JPH05322908A - Speed detecting apparatus - Google Patents

Speed detecting apparatus

Info

Publication number
JPH05322908A
JPH05322908A JP13385992A JP13385992A JPH05322908A JP H05322908 A JPH05322908 A JP H05322908A JP 13385992 A JP13385992 A JP 13385992A JP 13385992 A JP13385992 A JP 13385992A JP H05322908 A JPH05322908 A JP H05322908A
Authority
JP
Japan
Prior art keywords
waveform
speed
magnetic field
detecting
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13385992A
Other languages
Japanese (ja)
Other versions
JP3114354B2 (en
Inventor
Hideki Hisama
英樹 久間
Ikuo Hayashi
育生 林
Keiji Aoki
啓二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP04133859A priority Critical patent/JP3114354B2/en
Publication of JPH05322908A publication Critical patent/JPH05322908A/en
Application granted granted Critical
Publication of JP3114354B2 publication Critical patent/JP3114354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect the very low speed instantaneously with regard to a speed detecting apparatus for detecting the speed of an automobile. CONSTITUTION:In a speed detecting apparatus for detecting rotaion 11 of the rotary shaft of a vehicle and for detecting the speed of the vehicle, a plurality of waveform-signal generating means 12, which generate a plurality of waveform signals per one rotaion that are continuously changed based on the rotation of the rotary shaft 11, and a plurality of waveform detecting means 13 for detecting the waveform signals at every constant phase difference, are provided. A waveform changing-rate obtaining means 31 obtains the changing rate of each detected waveform signal and synthesizes the changing rates. A speed obtaining means 32 obtains the speed by using the changing rate of the waveform signal, which is obtained with the waveform-changing-rate obtaining means based on the relationship between the preset synthesized waveform changing rate and the speed, as the parameters. An erroneous-operation preventing means 308 inhibits the use of the speed, which is obtained with the speed obtaining means 32, when the vehicle speed exceeds the specified value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車の速度を検出する
速度検出装置に関し、特に本発明では極低速度を瞬時に
検出することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed detecting device for detecting the speed of an automobile, and particularly to the present invention to detect an extremely low speed instantaneously.

【0002】[0002]

【従来の技術】従来このような分野の技術として、実開
昭62−12873号公報に記載された車速検出装置が
ある。従来の速度検出装置では、車両の推進軸の回転に
同期して、例えばトランスミションドリブンギヤの回転
と同一に回転するロータ部に多極着磁したマグネットリ
ング、センサ部に磁気抵抗素子を用いた方法により、回
転に伴う時間の変化から得られる波形をパルスに変換
し、そのパルス間隔を測定しその周期から、又はパルス
信号をカウントしこのカウント数から速度を求めてい
る。
2. Description of the Related Art Conventionally, as a technique in such a field, there is a vehicle speed detecting device disclosed in Japanese Utility Model Laid-Open No. 62-12873. In a conventional speed detecting device, a method in which a magnet ring magnetized in multiple poles in a rotor portion that rotates in synchronization with rotation of a propulsion shaft of a vehicle, for example, the same as rotation of a transmission driven gear, and a magnetic resistance element in a sensor portion Thus, the waveform obtained from the change in time with rotation is converted into a pulse, the pulse interval is measured, the pulse interval is counted, or the pulse signal is counted, and the speed is obtained from this count.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
速度検出装置では極低速の場合に、1パルスの間隔が長
く速度を検出するのに時間がかかり過ぎるという問題が
あった。したがって本発明は上記問題点に鑑み極低速度
を瞬時に検出できる速度検出装置を提供することを目的
とする。
However, the conventional speed detecting device has a problem that the interval of one pulse is long and it takes too much time to detect the speed when the speed is very low. Therefore, an object of the present invention is to provide a speed detecting device capable of instantaneously detecting an extremely low speed in view of the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は前記問題点を解
決するために、車両の回転軸の回転を検出して車両の速
度を検出する速度検出装置に、複数の波形信号発生手
段、複数の波形信号検出手段、波形変化率導出手段及び
速度導出手段を設ける。前記複数の波形信号発生手段は
前記回転軸の回転に基づき連続的に変化し一回転当たり
複数の波形信号を発生する。
In order to solve the above problems, the present invention provides a speed detecting device for detecting the rotation of a rotating shaft of a vehicle to detect the speed of the vehicle, a plurality of waveform signal generating means, and a plurality of waveform signal generating means. The waveform signal detecting means, the waveform change rate deriving means, and the speed deriving means are provided. The plurality of waveform signal generating means continuously changes based on the rotation of the rotary shaft to generate a plurality of waveform signals per one rotation.

【0005】前記複数の波形信号検出手段は前記波形信
号を一定の位相差毎に検出する。前記波形変化率導出手
段は各検出された波形信号の変化率を導出し該変化率を
合成する。前記速度導出手段は予め作成してある合成波
形変化率と速度との関係から前記波形変化率導出手段で
得られた波形信号の変化率をパラメータとして速度を求
める。
The plurality of waveform signal detecting means detect the waveform signals for each constant phase difference. The waveform change rate deriving means derives the change rate of each detected waveform signal and synthesizes the change rates. The velocity deriving unit obtains the velocity from the relationship between the synthetic waveform change rate and the velocity created in advance, using the rate of change of the waveform signal obtained by the waveform change rate deriving unit as a parameter.

【0006】さらに前記複数の波形信号発生手段は多極
着磁したマグネットリングで、前記複数の波形信号検出
手段は前記マグネットリングによって生じる磁界分布の
変化を検出する複数の磁界検出手段で構成してもよい。
また、車速が所定値以上の場合には、前記速度導出手段
で得られた速度の使用を停止するための誤動作防止手段
を設けてもよい。
Further, the plurality of waveform signal generating means are composed of magnet rings magnetized in multiple poles, and the plurality of waveform signal detecting means are composed of a plurality of magnetic field detecting means for detecting a change in magnetic field distribution caused by the magnet ring. Good.
Further, when the vehicle speed is equal to or higher than a predetermined value, a malfunction preventing means may be provided for stopping the use of the speed obtained by the speed deriving means.

【0007】[0007]

【作用】本発明の速度検出装置によれば、前記複数の波
形信号発生手段によって前記回転軸の回転に基づき連続
的に変化し一回転当たり複数の波形信号が発生する。前
記複数の波形信号検出手段によって前記波形信号が一定
の位相差毎に検出される。前記波形変化率導出手段によ
って各検出された波形信号の変化率が導出されその変化
率が合成される。したがって複数の波形信号検出手段の
一つが波形信号の波形の傾きが小さく変化率が小さいと
ころで波形を検出しても他の波形信号検出手段が波形の
傾きが大きく変化率が大きいところで波形を検出できる
ので磁界波形の一周期内で一定の変化率が得られる。前
記速度導出手段によって予め作成してある合成波形変化
率と速度との関係から前記波形変化率導出手段で得られ
た波形信号の変化率をパラメータとして車両の極低速度
が求められる。したがって前記複数の波形信号検出手段
の一つで形成される波形信号の変化率の大きさから瞬時
に車両の極低速度を測定することができる。
According to the speed detecting device of the present invention, the plurality of waveform signal generating means continuously change based on the rotation of the rotary shaft to generate a plurality of waveform signals per rotation. The waveform signals are detected by the plurality of waveform signal detection means for each constant phase difference. The change rate of each detected waveform signal is derived by the waveform change rate deriving means, and the change rates are combined. Therefore, even if one of the plurality of waveform signal detecting means detects a waveform where the inclination of the waveform of the waveform signal is small and the change rate is small, the other waveform signal detecting means can detect the waveform where the inclination of the waveform is large and the change rate is large. Therefore, a constant rate of change can be obtained within one period of the magnetic field waveform. The extremely low speed of the vehicle is obtained from the relationship between the synthetic waveform change rate and the speed created in advance by the speed deriving means, using the change rate of the waveform signal obtained by the waveform change rate deriving means as a parameter. Therefore, the extremely low speed of the vehicle can be instantly measured from the magnitude of the change rate of the waveform signal formed by one of the plurality of waveform signal detecting means.

【0008】前記複数の波形信号発生手段は多極着磁し
たマグネットリングで、前記複数の波形信号検出手段は
前記マグネットリングによって生じる磁界分布の変化を
検出する複数の磁界検出手段で容易に構成される。車速
が所定値以上の場合には、前記速度導出手段で得られた
速度の使用を停止するための誤動作防止手段を設けるこ
とにより、信頼性の向上が図られる。
The plurality of waveform signal generating means are magnet rings magnetized in multiple poles, and the plurality of waveform signal detecting means are easily constituted by a plurality of magnetic field detecting means for detecting a change in magnetic field distribution caused by the magnet ring. It When the vehicle speed is equal to or higher than a predetermined value, reliability is improved by providing a malfunction preventing means for stopping the use of the speed obtained by the speed deriving means.

【0009】[0009]

【実施例】以下本発明の実施例について図面を参照して
説明する。図1は本発明の実施例に係る車速信号発生手
段の構成を示す図である。本発明の速度検出装置は、本
図(a)に示す複数の波形発生手段12及び複数の波形
信号検出手段13を具備する。前記複数の波形発生手段
12は、例えば複数の磁極を有するマグネットリング1
21であり、該マグネットリング121は、周方向の約
20箇所に等間隔に磁極を形成した円板上の永久磁石か
らなり、車速に対応した回転数が得られる手段として図
示しないトランスミションドリブンギヤに連結された回
転軸11に一体的に設けられる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of vehicle speed signal generating means according to an embodiment of the present invention. The speed detecting device of the present invention comprises a plurality of waveform generating means 12 and a plurality of waveform signal detecting means 13 shown in FIG. The plurality of waveform generating means 12 is, for example, a magnet ring 1 having a plurality of magnetic poles.
The magnet ring 121 is composed of a permanent magnet on a disc having magnetic poles formed at equal intervals at about 20 positions in the circumferential direction. It is provided integrally with the connected rotating shaft 11.

【0010】前記複数の波形信号検出手段13は前記複
数の波形発生手段12で発生する信号波形を検出するも
のであり、前記マグネットリング121の磁界変化を検
出する複数の磁界検出素子、例えばホール素子131、
132で形成され、前記回転軸11の近傍に配置され
る。その配置位置は、本図(a)のA部分を拡大した本
図(b)に示すようになされるが、一例として二つのホ
ール素子131、132が前記マグネットリング121
の回転に伴う磁界分布の変化を電圧の変化として表した
磁界波形H1、H2の位相が90°異なるように配置さ
れる。
The plurality of waveform signal detecting means 13 are for detecting the signal waveforms generated by the plurality of waveform generating means 12, and a plurality of magnetic field detecting elements for detecting the magnetic field change of the magnet ring 121, for example, Hall elements. 131,
It is formed of 132 and is arranged in the vicinity of the rotating shaft 11. The arrangement position is as shown in this figure (b) which expanded the A part of this figure (a), but as an example, the two hall elements 131 and 132 are the said magnet ring 121.
Are arranged so that the phases of the magnetic field waveforms H1 and H2, which represent the change in the magnetic field distribution due to the rotation of the, as a change in voltage, differ by 90 °.

【0011】次にこの複数の波形発生手段12及び複数
の波形信号検出手段13から車両の極低速度を求める基
本的動作を説明する。複数の波形発生手段12では回転
軸11が一回転すると複数の磁界波形を発生し、複数の
波形信号検出手段13ではこの各磁界波形を検出する。
複数の波形信号検出手段13の一つでは、測定される磁
界波形は周期的な波形を有し、車速が大きければ磁界波
形の周期が短くなって磁界波形の時間的変化が大きくな
り、車速が小さければ磁界波形の周期が長くなって磁界
波形の時間的変化が小さくなる。したがって、予め磁界
波形の時間的変化である磁界変化率と車速との関係を求
めておき、検出された磁界波形から磁界変化率を導出す
れば、車両の極低速が瞬時に求められる。しかしなが
ら、一つの波形信号検出手段では磁界波形の一周期には
磁界変化率が大きいところと小さいところがあり、小さ
いところでは磁界変化率から極低速を検出できない。こ
のため、複数の波形信号検出手段13を設けて一つの波
形信号検出手段で検出する磁界変化率が小さい場合に
は、他方の波形信号検出手段では大きい磁界変化率が検
出できるようにする。
Next, the basic operation for obtaining the extremely low speed of the vehicle from the plurality of waveform generating means 12 and the plurality of waveform signal detecting means 13 will be described. The plurality of waveform generating means 12 generate a plurality of magnetic field waveforms when the rotating shaft 11 makes one rotation, and the plurality of waveform signal detecting means 13 detect each magnetic field waveform.
In one of the plurality of waveform signal detecting means 13, the measured magnetic field waveform has a periodic waveform, and if the vehicle speed is high, the period of the magnetic field waveform becomes short and the temporal change of the magnetic field waveform becomes large, so that the vehicle speed becomes high. If it is smaller, the period of the magnetic field waveform becomes longer and the temporal change of the magnetic field waveform becomes smaller. Therefore, if the relationship between the magnetic field change rate, which is a temporal change of the magnetic field waveform, and the vehicle speed is obtained in advance and the magnetic field change rate is derived from the detected magnetic field waveform, the extremely low speed of the vehicle can be instantly obtained. However, one waveform signal detection means has a large magnetic field change rate and a small magnetic field change rate in one cycle of the magnetic field waveform, and cannot detect an extremely low speed from the magnetic field change rate at a small magnetic field change rate. Therefore, a plurality of waveform signal detecting means 13 are provided so that when the magnetic field change rate detected by one waveform signal detecting means is small, the other waveform signal detecting means can detect a large magnetic field change rate.

【0012】以下に本基本的動作を具体的に説明する。
説明の簡単化のために複数の波形信号検出手段13とし
て二つのホール素子131、132を用いた場合につい
て説明する。この二つのホール素子はそれぞれ90°位
相が異なる磁界波形H1、H2が得られるように配置さ
れる。これにより、磁界波形変化率はこれら磁界波形を
一定間隔でサンプリングして求められる。これらの磁界
波形は図2に示す如く正弦波として(但し、図2はマグ
ネットリング121が一定回転の場合を表わしてい
る)、図中のzを0°と考えると、その一つの波形は0
°、180°、360°(数値は一つの磁界波形H1の
位相を表す)付近で磁界変化率が大きくなるが、90
°、270°付近では磁界変化率は小さくなる。他方の
波形は位相が90°異なるように配置されているため、
一方の磁界波形変化率が小さいとき他方の磁界波形変化
率が大きくなり、一方の磁界波形変化率が大きいときは
他方の磁界波形変化率が小さくなるため、どちらか磁界
波形変化率の大きい方を検出すればある程度車速に対応
した波形磁界変化率が瞬時に求まることになる。車速と
磁界波形変化率の関係について示すと、例えば、前述し
た磁界検出素子としてホール素子131、132を二つ
とし、マグネットリング121として20極着磁したも
のを用いた場合、二つのホール素子131、132の配
置を、各ホール素子が検出する検出波形の位相差が90
°異なるようにすると、一つのホール素子から検出され
る磁界波形H1は、 H1=B・sin(2π・f・t) …(1) となり、他方の磁界波形H2は、 H2=B・cos(2π・f・t) …(2) となる。ここに、Bは磁界波形の振幅、fはマグネット
リングの回転周波数(Hz)を表している。なお車速に
対応した回転数が得られるように、このマグネットリン
グを取り付けているため、マグネットリングの回転周波
数と車速は所定の対応関係になっている。
The basic operation will be specifically described below.
For simplification of description, a case where two Hall elements 131 and 132 are used as the plurality of waveform signal detecting means 13 will be described. The two Hall elements are arranged so that magnetic field waveforms H1 and H2 having different phases by 90 ° are obtained. Thus, the magnetic field waveform change rate is obtained by sampling these magnetic field waveforms at regular intervals. These magnetic field waveforms are sine waves as shown in FIG. 2 (however, FIG. 2 shows the case where the magnet ring 121 rotates at a constant speed), and if z in the figure is considered to be 0 °, one of the waveforms is 0.
The magnetic field change rate increases near 90 °, 180 °, 360 ° (the numerical value represents the phase of one magnetic field waveform H1), but 90%
At around 270 °, the rate of magnetic field change becomes small. Since the other waveform is arranged so that its phase is different by 90 °,
When one magnetic field waveform change rate is small, the other magnetic field waveform change rate is large, and when one magnetic field waveform change rate is large, the other magnetic field waveform change rate is small. If detected, the waveform magnetic field change rate corresponding to the vehicle speed can be found to some extent instantaneously. Regarding the relationship between the vehicle speed and the rate of change in the magnetic field waveform, for example, when two Hall elements 131 and 132 are used as the above-mentioned magnetic field detection elements and a magnet ring 121 is magnetized with 20 poles, two Hall elements 131 are used. , 132 are arranged so that the phase difference of the detected waveforms detected by each Hall element is 90
If made different, the magnetic field waveform H1 detected from one Hall element is H1 = B · sin (2π · f · t) (1), and the other magnetic field waveform H2 is H2 = B · cos ( 2π · f · t) (2) Here, B represents the amplitude of the magnetic field waveform, and f represents the rotation frequency (Hz) of the magnet ring. Since the magnet ring is attached so that the rotation speed corresponding to the vehicle speed can be obtained, the rotation frequency of the magnet ring and the vehicle speed have a predetermined correspondence.

【0013】図3は二つの磁界検出素子を用いた場合の
単位時間当たりの磁界波形変化量と車速との関係を示す
図である。上記式(1)及び(2)で示す二つの、すな
わち90°の位相差を有する磁界波形をΔt=50ms
でサンプリングすると、本図に示すように車速(0〜約
6Km/h)に対して一定の幅を有する単位時間当たり
の磁界波形変化量(v)が磁界波形変化率として得られ
る。
FIG. 3 is a diagram showing the relationship between the amount of change in the magnetic field waveform per unit time and the vehicle speed when two magnetic field detecting elements are used. Two magnetic field waveforms represented by the above equations (1) and (2), that is, a magnetic field waveform having a phase difference of 90 °, is Δt = 50 ms.
When sampling is performed, the magnetic field waveform change amount (v) per unit time having a constant width with respect to the vehicle speed (0 to about 6 Km / h) is obtained as the magnetic field waveform change rate as shown in FIG.

【0014】以上は二つの磁界検出素子131及び13
2を用いた場合の磁界波形変化率について説明したが、
さらに多くの磁界検出素子を設けた場合についての磁界
波形変化率を説明する。図4は三つの磁界検出素子を用
いた場合の単位時間当たりの磁界波形変化量と車速との
関係を示す図である。三つの磁界検出素子はそれぞれの
磁界波形が60°の位相差を有すように配置される。本
図に示すよう、磁界波形変化率は上記と同様のサンプリ
ング時間で求めると、車速に対して一定幅の単位時間当
たりの磁界波形変化量が得られ、その変化量幅は、図3
で示すものより狭くなり、精度が向上している。
The above is the two magnetic field detecting elements 131 and 13
Although the magnetic field waveform change rate when 2 is used,
The magnetic field waveform change rate in the case where more magnetic field detection elements are provided will be described. FIG. 4 is a diagram showing the relationship between the amount of change in the magnetic field waveform per unit time and the vehicle speed when three magnetic field detecting elements are used. The three magnetic field detecting elements are arranged so that the respective magnetic field waveforms have a phase difference of 60 °. As shown in the figure, when the magnetic field waveform change rate is obtained in the same sampling time as the above, the magnetic field waveform change amount per unit time of a constant width with respect to the vehicle speed is obtained.
It is narrower than that shown in and the accuracy is improved.

【0015】図5は六つの磁界検出素子を用いた場合の
単位時間当たりの磁界波形変化量と車速との関係を示す
図である。本図の場合にはホール素子が六つ用いられる
ため、各検出波形の位相差が30°となり、本図に示す
ように、図4の場合に比較してさらに単位時間当たりの
磁界波形変化量の幅が小さくなり、速度が高精度で得ら
れることが分かる。
FIG. 5 is a diagram showing the relationship between the amount of change in the magnetic field waveform per unit time and the vehicle speed when six magnetic field detecting elements are used. In the case of this figure, since six Hall elements are used, the phase difference between the detected waveforms is 30 °. As shown in this figure, the amount of change in the magnetic field waveform per unit time is further increased as compared with the case of FIG. It can be seen that the width of becomes smaller and the speed can be obtained with high accuracy.

【0016】次に磁界検出素子131及び132で検出
された磁界波形変化率から速度の導出する手段について
説明する。図6は本発明の実施例に係る極低速度を導出
する構成を説明する図であり、図7は図6の極低速度検
出手段の各部信号波形を示す図である。本発明の速度検
出装置は、本図に示すように、極低速度を導出するため
に車速パルス発生手段2及び極低速度検出手段3とを具
備する。該車速パルス発生手段2は磁界検出素子131
及び132からの磁界波形の電気信号をそれぞれ増幅す
る増幅回路201及び202と、各該増幅信号を入力し
て矩形波に成形する波形整形回路203及び204と、
各該矩形信号を入力し前記マグネットリング12の一回
転当たり20のパルスを出力する合成回路205とを含
む。
Next, a means for deriving the velocity from the magnetic field waveform change rate detected by the magnetic field detecting elements 131 and 132 will be described. FIG. 6 is a diagram for explaining a configuration for deriving an extremely low speed according to the embodiment of the present invention, and FIG. 7 is a diagram showing signal waveforms of respective parts of the extremely low speed detecting means of FIG. As shown in the figure, the speed detecting device of the present invention comprises a vehicle speed pulse generating means 2 and an extremely low speed detecting means 3 for deriving an extremely low speed. The vehicle speed pulse generating means 2 is a magnetic field detecting element 131.
Amplifier circuits 201 and 202 for amplifying the electric signals of the magnetic field waveforms from the respective converters and 132, and waveform shaping circuits 203 and 204 for inputting the amplified signals and shaping them into rectangular waves, respectively.
And a combining circuit 205 for inputting each of the rectangular signals and outputting 20 pulses per one rotation of the magnet ring 12.

【0017】前記極低速度検出手段3は、波形変化率導
出手段31、速度導出手段32及び誤動作防止手段33
を具備する。前記波形変化率導出手段31は、前記増幅
回路201により増幅された磁界波形H1の電気信号
を、図7(a)に示すように、Δtの2倍の間隔でサン
プリングしΔtの2倍の間電圧値としてサンプルホール
ドするサンプルホールド回路301−aと、前記磁界波
形H1の電気信号を、図7(a)に示すように、Δtの
2倍の間隔でかつ前記サンプルホールド回路301−a
とサンプリングするタイミングをΔt時間ずらしてサン
プリングし、Δtの2倍の間電圧値としてサンプルホー
ルドするサンプルホールド回路301−bと、前記サン
プルホールド回路301−a及び301−bのサンプル
ホールド結果の差を、すなわち、図7(b)に示すよう
に磁界波形H1のΔt間隔の変化量ΔV1の如く電圧値
として求める演算回路303と、前記変化量ΔV1が、
図7(c)に示すように、車速に対応したしきい値以上
か以下か比較し矩形波信号として出力する比較回路30
5と、同様に、前記増幅回路202により増幅された磁
界波形H2の電気信号を、図7(d)に示すように、Δ
tの2倍の間隔でサンプリングしΔtの2倍の間電圧値
としてサンプルホールドするサンプルホールド回路30
2−aと、前記磁界波形H1の電気信号を、図7(d)
に示すように、Δtの2倍の間隔でかつ前記サンプルホ
ールド回路302−aとサンプリングするタイミングを
Δt時間ずらしてサンプリングし、Δtの2倍の間電圧
値としてサンプルホールドするサンプルホールド回路3
02−bと、前記サンプルホールド回路302−a及び
302−bのサンプルホールド結果の差を、すなわち、
図7(e)に示すように磁界波形H2のΔt間隔の変化
量ΔV2の如く電圧値として求め演算回路304と、前
記変化量ΔV2が、図7(f)に示すように、車速に対
応したしきい値以上か以下か比較し矩形波信号として出
力する比較回路306と、該比較回路305及び306
からの図7(c)及び(f)にそれぞれ示す矩形波を合
成し、図7(g)に示すように出力する合成回路307
とを含む。なお図7(g)に示す例では車速がしきい値
以上である。
The extremely low speed detecting means 3 includes a waveform change rate deriving means 31, a speed deriving means 32 and a malfunction preventing means 33.
It is equipped with. The waveform change rate deriving unit 31 samples the electric signal of the magnetic field waveform H1 amplified by the amplifier circuit 201 at an interval of twice Δt, as shown in FIG. As shown in FIG. 7A, the sample and hold circuit 301-a for sample and hold as a voltage value and the electric signal of the magnetic field waveform H1 are provided at an interval of twice Δt and at the sample and hold circuit 301-a.
And the sampling hold result of the sample hold circuit 301-a and the sample hold result of the sample hold circuits 301-a and 301-b. That is, as shown in FIG. 7B, the arithmetic circuit 303 that obtains the voltage value as the variation amount ΔV1 of the Δt interval of the magnetic field waveform H1 and the variation amount ΔV1 are
As shown in FIG. 7 (c), a comparison circuit 30 that compares the threshold value corresponding to the vehicle speed to the threshold value or less and outputs the rectangular wave signal.
5, similarly to the electric signal of the magnetic field waveform H2 amplified by the amplifier circuit 202, as shown in FIG.
A sample and hold circuit 30 that samples at an interval of twice t and samples and holds as a voltage value for twice the value of Δt.
2-a and the electric signal of the magnetic field waveform H1 are shown in FIG.
As shown in FIG. 3, the sample-hold circuit 3 performs sampling at the interval of twice the Δt and at the sampling timing with the sample-hold circuit 302-a with a shift of the Δt time, and sample-holds as a voltage value for twice the Δt.
02-b and the sample and hold results of the sample and hold circuits 302-a and 302-b, that is,
As shown in FIG. 7 (e), the calculation circuit 304 determines the voltage value as the change amount ΔV2 of the Δt interval of the magnetic field waveform H2, and the change amount ΔV2 corresponds to the vehicle speed as shown in FIG. 7 (f). A comparison circuit 306 which compares the threshold value or more or less and outputs the rectangular wave signal, and the comparison circuits 305 and 306.
7 (c) and 7 (f) to synthesize the rectangular waves respectively, and output as shown in FIG. 7 (g).
Including and In the example shown in FIG. 7 (g), the vehicle speed is equal to or higher than the threshold value.

【0018】前記速度導出手段32は、図3に示すよう
に予め得られた磁界変化量と車速との関係から、例えば
複数のコンパレータの基準信号として基準磁界変化量を
予め設定しておくことから、検出磁界変化量がいずれか
の基準磁界変化量を越えたときにこの基準磁界変化量に
対応する速度を求める。このため波形変化率導出手段3
1によって得られた単位時間当たり波形の変化量(変化
率)をパラメータとして速度が図示しない表示部に出力
される。
Since the speed deriving means 32 presets the reference magnetic field change amount as a reference signal of a plurality of comparators from the relationship between the magnetic field change amount and the vehicle speed obtained in advance as shown in FIG. , When the detected magnetic field change amount exceeds any of the reference magnetic field change amounts, the speed corresponding to the reference magnetic field change amount is obtained. Therefore, the waveform change rate deriving means 3
The speed is output to a display unit (not shown) using the amount of change (rate of change) of the waveform per unit time obtained by 1 as a parameter.

【0019】さらに前記誤動作防止手段33は、車速が
一定値以上の場合に誤動作を防止するための誤動作防止
回路308及び車速判定回路309を含む。ところで、
磁界検出素子131及び132によって検出された磁界
分布波形は、車速に対応した回転数が得られるので、車
速が速くなると磁界分布波形の周期も速くなる。前記条
件により磁界分布波形をΔt間隔でサンプリングする場
合、車速が速くなると磁界分布波形の周期がΔt間隔よ
り短くなる(以後サンプリング定理から外れるとい
う)。前記の場合、Δt時間での正しい磁界分布波形の
変化率が検出できなくなる(例えば、前記マグネットリ
ング12が20極着磁でロータ一回転20パルスの矩形
波信号が得られる場合、サンプルホールド回路301−
a、301−b、302−a、302−bのサンプリン
グ時間が50msの場合、約11.7Km/h以上の車
速でサンプリング定理から外れてしまう)のを回避する
ため、Δt間隔でサンプリングする場合、サンプリング
定理から外れる車速を検出する必要がある。したがって
前記誤動作防止回路308は、前記合成回路205から
車速パルスを基にサンプリング定理から外れる車速を検
出し、矩形波信号を出力する。これにより信頼性の向上
が図れる。
Further, the malfunction prevention means 33 includes a malfunction prevention circuit 308 and a vehicle speed determination circuit 309 for preventing malfunction when the vehicle speed is a certain value or more. by the way,
The magnetic field distribution waveforms detected by the magnetic field detecting elements 131 and 132 can obtain the number of revolutions corresponding to the vehicle speed, so that the cycle of the magnetic field distribution waveform becomes faster as the vehicle speed becomes faster. When the magnetic field distribution waveform is sampled at Δt intervals under the above conditions, the cycle of the magnetic field distribution waveform becomes shorter than the Δt interval as the vehicle speed increases (hereinafter referred to as sampling theorem). In the above case, the correct rate of change of the magnetic field distribution waveform at the Δt time cannot be detected (for example, when the magnet ring 12 is magnetized with 20 poles and a rectangular wave signal of 20 pulses per revolution of the rotor is obtained, the sample hold circuit 301 −
In the case where the sampling time of a, 301-b, 302-a, 302-b is 50 ms, sampling is performed at Δt intervals in order to avoid the deviation from the sampling theorem at a vehicle speed of about 11.7 km / h or more). , It is necessary to detect the vehicle speed that deviates from the sampling theorem. Therefore, the malfunction prevention circuit 308 detects a vehicle speed deviating from the sampling theorem based on the vehicle speed pulse from the synthesis circuit 205 and outputs a rectangular wave signal. Thereby, the reliability can be improved.

【0020】また、前記車速判定回路309は、速度導
出手段32の出力信号と、前記誤動作防止回路308の
出力信号を合成して、現在の車速がしきい値に設定した
車速より以上か以下かをΔt間隔で検出する。図8は本
発明の別の実施例に係る速度検出装置を示す図であり、
図9は図8の極低速度検出手段の動作を説明するフロー
チャートである。図6の極低速度検出手段3はアナログ
回路で示したが、図7に示す実施例は、極低速検出手段
3をマイクロコンピュータ(例えばA/D内蔵、三菱M
50927)で構成する点で異なる。以下磁界検出素子
を二つ用いた場合について、図9に説明するように、先
ずステップ101では、合成回路205からの車速パル
スを利用してΔt間隔でA/D変換(Analog to Digita
l Conversion) する際にサンプリング定理から外れる車
速かどうか検査する。イエス(外れ)の場合はステップ
101に戻る。ノウ(外れない)の場合にはステップ1
02に進む。
The vehicle speed determination circuit 309 synthesizes the output signal of the speed deriving means 32 and the output signal of the malfunction prevention circuit 308 to determine whether the current vehicle speed is higher or lower than the vehicle speed set as the threshold value. Are detected at Δt intervals. FIG. 8 is a view showing a speed detecting device according to another embodiment of the present invention,
FIG. 9 is a flow chart for explaining the operation of the extremely low speed detecting means of FIG. The extremely low speed detecting means 3 in FIG. 6 is shown as an analog circuit, but in the embodiment shown in FIG. 7, the extremely low speed detecting means 3 is a microcomputer (for example, a built-in A / D, Mitsubishi M
50927). In the case where two magnetic field detecting elements are used, as will be described with reference to FIG. 9, first in step 101, vehicle speed pulses from the synthesizing circuit 205 are used to perform A / D conversion (Analog to Digita) at Δt intervals.
l Check whether the vehicle speed deviates from the sampling theorem during conversion. If yes (removed), return to step 101. Step 1 in case of knowing (does not come off)
Go to 02.

【0021】ステップ102では、A/D変換する間隔
であるΔt時間経過したか検査する。ノウ(経過前)の
場合はステップ101に戻り、イエス(経過後)の場合
はステップ103に進む。ステップ103では、二つの
磁界検出素子131及び132からの磁界波形をΔt間
隔で個々にA/D変換する。
In step 102, it is inspected whether or not Δt time which is the A / D conversion interval has elapsed. If the answer is No (before elapse), the procedure returns to step 101. If the answer is yes (after elapse), the procedure proceeds to step 103. In step 103, the magnetic field waveforms from the two magnetic field detection elements 131 and 132 are individually A / D converted at Δt intervals.

【0022】ステップ104では、前記A/D変換の結
果を基にΔt時間前のA/D変換の結果と今回のA/D
結果を比較して、Δt間隔での磁界変化量を二つの波形
について個々に求める。次にステップ105で、二つの
磁界変化量の中で磁界変化量の大きい値(SΔV)を求
める。
In step 104, based on the result of the A / D conversion, the result of the A / D conversion before Δt time and the current A / D conversion are performed.
By comparing the results, the amount of change in the magnetic field at the Δt interval is individually calculated for the two waveforms. Next, at step 105, a value (SΔV) having a large magnetic field change amount is calculated from the two magnetic field change amounts.

【0023】次にステップ106で、図3の磁界変化量
と車速との関係を示すマップによりSΔVに対応した車
速を検索する。ステップ107で、車速の表示を行う。
以上の実施例においては、磁界変化量のしきい値を一つ
しか設けなかったが、複数の設定することにより複数の
車速を検出することができる。
Next, at step 106, the vehicle speed corresponding to SΔV is retrieved from the map showing the relationship between the magnetic field change amount and the vehicle speed shown in FIG. In step 107, the vehicle speed is displayed.
Although only one threshold value of the magnetic field change amount is provided in the above embodiments, a plurality of vehicle speeds can be detected by setting a plurality of threshold values.

【0024】また、今回は磁界検出素子を二つ用いた場
合について示したが、磁界検出素子を複数個(n)用い
ることもできる。この場合一つ一つの磁界検出素子配置
の最適位置は一つ一つの磁界検出素子の検出する磁界波
形の位相差が180°/nとなる場合である。また、磁
界検出素子として磁気抵抗素子(MRE)を利用するこ
とで検出してもよいことは明白である。
Further, although the case where two magnetic field detecting elements are used is shown this time, a plurality (n) of magnetic field detecting elements may be used. In this case, the optimum position of each magnetic field detection element arrangement is when the phase difference of the magnetic field waveform detected by each magnetic field detection element is 180 ° / n. Further, it is obvious that the detection may be performed by using a magnetoresistive element (MRE) as the magnetic field detecting element.

【0025】また、以上は周方向の20箇所に等間隔に
磁極を形成した円板上の永久磁石を用いたが磁極の数が
2個以上であればよいことは明白である。また、今回は
車両走行中に生じる車速に対応した回転数が得られる場
所としてトランスミションドリブンギヤについて示した
が、その他に前車輪、後車輪、プロペラシャフト、など
車両走行中に生じる車速に対応した回転数が得られる場
所ならどこでもよい。
In the above, the permanent magnets on the disk in which the magnetic poles are formed at equal intervals at 20 positions in the circumferential direction are used, but it is clear that the number of magnetic poles may be two or more. Also, this time, the transmission driven gear was shown as a place where the rotation speed corresponding to the vehicle speed generated while the vehicle is running was shown. Any place where you can get a number.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、回
転軸の回転に基づき連続的に変化する複数の波形信号を
発生させ、一つが波形信号の波形の傾きが小さく変化率
が小さいところで波形を検出しても他の波形信号検出手
段が波形の傾きが大きく変化率が大きいところで波形を
検出できるようにしたので、一周期の波形内で一定の変
化率が得られ、予め作成してある波形変化率と速度との
関係から検出波形信号の変化率をパラメータとして車両
の極低速度が瞬時に求められる。
As described above, according to the present invention, a plurality of waveform signals that continuously change based on the rotation of the rotary shaft are generated, and one of them is a waveform signal having a small slope and a small change rate. Even if a waveform is detected, the other waveform signal detection means can detect the waveform at a place where the slope of the waveform is large and the rate of change is large. From the relationship between a certain waveform change rate and speed, the extremely low speed of the vehicle is instantaneously obtained using the change rate of the detected waveform signal as a parameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る車速信号発生手段の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of a vehicle speed signal generating means according to an embodiment of the present invention.

【図2】各磁界波形の位相差と磁界波形変化率を示す図
である。
FIG. 2 is a diagram showing a phase difference between magnetic field waveforms and a magnetic field waveform change rate.

【図3】二つの磁界検出素子を用いた場合の単位時間当
たりの磁界波形変化量と車速との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a magnetic field waveform change amount per unit time and a vehicle speed when two magnetic field detection elements are used.

【図4】三つの磁界検出素子を用いた場合の単位時間当
たりの磁界波形変化量と車速との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a magnetic field waveform change amount per unit time and a vehicle speed when three magnetic field detection elements are used.

【図5】六つの磁界検出素子を用いた場合の単位時間当
たりの磁界波形変化量と車速との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a magnetic field waveform change amount per unit time and a vehicle speed when six magnetic field detection elements are used.

【図6】本発明の実施例に係る極低速度を導出する構成
を説明する図である。
FIG. 6 is a diagram illustrating a configuration for deriving an extremely low speed according to the embodiment of the present invention.

【図7】図6の極低速度検出手段の各部信号波形を示す
図である。
FIG. 7 is a diagram showing signal waveforms of respective portions of the extremely low speed detecting means of FIG.

【図8】本発明の別の実施例に係る速度検出装置を示す
図である。
FIG. 8 is a diagram showing a speed detection device according to another embodiment of the present invention.

【図9】図8の極低速度検出手段の動作を説明するフロ
ーチャートである。
9 is a flow chart for explaining the operation of the extremely low speed detecting means of FIG.

【符号の説明】[Explanation of symbols]

2…車速パルス発生手段 3…極低速度検出手段 11…回転軸 12…複数の波形発生手段 13…複数の波形信号検出発生手段 31…波形変化率導出手段 32…速度導出手段 33…誤動作防止手段 121…マグネットリング 131、132…磁界検出素子 2 ... Vehicle speed pulse generating means 3 ... Very low speed detecting means 11 ... Rotating shaft 12 ... Plural waveform generating means 13 ... Plural waveform signal detecting / generating means 31 ... Waveform change rate deriving means 32 ... Speed deriving means 33 ... Malfunction preventing means 121 ... Magnet ring 131, 132 ... Magnetic field detection element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 啓二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiji Aoki 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 車両の回転軸(11)の回転を検出して
車両の速度を検出する速度検出装置において、 前記回転軸(11)の回転に基づき連続的に変化し一回
転当たり複数の波形信号を発生する複数の波形信号発生
手段(12)と、 前記波形信号を一定の位相差毎に検出する複数の波形信
号検出手段(13)と、 各検出された波形信号の変化率を導出し該変化率を合成
する波形変化率導出手段(31)と、 予め作成してある合成波形変化率と速度との関係から前
記波形変化率導出手段で得られた波形信号の変化率をパ
ラメータとして速度を求める速度導出手段(32)とを
備えることを特徴とする速度検出装置。
1. A speed detecting device for detecting the rotation of a rotating shaft (11) of a vehicle to detect the speed of the vehicle, wherein a plurality of waveforms per rotation are continuously changed based on the rotation of the rotating shaft (11). A plurality of waveform signal generating means (12) for generating signals, a plurality of waveform signal detecting means (13) for detecting the waveform signals at constant phase differences, and deriving the rate of change of each detected waveform signal. A waveform change rate deriving means (31) for synthesizing the change rate, and a speed using the change rate of the waveform signal obtained by the waveform change rate deriving means as a parameter from the relationship between the synthesized waveform change rate and the speed that has been created in advance. And a velocity derivation means (32) for obtaining the velocity detection device.
【請求項2】 前記複数の波形信号発生手段(12)は
多極着磁したマグネットリングであり、前記複数の波形
信号検出手段(13)は前記マグネットリングによって
生じる磁界分布の変化を検出する複数の磁界検出手段で
ある請求項1記載の速度検出装置。
2. The plurality of waveform signal generating means (12) are magnet rings magnetized in multiple poles, and the plurality of waveform signal detecting means (13) detect a plurality of changes in magnetic field distribution caused by the magnet rings. 2. The speed detecting device according to claim 1, which is the magnetic field detecting means.
【請求項3】 車速が所定値以上の場合には、前記速度
導出手段で得られた速度の使用を停止するための誤動作
防止手段(33)を備えることを特徴とする請求項1ま
たは2記載の速度検出装置。
3. The malfunction prevention means (33) for stopping the use of the speed obtained by the speed deriving means when the vehicle speed is equal to or higher than a predetermined value. Speed detection device.
JP04133859A 1992-05-26 1992-05-26 Speed detector Expired - Fee Related JP3114354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04133859A JP3114354B2 (en) 1992-05-26 1992-05-26 Speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04133859A JP3114354B2 (en) 1992-05-26 1992-05-26 Speed detector

Publications (2)

Publication Number Publication Date
JPH05322908A true JPH05322908A (en) 1993-12-07
JP3114354B2 JP3114354B2 (en) 2000-12-04

Family

ID=15114717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04133859A Expired - Fee Related JP3114354B2 (en) 1992-05-26 1992-05-26 Speed detector

Country Status (1)

Country Link
JP (1) JP3114354B2 (en)

Also Published As

Publication number Publication date
JP3114354B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
KR101995279B1 (en) Circuits and methods for generating a threshold signal used in a magnetic field sensor
US6498474B1 (en) Rotational velocity and direction sensing system
US5041769A (en) DC motor apparatus with an index signal output
JP2006177966A (en) Method of transmitting angle information and operation device thereof
US20230054830A1 (en) High-resolution mode for a magnetic field sensor
US20080143323A1 (en) Method of detecting rotational position by using hall element and hall element resolver
JP2009145199A (en) System for detecting number of rotation
JPH06147922A (en) Displacement measuring device
JPH05322908A (en) Speed detecting apparatus
US5153513A (en) Apparatus for processing output signal of sensor with magnetic rotary member
US6268721B1 (en) Low cost binary encoded crankshaft position sensor
JPH11183489A (en) Rotating speed detector
JPH07229756A (en) Rotational speed detecting device
JP2006072621A (en) System for detecting angle of rotation
US4420699A (en) Frequency to voltage converter for a digital tachometer
JPH0854205A (en) Rotational position detector for electric rotating
KR100313019B1 (en) Apparatus and method for detecting forward / reverse travel direction of automatic transmission
JP2009103617A (en) Rotation detection sensor
JPH081500Y2 (en) Pointing device
JPS6277803A (en) Speed detecting device for vehicle
JPH07131312A (en) Pulse omission detector for pulse transmitter
JPH07209311A (en) Speed detector
JPS5897619A (en) Rotation pulse detector
KR200225620Y1 (en) An apparatus for generating reference signal for an automobile
KR20130114455A (en) A system for detecting position and velocity of motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

LAPS Cancellation because of no payment of annual fees