temperature dependence is substantially eliminated or the temperature dependence having a regularity is forcibly imparted. Mechanical correction means can be incorporated into the acceleration sensor. The example will be described with reference to FIG. 2 again. In this example, the additional air tube 21 is used as the correction means. The air tube 21 is arranged on the opposite side of the movable member 13 from the air tube 16 described above. In this example, a pair of air tubes 16 and 21
In order to eliminate the play of the movable member 13 sandwiched between the two, it is appropriate that one end surface portion of the case 18 has a structure capable of movement adjustment along the axial direction. Effective temperature compensation is performed by providing a linear pressure-dependent pressure difference between the pair of air tubes.

【0018】今、一方のエアチューブ16の内部圧力を
PA、体積をVA、温度をTA、気体分子量をNA、又
そのチューブ長をLAとし、他方のエアチューブ21の
内部圧力をPB、体積をVB、温度をTB、気体分子量
をNB、又そのチューブ長をLBとすると、両者の圧力
差は以下の式で与えられる。 PA−PB=NA×R×TA/VA−NB×R×TB/VB ただしRは気体定数である。気体温度は周囲温度Tに等
しい為TA=TB=T、又同一種気体を用いるとNA=
NB=Nであるから上式は以下の様に変形できる。 PA−PB=NRT(1/VA−1/VB) ここで、エアチューブ体積VA及びVBは各々エアチュ
ーブ長LA及びLBに比例するので上式は以下の様に変
形できる。 PA−PB=kT(1/LA−1/LB) ただしkは比例定数である。この式から明らかな様に、
一対のエアチューブの圧力差PA−PBは周囲温度Tに
直線的に比例している。従って比例定数k及びエアチュ
ーブ長LAとLBを適当に設定する事によって、加速度
センサに用いられる可動部材変位の温度依存性に直線性
が有る場合には、これを打ち消す様に温度補正をかける
事が可能である。あるいは様々な変動要因を吸収して加
速度センサに規則性のある温度依存性を与える事もでき
る。この場合には極めて容易に外部回路を用いた補正が
可能となる。
Now, the internal pressure of one air tube 16 is PA, the volume is VA, the temperature is TA, the gas molecular weight is NA, and its tube length is LA, and the internal pressure of the other air tube 21 is PB and the volume is When VB, temperature is TB, gas molecular weight is NB, and its tube length is LB, the pressure difference between the two is given by the following equation. PA-PB = NA * R * TA / VA-NB * R * TB / VB However, R is a gas constant. Since the gas temperature is equal to the ambient temperature T, TA = TB = T, and if the same kind of gas is used, NA =
Since NB = N, the above equation can be modified as follows. PA-PB = NRT (1 / VA-1 / VB) Here, since the air tube volumes VA and VB are respectively proportional to the air tube lengths LA and LB, the above equation can be modified as follows. PA-PB = kT (1 / LA-1 / LB) where k is a proportional constant. As is clear from this formula,
The pressure difference PA-PB between the pair of air tubes is linearly proportional to the ambient temperature T. Therefore, when the proportionality constant k and the air tube lengths LA and LB are appropriately set, when there is linearity in the temperature dependency of the displacement of the movable member used in the acceleration sensor, temperature correction is performed so as to cancel it. Is possible. Alternatively, various fluctuation factors can be absorbed to give the acceleration sensor regular temperature dependence. In this case, correction using an external circuit can be performed very easily.

【0019】[0019]

【発明の効果】上述した様に、本発明によれば、軸方向
に沿って外部加速度に応答して変位可能な様に可動部材
を固定棒部材の周囲に装着するとともに、可動部材の初
期位置を調節する為の調節部材を固定棒部材に取り付け
る構造とすることにより、可動部材に形成された一対の
電極と固定棒部材に埋設された誘電体とから構成される
可変容量の初期値を極めて容易に調節する事ができると
いう効果がある。又、調節部材と可動部材との間に介在
する規制手段の弾性力もしくは可動部材の質量自体を変
える事により外部加速度に対する応答感度を極めて容易
に調整する事ができるという効果がある。さらに、従来
に比して周囲温度変化に対する不規則な出力変動をなく
し出力変化を補正する事ができるという効果がある。
As described above, according to the present invention, the movable member is mounted around the fixed rod member so as to be displaceable in the axial direction in response to the external acceleration, and the initial position of the movable member is set. By adopting a structure in which an adjusting member for adjusting the above is attached to the fixed rod member, the initial value of the variable capacitance composed of the pair of electrodes formed on the movable member and the dielectric embedded in the fixed rod member can be extremely reduced. The effect is that it can be easily adjusted. Further, there is an effect that the response sensitivity to external acceleration can be adjusted very easily by changing the elastic force of the regulating means interposed between the adjusting member and the movable member or the mass itself of the movable member. Furthermore, there is an effect that irregular output fluctuations due to ambient temperature changes can be eliminated and output changes can be corrected as compared with the related art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる加速度センサの一実施例を示す
模式的縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an embodiment of an acceleration sensor according to the present invention.

【図2】本発明にかかる加速度センサの他の実施例を示
す模式的縦断面図である。
FIG. 2 is a schematic vertical sectional view showing another embodiment of the acceleration sensor according to the present invention.

【図3】図2に示す加速度センサをAA線に沿って切断
した模式的横断面図である。
FIG. 3 is a schematic cross-sectional view of the acceleration sensor shown in FIG. 2 taken along line AA.

【図4】従来の加速度センサを示す模式図である。FIG. 4 is a schematic diagram showing a conventional acceleration sensor.

【図5】従来の加速度センサに用いられる可動電極の平
面図である。
FIG. 5 is a plan view of a movable electrode used in a conventional acceleration sensor.

【図6】従来の加速度センサに用いられる可動電極の側
面図である。
FIG. 6 is a side view of a movable electrode used in a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

1 固定棒部材 2 誘電体 3 可動部材 4 電極 5 電極 6 規制手段 7 調節部材 1 Fixed Rod Member 2 Dielectric 3 Movable Member 4 Electrode 5 Electrode 6 Restricting Means 7 Adjusting Member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に沿って埋設された誘電体を具備
する固定棒部材と、該誘電体に対向して配置され可変容
量を構成する一対の電極を具備するとともに外部加速度
に応答して軸方向に変位可能な様に該固定棒部材に装着
された可動部材と、該可動部材に対して弾性的に作用可
能な様に配置され該可動部材の初期位置を規制する為の
規制手段と、該規制手段を間にして該可動部材から離間
して配置され且つ軸方向位置が調節可能な様に該固定棒
部材に装着されており該規制手段を介して該可動部材の
初期位置を調節する為の調節部材とからなる加速度セン
サ。
1. A fixed rod member having a dielectric material embedded along an axial direction, and a pair of electrodes arranged to face the dielectric material to constitute a variable capacitor and responding to an external acceleration. A movable member mounted on the fixed rod member so as to be displaceable in the axial direction, and a restricting means arranged to elastically act on the movable member and restricting an initial position of the movable member. , Which is arranged apart from the movable member with the regulating means in between and is attached to the fixed rod member so that the axial position can be adjusted, and the initial position of the movable member is adjusted via the regulating means. An acceleration sensor including an adjusting member for controlling the acceleration.
【請求項2】 該規制手段は、調節部材と可動部材との
間に介在するスプリング部材からなる請求項1に記載の
加速度センサ。
2. The acceleration sensor according to claim 1, wherein the restricting means comprises a spring member interposed between the adjusting member and the movable member.
【請求項3】 該規制手段は、調節部材と可動部材との
間の空間に位置するエアダンパである請求項1に記載の
加速度センサ。
3. The acceleration sensor according to claim 1, wherein the restricting means is an air damper located in a space between the adjusting member and the movable member.
【請求項4】 該規制手段は、外部加速度に対する可動
部材の変位量を制御する為に調整可能な弾性力を有して
いる請求項1に記載の加速度センサ。
4. The acceleration sensor according to claim 1, wherein the regulating means has an elastic force that can be adjusted to control the amount of displacement of the movable member with respect to external acceleration.
【請求項5】 可変容量の温度依存性を補正する為の補
正手段を含んでいる請求項1に記載の加速度センサ。
5. The acceleration sensor according to claim 1, further comprising correction means for correcting the temperature dependence of the variable capacitance.
JP14091491A 1991-05-16 1991-05-16 Acceleration sensor Pending JPH05322914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14091491A JPH05322914A (en) 1991-05-16 1991-05-16 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14091491A JPH05322914A (en) 1991-05-16 1991-05-16 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH05322914A true JPH05322914A (en) 1993-12-07

Family

ID=15279757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14091491A Pending JPH05322914A (en) 1991-05-16 1991-05-16 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH05322914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540193A (en) * 2020-12-25 2021-03-23 中国电子科技集团公司第二十六研究所 Quartz flexible acceleration detection mass pendulum capable of isolating interference torque and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540193A (en) * 2020-12-25 2021-03-23 中国电子科技集团公司第二十六研究所 Quartz flexible acceleration detection mass pendulum capable of isolating interference torque and processing method
CN112540193B (en) * 2020-12-25 2023-04-28 中国电子科技集团公司第二十六研究所 Quartz flexible acceleration detection mass pendulum for isolating disturbance moment and processing method

Similar Documents

Publication Publication Date Title
US4434451A (en) Pressure sensors
US4523474A (en) Capacitive pressure sensor
US5009111A (en) Differential force balance apparatus
US4846293A (en) Humidity control system for a scale
US5339699A (en) Displacement/force transducers utilizing hall effect sensors
JP2597042B2 (en) Differential pressure measuring device
JPH05256870A (en) Small-sized silicon accelerometer and its method
KR20070095987A (en) Z-axis accelerometer with at least two gap sizes and travel stops disposed outside an active capacitor area
US4691574A (en) Capacitance transducer
US4507972A (en) Pressure gauge
KR100501201B1 (en) Micro electro mechanical system sensor apparatus of differential capacitive type with capacitance compensator micro electro mechanical system structure
JPH05322914A (en) Acceleration sensor
EP2990773B1 (en) Capacitive pressure sensor
US4440251A (en) Scale with simplified guidance-damper construction
US3199345A (en) Temperature compensated transducer
NO822383L (en) MOISTURE DEVICE FOR A SENSITIVE SENSOR.
US3496775A (en) Pressure sensing device
NO814342L (en) SHAFT ROMETER SUPPORT DEVICE.
RU2778282C1 (en) Accelerometer with improved bias stability
US2908881A (en) Electrical transducer
US20220308085A1 (en) Accelerometer device with improved bias stability
JPH041388Y2 (en)
JP3248307B2 (en) Angle sensor
JPH0541362Y2 (en)
US2839931A (en) Gyroscope