JPH05321837A - Refrigerant compressor - Google Patents

Refrigerant compressor

Info

Publication number
JPH05321837A
JPH05321837A JP12591792A JP12591792A JPH05321837A JP H05321837 A JPH05321837 A JP H05321837A JP 12591792 A JP12591792 A JP 12591792A JP 12591792 A JP12591792 A JP 12591792A JP H05321837 A JPH05321837 A JP H05321837A
Authority
JP
Japan
Prior art keywords
bearing
shaft
refrigerant
refrigerant compressor
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12591792A
Other languages
Japanese (ja)
Inventor
Tatsuya Tsuda
達也 津田
Shinobu Sato
佐藤  忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP12591792A priority Critical patent/JPH05321837A/en
Publication of JPH05321837A publication Critical patent/JPH05321837A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Abstract

PURPOSE:To improve the abrasion resistance of a shaft and a bearing and extend the life of a refrigerant compressor by forming the shaft with cast iron, and forming the bearing with powder Al alloy. CONSTITUTION:A sealed container 1 incorporates a motor mechanism, a shaft 3 transmitting the driving force generated by the motor mechanism to a compressing mechanism, and a bearing 4 supporting the shaft 3. The compressing mechanism has a cylinder 7 and a moving member compressing at least one refrigerant selected between HFC and HCF, and a refrigerating machine oil 8 compatible with this refrigerant is stored in the sealed container 1. The shaft 3 is made of cast iron, and the bearing 4 is made of powder Al alloy. The abrasion resistance of the shaft 3 and the bearing 4 is stably maintained over a long period, and a refrigerant compressor excellent in durability is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、 HFC系および HCFC 系
から選ばれた少なくとも1つの冷媒を用いた冷媒圧縮機
に関し、とくに、摺動部材を改良した冷媒圧縮機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant compressor using at least one refrigerant selected from HFC series and HCFC series, and more particularly to a refrigerant compressor having an improved sliding member.

【0002】[0002]

【従来の技術】室内あるいは車内の空気調和機や冷蔵庫
などには、冷風や温風を送り出すために冷媒圧縮機が多
用されており、種々の使用条件下において耐久性あるも
のが要求されている。この冷媒圧縮機は、家庭用エアコ
ン用の密閉型冷媒圧縮機やカーエアコン用の半密閉型冷
媒圧縮機などの種類がある。
2. Description of the Related Art Refrigerant compressors are often used in indoor or in-vehicle air conditioners, refrigerators, etc. to send out cold air or hot air, and those which are durable under various usage conditions are required. .. This refrigerant compressor is classified into a hermetic refrigerant compressor for a home air conditioner and a semi-hermetic refrigerant compressor for a car air conditioner.

【0003】一例として、コールドチェーン機器や業務
用冷蔵庫などに用いられている大型レシプロタイプ密閉
型冷媒圧縮機の構造を図1により説明する。図1におい
て、密閉容器1内には駆動モータ2が収容され、このモ
ータにより回転するシャフト3が軸受4に支持されてい
る。このシャフト3の上端部分はクランク部(偏心部)
となっており、このクランク部にピストン5の大端部6
が嵌合され、シャフト3の回転により、ピストン5がシ
リンダ7内を往復運動する。冷媒ガスは、シャフト3の
回転に伴うピストン5の往復運動に応じて吸込口(図示
せず。)から吸込まれ圧縮されて吐出口(図示せず。)
から吐出される。圧縮機構の摺動部の動作を円滑にする
ため密閉容器1内には冷凍機油8が収容されている。こ
の冷凍機油8はシャフト3の回転により、シャフト3の
下端に設けられているポンプ9に沿って吸い上げられ、
摺動部を潤滑する。
As an example, the structure of a large reciprocating type hermetic refrigerant compressor used in cold chain equipment and commercial refrigerators will be described with reference to FIG. In FIG. 1, a drive motor 2 is housed in an airtight container 1, and a shaft 3 rotated by this motor is supported by a bearing 4. The upper end portion of the shaft 3 is a crank portion (eccentric portion)
The large end 6 of the piston 5 is attached to this crank part.
And the piston 5 reciprocates in the cylinder 7 by the rotation of the shaft 3. The refrigerant gas is sucked from a suction port (not shown) in accordance with the reciprocating motion of the piston 5 accompanying the rotation of the shaft 3, is compressed, and is discharged (not shown).
Is discharged from. Refrigerating machine oil 8 is contained in the closed container 1 in order to facilitate the operation of the sliding portion of the compression mechanism. This refrigerating machine oil 8 is sucked up by the rotation of the shaft 3 along a pump 9 provided at the lower end of the shaft 3,
Lubricate the sliding parts.

【0004】上述のような構成を有する冷媒圧縮機内に
発生する摩耗は、ピストン5とシャフト3を中心とした
2つの原因で発生する。第1の原因は、シャフト3の回
転に伴い往復運動するピストン5が、シリンダ7に対し
てある角度をもって進入・脱出を繰返すため、ピストン
5の上端および下端部とシリンダ7内面との摺動部に極
圧(大荷重)が発生する。また、ピストン5の往復摺動
は、摺動速度が0になる2か所の停止点が発生する。こ
の2つの要因により、摺動部品表面の塑性的変形や潤滑
油膜の破断が発生して、摺動部品どうしは金属接触を起
こし易くなるためである。したがって、ピストン5、シ
リンダ7はともに摩耗し易い。
The wear generated in the refrigerant compressor having the above-mentioned structure is caused by two causes centering on the piston 5 and the shaft 3. The first reason is that the piston 5, which reciprocates with the rotation of the shaft 3, repeatedly moves in and out with respect to the cylinder 7 at a certain angle, so that a sliding portion between the upper and lower ends of the piston 5 and the inner surface of the cylinder 7 is caused. Extreme pressure (large load) is generated at. Further, in the reciprocal sliding of the piston 5, two stop points at which the sliding speed becomes 0 occur. This is because these two factors cause plastic deformation of the surfaces of the sliding parts and breakage of the lubricating oil film, and the sliding parts are likely to come into metal contact with each other. Therefore, both the piston 5 and the cylinder 7 are easily worn.

【0005】第2の原因は、シャフト3が、ピストン5
を介してシリンダ7内の圧力を受け、軸受4に押付けら
れて若干湾曲した形状となって高速回転するために潤滑
油膜が破断して金属接触を起こし易くなるためである。
したがって、シャフト3の外面、軸受4の内面がともに
摩耗し易い。
The second cause is that the shaft 3 is replaced by the piston 5
This is because the pressure in the cylinder 7 is received via the bearing and the bearing 4 is pressed into a slightly curved shape to rotate at a high speed, so that the lubricating oil film is ruptured and metal contact easily occurs.
Therefore, both the outer surface of the shaft 3 and the inner surface of the bearing 4 are easily worn.

【0006】一方、図1に示すような大型レシプロタイ
プの密閉型冷媒圧縮機の軸受4は、生産コストを下げる
必要性からアルミ合金化が図られつつある。中でもAD
C12などのアルミダイカストは、生産性が高く、大量
生産に適しているため、最もよく用いられつつある。し
かし、従来より使用されてきた鉄系材料に比較して、ア
ルミ合金材料は硬度が低いため塑性的変形を起こし易
く、また摺動特性も劣るため摩耗しやすいとの問題があ
る。さらにアルミ合金材料はアルマイト処理や化成処理
といった表面処理にも適さないため、耐摩耗性の向上が
望めないとの問題がある。
On the other hand, the bearing 4 of the large reciprocating type hermetic refrigerant compressor as shown in FIG. 1 is being made of an aluminum alloy because of the need to reduce the production cost. Above all AD
Aluminum die castings such as C12 are most often used because they have high productivity and are suitable for mass production. However, compared with iron-based materials that have been conventionally used, aluminum alloy materials have a problem that they are easily hard to be plastically deformed due to their low hardness and are inferior in sliding characteristics, and thus are easily worn. Further, since aluminum alloy materials are not suitable for surface treatment such as alumite treatment or chemical conversion treatment, there is a problem that improvement in wear resistance cannot be expected.

【0007】このような大型レシプロタイプの密閉型冷
媒圧縮機には従来から冷媒としてジクロロジフルオロメ
タン(以下CFC12 と略称する。)が主に用いられてお
り、また封入される冷凍機油としては、CFC12 に相溶性
を示すナフテン系やパラフィン系鉱油が用いられてい
る。
Conventionally, dichlorodifluoromethane (hereinafter abbreviated as CFC12) has been mainly used as a refrigerant in such a large reciprocating type hermetic refrigerant compressor, and as a refrigerating machine oil to be enclosed, CFC12 is used. A naphthenic or paraffinic mineral oil that is compatible with is used.

【0008】冷媒としてCFC12 を用いた場合、CFC12 中
の塩素(Cl)原子は金属基材の鉄(Fe)原子と反応
して塩化鉄からなる潤滑膜を形成する。この塩化鉄から
なる潤滑膜は、自己潤滑性を有し耐摩耗性に優れ、極圧
(大荷重)負荷時や摺動速度が 0となる時にも金属接触
を防止して摩耗防止に有効に作用する。加えて従来の冷
媒CFC12 と従来の冷凍機油はともに無極性であるため、
吸湿性が低い。したがって、鉄系金属基材上に形成され
る塩化鉄層は加水分解を起こさずに安定した膜としての
存在が可能であった。
When CFC12 is used as the refrigerant, chlorine (Cl) atoms in CFC12 react with iron (Fe) atoms of the metal base material to form a lubricating film made of iron chloride. This iron chloride lubricating film is self-lubricating and has excellent wear resistance, preventing metal contact even under extreme pressure (large load) load or when sliding speed becomes 0, and is effective in preventing wear. To work. In addition, since the conventional refrigerant CFC12 and conventional refrigeration oil are both non-polar,
Low hygroscopicity. Therefore, the iron chloride layer formed on the iron-based metal substrate could exist as a stable film without causing hydrolysis.

【0009】ところで、最近、上述したCFC 系冷媒など
の放出がオゾン層の破壊に繋がり人体や生物系に深刻な
影響を与えることが明らかになった。このため、オゾン
破壊係数(ODP)の高いCFC12 などは段階的に使用が
削減され、将来的には使用しない方針が国際的に決定し
ている。
By the way, recently, it has been clarified that the release of the above-mentioned CFC type refrigerant and the like leads to the destruction of the ozone layer and seriously affects the human body and biological systems. For this reason, the use of CFC12, which has a high ozone depletion potential (ODP), has been gradually reduced, and it has been decided internationally that it will not be used in the future.

【0010】このような状況に対応するため、CFC12 の
代替冷媒として、クロロジフルオロメタン(以下 HCFC2
2 と略称する。)などの HCFC 系冷媒や、1,1,1,2-テト
ラフルオロエタン(以下 HFC134aと略称する。)や、1,
1-ジフルオロエタン(以下 HFC152aと略称する。)など
の HFC系冷媒が開発されている。HFC134a やHFC152a
は、いずれもその分子内に塩素(Cl)原子を含んでお
らずオゾン破壊係数(ODP)が 0である。さらに、冷
媒としての熱特性がCFC12 に近似しているため圧縮機構
部の設計を大幅に変更する必要がない。したがって、CF
C12 の代替冷媒として非常に有用である。また、 HCFC2
2 はオゾン破壊係数(ODP)が極めて低いため、CFC1
2 の代替冷媒として有用である。
In order to cope with such a situation, chlorodifluoromethane (hereinafter referred to as HCFC2) is used as an alternative refrigerant for CFC12.
It is abbreviated as 2. ) And other HCFC-based refrigerants, 1,1,1,2-tetrafluoroethane (hereinafter abbreviated as HFC134a), 1,
HFC-based refrigerants such as 1-difluoroethane (hereinafter abbreviated as HFC152a) have been developed. HFC134a and HFC152a
Does not contain a chlorine (Cl) atom in the molecule, and has an ozone depletion potential (ODP) of 0. Furthermore, since the thermal characteristics of the refrigerant are close to those of CFC12, there is no need to significantly change the design of the compression mechanism. Therefore, CF
Very useful as an alternative refrigerant for C12. Also, HCFC2
2 has an extremely low ozone depletion potential (ODP), so CFC1
It is useful as an alternative refrigerant for 2.

【0011】HFC134a やHFC152a の開発と共に、これら
の代替冷媒に適した圧縮機用材料の開発が望まれてい
る。一方、冷媒圧縮機の運転中は、冷凍サイクル内に冷
凍機油の残留を防止し、確実に冷凍機油を冷媒圧縮機の
圧縮機構部に戻し、圧縮機構部の潤滑および冷却を保持
する必要がある。このため、冷媒圧縮機の冷媒としてHF
C134a やHFC152a を用いる場合、冷媒との相溶性を有す
ることが冷凍機油の特性として必要である。しかし、HF
C134a およびHFC152a は従来のナフテン系冷凍機油であ
る鉱油にはほとんど溶解しない。そこで、HFC134a およ
びHFC152a と相溶性を有するポリエーテル系油、ポリエ
ステル系油、フッ素系油などの使用が試みられている。
Along with the development of HFC134a and HFC152a, it is desired to develop a compressor material suitable for these alternative refrigerants. On the other hand, during operation of the refrigerant compressor, it is necessary to prevent the refrigerating machine oil from remaining in the refrigeration cycle, reliably return the refrigerating machine oil to the compression mechanism section of the refrigerant compressor, and maintain lubrication and cooling of the compression mechanism section. .. Therefore, HF is used as the refrigerant for the refrigerant compressor.
When using C134a or HFC152a, it is necessary for the properties of the refrigerating machine oil to be compatible with the refrigerant. But HF
C134a and HFC152a are hardly soluble in conventional naphthenic refrigerating machine oil, mineral oil. Therefore, attempts have been made to use polyether oils, polyester oils, fluorine oils and the like that are compatible with HFC134a and HFC152a.

【0012】[0012]

【発明が解決しようとする課題】しかし、上述したHFC1
34a およびHFC152a のようなHFC 系冷媒と、このHFC 系
冷媒との相溶性を有するポリエーテル系油やポリエステ
ル系油等とを冷媒圧縮機に用いた場合、圧縮機構の摺動
部材として使用されている鋳鉄、炭素鋼、合金鋼、焼結
合金、ステンレス鋼などの耐摩耗性が低下し、長期間安
定して冷媒圧縮機を運転することができないという問題
が生じている。とくにシャフトが鋳鉄からできており、
軸受がアルミダイカストからできている場合は、相互の
摺動部分において耐摩耗性が著しく低下しやすいこと
と、軸受の塑性的変形が起こりやすいことのため、長期
間安定して冷媒圧縮機を運転することができないという
問題が生じている。
[Problems to be Solved by the Invention] However, the above-mentioned HFC1
When HFC refrigerants such as 34a and HFC152a and polyether oils and polyester oils that are compatible with this HFC refrigerant are used in the refrigerant compressor, they are used as sliding members of the compression mechanism. The wear resistance of cast iron, carbon steel, alloy steel, sintered alloys, stainless steel, etc. is deteriorated, which causes a problem that the refrigerant compressor cannot be operated stably for a long period of time. Especially the shaft is made of cast iron,
If the bearing is made of aluminum die-cast, wear resistance is likely to be significantly reduced in the sliding parts of each other, and plastic deformation of the bearing is likely to occur, so the refrigerant compressor operates stably for a long time. The problem is that you cannot do it.

【0013】この原因として次のことが考えられる。第
1に、冷媒としてCFC12 を用いた場合、金属基材上に形
成される塩化鉄膜が自己潤滑性を有し、耐摩耗性に優れ
る。一方、HFC134a またはHFC152a を用いた場合には、
塩素(Cl)原子が存在しないために塩化鉄膜からなる
潤滑膜が形成されない。
The following can be considered as the cause of this. First, when CFC12 is used as the refrigerant, the iron chloride film formed on the metal substrate has self-lubricating property and excellent wear resistance. On the other hand, when using HFC134a or HFC152a,
Since there is no chlorine (Cl) atom, the lubricating film made of the iron chloride film is not formed.

【0014】第2に、ナフテン系冷凍機油には、環状化
合物が含まれており油膜形成能力が高い。一方、HFC134
a またはHFC152a と相溶性を有する冷凍機油は、環状化
合物を含まない鎖状化合物であるため油膜形成能力が低
く、厳しい摺動条件では油膜を保持できない。このた
め、極圧添加剤などの添加剤がポリエーテル系油やポリ
エステル系油に加えられる。
Secondly, the naphthene type refrigerating machine oil contains a cyclic compound and has a high oil film forming ability. On the other hand, HFC134
Refrigerating machine oil that is compatible with a or HFC152a is a chain compound that does not contain a cyclic compound, and thus has a low oil film forming ability and cannot hold an oil film under severe sliding conditions. Therefore, additives such as extreme pressure additives are added to the polyether oil and polyester oil.

【0015】第3に、ADC12などのアルミダイカス
トは、それ自身耐摩耗性があまり良くなく、硬度も低い
ため塑性的変形を起こしやすい。
Thirdly, aluminum die castings such as ADC 12 are not so good in wear resistance themselves and have low hardness, so they are prone to plastic deformation.

【0016】したがって、とくに冷媒としてHFC134a ま
たはHFC152a を用い、これらの冷媒と相溶性を有する冷
凍機油として、たとえばポリアルキレングリコール系油
やポリエステル系油を使用する冷媒圧縮機の運転中にお
いて、摺動部材への極圧(大荷重)負荷時や摺動速度が
0となった時においても軸受摺動部表面の塑性的変形
や、潤滑油膜の破断の発生によるシャフトや軸受の摩耗
を防止し、冷媒圧縮機を長期間使用可能とすることが、
早急に解決すべき課題となっている。
Therefore, especially when HFC134a or HFC152a is used as a refrigerant and a refrigerating machine oil having compatibility with these refrigerants, for example, a polyalkylene glycol oil or a polyester oil is used, the sliding member is in operation. When extreme pressure (large load) is applied to the
Even when it becomes 0, it is possible to prevent the plastic deformation of the bearing sliding surface and the wear of the shaft and the bearing due to the occurrence of the breakage of the lubricating oil film, and to make the refrigerant compressor usable for a long period of time.
It is an issue that needs to be resolved immediately.

【0017】本発明は、このような課題を解決するため
になされたもので HFC系および HCFC 系冷媒の使用に際
して、シャフトおよび軸受の耐摩耗性を向上させ長寿命
化を図ることのできる冷媒圧縮機を提供することを目的
とする。
The present invention has been made to solve the above problems, and when using HFC-based and HCFC-based refrigerants, it is possible to improve the wear resistance of shafts and bearings and to extend the life of the refrigerant compression. The purpose is to provide a machine.

【0018】[0018]

【課題を解決するための手段】本発明の冷媒圧縮機は、
密閉容器内にモータ機構と、このモータ機構によって発
生する駆動力を圧縮機構に伝達するシャフトとシャフト
を支持する軸受とが内蔵されており、圧縮機構はシリン
ダとこのシリンダと摺接しつつ HFC系および HCFC 系か
ら選ばれた少なくとも1つの冷媒の圧縮を行う可動部材
とを有し、冷媒と相溶性のある冷凍機油が収容されてな
る冷媒圧縮機において、シャフトは鋳鉄からなり、軸受
は粉末Al合金からなることを特徴とする。
The refrigerant compressor of the present invention comprises:
A motor mechanism, a shaft for transmitting the driving force generated by the motor mechanism to the compression mechanism, and a bearing for supporting the shaft are built in the airtight container, and the compression mechanism slides in contact with the cylinder and the HFC system and In a refrigerant compressor having a movable member for compressing at least one refrigerant selected from HCFC system and containing refrigerating machine oil compatible with the refrigerant, the shaft is made of cast iron, and the bearing is powder Al alloy. It is characterized by consisting of.

【0019】本発明に係わるシャフトに使用される鋳鉄
としては、通常の密閉型コンプレッサに使用される材料
が使用できる。たとえば、FC250(JIS規格、G
5501)のような材料がある。
As the cast iron used in the shaft according to the present invention, the materials used in ordinary hermetic compressors can be used. For example, FC250 (JIS standard, G
5501).

【0020】本発明に係わる軸受に使用される粉末Al
合金としては、種々の組合わせの合金が考えられるが、
直径 3〜6 μmのSi粒子を 25 〜 30 重量%含有した
粉末Al合金が最も好ましい。Si粒子の直径が 3〜6
μmであり、その含有率が 25 〜 30 重量%の範囲であ
るとSi粒子が摩耗の起点とならず、相手側摺動部材で
ある鋳鉄への摩耗を起こすことがない。また、切削加工
性も著しく低下しない。
Powder Al used in the bearing according to the present invention
As the alloy, various combinations of alloys are possible,
Most preferable is a powdered Al alloy containing 25 to 30% by weight of Si particles having a diameter of 3 to 6 μm. Si particle diameter is 3 ~ 6
When the content is in the range of 25 to 30% by weight, the Si particles do not act as a starting point of wear, and the cast iron, which is the mating sliding member, does not wear. Further, the machinability does not significantly decrease.

【0021】本発明に係わる HFC系冷媒は、炭素、水
素、弗素からなる化合物であって、冷媒としての熱特性
がCFC12 に近似しているものが好ましい。好ましい化合
物はHFC134a およびHFC152a である。また HCFC 系冷媒
は、オゾン破壊係数(ODP)が極めて低いものが好ま
しく、たとえば HCFC22 がある。これらの HFC系冷媒お
よび HCFC 系冷媒は単独または混合物で使用できる。
The HFC type refrigerant according to the present invention is preferably a compound composed of carbon, hydrogen and fluorine, and the thermal characteristic of the refrigerant is close to that of CFC12. Preferred compounds are HFC134a and HFC152a. The HCFC-based refrigerant preferably has an extremely low ozone depletion potential (ODP), such as HCFC22. These HFC-based refrigerants and HCFC-based refrigerants can be used alone or in a mixture.

【0022】上述の HFC系冷媒と相溶性のある冷凍機油
としては、ポリエーテル系油、ポリエステル系油、フッ
素系油などが、 HCFC 系冷媒と相溶性のある冷凍機油と
しては、ナフテン系またはパラフィン系鉱油などが挙げ
られる。
The refrigerating machine oils compatible with the above HFC refrigerants include polyether oils, polyester oils and fluorine oils, and the refrigerating machine oils compatible with the HCFC refrigerants include naphthene-based or paraffin-based oils. Examples include mineral oils.

【0023】オゾン層破壊の原因となりにくい冷媒と冷
凍機油の組合わせとしてHFC134a またはHFC152a 等の冷
媒とポリエーテル系油、ポリエステル系油、フッ素系油
などの冷凍機油が好ましい。
As a combination of a refrigerant and a refrigerating machine oil that are less likely to cause ozone layer depletion, a refrigerant such as HFC134a or HFC152a and a refrigerating machine oil such as a polyether type oil, a polyester type oil or a fluorine type oil are preferable.

【0024】[0024]

【作用】上述したように、シャフトに鋳鉄を軸受に粉末
Al合金を使用した摺動部材は、摺動面においてつぎの
ような作用をする。第1に、摺動面への極圧(大荷重)
負荷時は、粉末Al合金表面に存在する硬度の高いSi
粒子がAl基材より突出した状態で摺動するため、耐摩
耗性が向上する。第2に、潤滑油膜が破断して金属接触
が起こる条件下においても、粉末Al合金表面にSi粒
子が突出することにより油溜まりとなり、潤滑油保持性
が向上する。第3に、軸受に粉末Al合金を用いるため
に、材料強度および硬度が高くなり、軸受の塑性的変形
が避けられる。
As described above, the sliding member using cast iron for the shaft and powdered Al alloy for the bearing has the following effects on the sliding surface. First, extreme pressure (large load) on the sliding surface
When loaded, Si with high hardness existing on the surface of the powdered Al alloy
Since the particles slide while protruding from the Al base material, wear resistance is improved. Secondly, even under the condition where the lubricating oil film breaks and metal contact occurs, the Si particles project on the surface of the powdered Al alloy to form an oil reservoir, which improves the lubricating oil retaining property. Third, since the powder Al alloy is used for the bearing, the material strength and hardness are increased, and plastic deformation of the bearing is avoided.

【0025】このように、冷媒としてとくに HFC系の冷
媒およびそれと相溶性のある冷凍機油、たとえばポリエ
ーテル系油、ふっ素系油、ポリエステル系油等を使用す
る冷媒圧縮機におけるシャフトと軸受の摺動部の耐摩耗
性が向上し、軸受けの塑性的変形が防止される。したが
って冷媒圧縮機の長寿命化がはかれる。また、本発明に
係わる粉末Al合金は成形時に体積収縮が小さいニアネ
ットシェイプ成形が容易であるため、軸受の生産性が向
上し生産コストが低下する。
As described above, the sliding of the shaft and the bearing in a refrigerant compressor using an HFC type refrigerant and a refrigerating machine oil compatible with the HFC type refrigerant, for example, polyether type oil, fluorine type oil, polyester type oil, etc. The wear resistance of the portion is improved, and the plastic deformation of the bearing is prevented. Therefore, the life of the refrigerant compressor can be extended. Further, since the powder Al alloy according to the present invention is easy to perform near net shape molding with a small volume shrinkage during molding, the productivity of the bearing is improved and the production cost is reduced.

【0026】[0026]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。 実施例1 本発明に係わる摺動部材を図1に示した密閉型冷媒圧縮
機のシャフト3および軸受4に適用した実施例について
説明する。なお、この実施例の密閉型冷媒圧縮機の構造
は図1に示した従来の密閉型冷媒圧縮機と同一構造であ
るので、図1を援用しながら説明する。
EXAMPLES The present invention will be described in detail below based on examples. Example 1 An example in which the sliding member according to the present invention is applied to the shaft 3 and the bearing 4 of the hermetic refrigerant compressor shown in FIG. 1 will be described. Since the structure of the hermetic refrigerant compressor of this embodiment is the same as the structure of the conventional hermetic refrigerant compressor shown in FIG. 1, it will be described with reference to FIG.

【0027】実施例1におけるシャフト3は、鋳鉄(F
C250)基材を所定形状に切り出し作製した。
The shaft 3 in the first embodiment is made of cast iron (F
(C250) A base material was cut into a predetermined shape and manufactured.

【0028】軸受4は、以下の方法で作製した。まず、
直径 3〜4 μmのSi粒子を 26 重量%含有した粉末A
lを振動法などによって軸受用金型に所定量充填した。
その後、 400℃、200kg/cm2 の加圧成型条件で成型し、
精度を上げるための切削加工を施して粉末Al合金製軸
受4が得られた。
The bearing 4 was manufactured by the following method. First,
Powder A containing 26% by weight of Si particles having a diameter of 3 to 4 μm
A predetermined amount of 1 was filled in a bearing mold by a vibration method or the like.
After that, molding under pressure molding conditions of 400 ℃, 200 kg / cm 2 ,
The powder Al alloy bearing 4 was obtained by performing a cutting process for increasing accuracy.

【0029】得られたシャフトおよび軸受の耐摩耗性を
図2に示すような装置を用いて評価した。この装置は、
冷媒 HFC134a雰囲気中で、軸受4の材料と同じ材質のリ
ング10を、シャフト3と同じ材質(FC250)のデ
ィスク11に対向させて、リング10の後方から圧力を
かけながらディスク11を一定半径で装置駆動用モータ
12により旋回運動させるものである。この試験では、
リング10とディスク11の摺動面を HFC134aと相溶性
を有するポリエステル系冷凍機油で潤滑させながら、面
圧 30 kgf/cm2 、摺動速度 0.75m/sで 3時間試験を行
い、このときのリング10およびディスク11の摩耗量
(重量)を調べた。測定結果を図3に示す。なお、図3
においては、リング10の摩耗量が小さい程リング材の
耐摩耗性が高く、ディスク11の摩耗量が小さい程リン
グ材のディスク材(相手材)に対するアタック性が小さ
いことを示している。よって、リング10およびディス
ク11の摩耗量が共に小さいもの程、優れた摺動部材で
あることを示している。図3によれば、実施例1の粉末
Al合金材の摺動特性は、比較例4の鋳造Alよりも優
れていた。
The wear resistance of the obtained shaft and bearing was evaluated using an apparatus as shown in FIG. This device
In a refrigerant HFC134a atmosphere, a ring 10 made of the same material as the bearing 4 is made to face a disk 11 made of the same material (FC250) as the shaft 3, and pressure is applied from the rear of the ring 10 so that the disk 11 has a constant radius. The driving motor 12 is used to make a turning motion. In this test,
Lubricating the sliding surfaces of the ring 10 and the disk 11 with a polyester refrigerating machine oil compatible with HFC134a, a surface pressure of 30 kgf / cm 2 and a sliding speed of 0.75 m / s were tested for 3 hours. The wear amount (weight) of the ring 10 and the disk 11 was examined. The measurement result is shown in FIG. Note that FIG.
2 indicates that the smaller the amount of wear of the ring 10, the higher the wear resistance of the ring material, and the smaller the amount of wear of the disk 11, the smaller the attack of the ring material on the disk material (counterpart material). Therefore, the smaller the wear amounts of the ring 10 and the disk 11, the better the sliding member. According to FIG. 3, the sliding characteristics of the powdered Al alloy material of Example 1 were superior to those of the cast Al of Comparative Example 4.

【0030】さらに、実施例1の粉末Al合金材を用い
て軸受4を、FC250を用いてシャフト3を作製し、
図1に示す冷媒圧縮機を組み立て、冷媒として HFC134a
および冷凍機油として HFC134aと相溶性のあるポリエス
テル系冷凍機油を用いて実機試験を行ったところ、 400
0 時間の長時間運転を行った後でも軸受4とシャフト3
との間の摩耗は認められず、良好な耐摩耗性を示した。
Further, a bearing 4 was produced using the powdered Al alloy material of Example 1, and a shaft 3 was produced using FC250,
Assemble the refrigerant compressor shown in Fig. 1 and use HFC134a as the refrigerant.
And a polyester-based refrigerating machine oil compatible with HFC134a was used as a refrigerating machine oil, and a real machine test was conducted.
Bearing 4 and shaft 3 even after running for a long time of 0 hours
No wear was observed between the two, indicating good wear resistance.

【0031】実施例2 軸受4の材料として直径 4〜5 μmのSi粒子を 25 重
量%含有した粉末Alを用いた以外は実施例1と同一形
状のシャフト3および軸受4を実施例1と同一の方法で
作製した。得られたシャフトおよび軸受の耐摩耗性を実
施例1と同一の装置を用いて評価した。その測定結果を
図3に示す。比較例1から比較例4の摺動特性と比較し
て、実施例2の摺動特性は優れていた。
Example 2 A shaft 3 and a bearing 4 having the same shapes as in Example 1 were used, except that powder Al containing 25 wt% of Si particles having a diameter of 4 to 5 μm was used as the material of the bearing 4. It was produced by the method. The wear resistance of the obtained shaft and bearing was evaluated using the same device as in Example 1. The measurement result is shown in FIG. The sliding properties of Example 2 were superior to those of Comparative Examples 1 to 4.

【0032】実施例3 軸受4の材料として直径 5〜6 μmのSi粒子を 30 重
量%含有した粉末Alを用いた以外は実施例1と同一形
状のシャフト3および軸受4を実施例1と同一の方法で
作製した。得られたシャフトおよび軸受の耐摩耗性を実
施例1と同一の装置を用いて評価した。その測定結果を
図3に示す。比較例1から比較例4の摺動特性と比較し
て、実施例3の摺動特性は優れていた。
Example 3 A shaft 3 and a bearing 4 having the same shape as in Example 1 are the same as those in Example 1 except that powder Al containing 30% by weight of Si particles having a diameter of 5 to 6 μm is used as the material of the bearing 4. It was produced by the method. The wear resistance of the obtained shaft and bearing was evaluated using the same device as in Example 1. The measurement result is shown in FIG. Compared with the sliding characteristics of Comparative Examples 1 to 4, the sliding characteristics of Example 3 were excellent.

【0033】比較例1 軸受4の材料として直径 1〜2 μmのSi粒子を 17 重
量%含有した粉末Alを用いた以外は実施例1と同一形
状のシャフト3および軸受4を実施例1と同一の方法で
作製した。得られたシャフトおよび軸受の耐摩耗性を実
施例1と同一の装置を用いて評価した。その測定結果を
図3に示す。
Comparative Example 1 A shaft 3 and a bearing 4 having the same shape as in Example 1 are the same as those in Example 1 except that powder Al containing 17% by weight of Si particles having a diameter of 1 to 2 μm is used as the material of the bearing 4. It was produced by the method. The wear resistance of the obtained shaft and bearing was evaluated using the same device as in Example 1. The measurement result is shown in FIG.

【0034】比較例2 軸受4の材料として直径 1〜2 μmのSi粒子を 35 重
量%含有した粉末Alを用いた以外は実施例1と同一形
状のシャフト3および軸受4を実施例1と同一の方法で
作製した。得られたシャフトおよび軸受の耐摩耗性を実
施例1と同一の装置を用いて評価した。その測定結果を
図3に示す。
Comparative Example 2 A shaft 3 and a bearing 4 having the same shape as in Example 1 are the same as those in Example 1 except that powder Al containing 35% by weight of Si particles having a diameter of 1 to 2 μm is used as the material of the bearing 4. It was produced by the method. The wear resistance of the obtained shaft and bearing was evaluated using the same device as in Example 1. The measurement result is shown in FIG.

【0035】比較例3 軸受4の材料として直径 3〜4 μmのSi粒子を 35 重
量%含有した粉末Alを用いた以外は実施例1と同一形
状のシャフト3および軸受4を実施例1と同一の方法で
作製した。得られたシャフトおよび軸受の耐摩耗性を実
施例1と同一の装置を用いて評価した。その測定結果を
図3に示す。
Comparative Example 3 A shaft 3 and a bearing 4 having the same shape as in Example 1 were the same as in Example 1 except that powder Al containing 35% by weight of Si particles having a diameter of 3 to 4 μm was used as the material of the bearing 4. It was produced by the method. The wear resistance of the obtained shaft and bearing was evaluated using the same device as in Example 1. The measurement result is shown in FIG.

【0036】比較例4 実施例1と同一形状のシャフト3を実施例1と同一の方
法で作製した。また、材料として直径 7〜8 μmのSi
粒子を 17 重量%含有した鋳造Alを用いて軸受4を作
製した。得られたシャフトおよび軸受の耐摩耗性を実施
例1と同一の装置を用いて評価した。その測定結果を図
3に示す。
Comparative Example 4 A shaft 3 having the same shape as that of Example 1 was manufactured by the same method as that of Example 1. Moreover, as a material, Si with a diameter of 7 to 8 μm is used.
A bearing 4 was produced using cast Al containing 17% by weight of particles. The wear resistance of the obtained shaft and bearing was evaluated using the same device as in Example 1. The measurement result is shown in FIG.

【0037】[0037]

【発明の効果】本発明の冷媒圧縮機は、冷媒として HFC
系および HCFC 系から選ばれた少なくとも1つの冷媒、
および冷凍機油としてこれらの冷媒と相溶性のある冷凍
機油を密閉容器内に収容し、圧縮機構のシャフトを鋳鉄
として、軸受を粒径 3〜6 μmのSi粒子を 25 〜 30
重量%含有した粉末Al合金からなるとしたので、シャ
フトおよび軸受の耐摩耗性が長期間に亘って安定して保
たれ、耐久性に優れる冷媒圧縮機が得られる。また軸受
の製造においても、本発明に係わる粉末Al合金は成形
時に体積収縮が小さいニアネットシェイプ成形が容易で
あるため、高精度の軸受が容易に効率良く生産できる。
その結果、冷媒圧縮機の生産コストが低下する。
The refrigerant compressor of the present invention uses HFC as a refrigerant.
System and at least one refrigerant selected from the HCFC system,
Refrigerating machine oil compatible with these refrigerants as refrigerating machine oil is housed in a closed container, the shaft of the compression mechanism is cast iron, the bearing is 3 to 6 μm, and the Si particles are 25 to 30 μm.
Since it is made of the powdered Al alloy containing wt%, the wear resistance of the shaft and the bearing can be stably maintained for a long period of time, and a refrigerant compressor excellent in durability can be obtained. Also, in the production of bearings, since the powder Al alloy according to the present invention is easy to perform near net shape molding with small volume shrinkage at the time of molding, it is possible to easily and efficiently produce highly accurate bearings.
As a result, the production cost of the refrigerant compressor is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷媒圧縮機の断面図で
ある。
FIG. 1 is a sectional view of a refrigerant compressor showing an embodiment of the present invention.

【図2】摩擦摩耗試験機の概要図である。FIG. 2 is a schematic diagram of a friction and wear tester.

【図3】耐摩耗性試験の結果を示す図である。FIG. 3 is a diagram showing the results of an abrasion resistance test.

【符号の説明】[Explanation of symbols]

1………密閉容器、2………モータ、3………シャフ
ト、4………軸受、5………ピストン、6………大端
部、7………シリンダ、8………冷凍機油、9………ポ
ンプ、10………リング、11………ディスク、12…
……装置駆動用モータ。
1 ...... Closed container, 2 ......... Motor, 3 ......... Shaft, 4 ......... Bearing, 5 ...... Piston, 6 ......... Large end, 7 ......... Cylinder, 8 ... Machine oil, 9 ... Pump, 10 ... Ring, 11 ... Disk, 12 ...
...... Device drive motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内にモータ機構と、該モータ機
構によって発生する駆動力を圧縮機構に伝達するシャフ
トと該シャフトを支持する軸受とが内蔵され、前記圧縮
機構はシリンダと該シリンダと摺接しつつ HFC系および
HCFC 系から選ばれた少なくとも1つの冷媒の圧縮を行
う可動部材とを有し、前記冷媒と相溶性のある冷凍機油
が収容されてなる冷媒圧縮機において、 前記シャフトは鋳鉄からなり、前記軸受は粉末Al合金
からなることを特徴とする冷媒圧縮機。
1. A motor mechanism, a shaft for transmitting a driving force generated by the motor mechanism to a compression mechanism, and a bearing for supporting the shaft are built in a hermetic container, and the compression mechanism includes a cylinder and a cylinder. HFC system and
In a refrigerant compressor having a movable member for compressing at least one refrigerant selected from HCFC system, and containing refrigerating machine oil compatible with the refrigerant, the shaft is made of cast iron, and the bearing is A refrigerant compressor comprising a powdered Al alloy.
JP12591792A 1992-05-19 1992-05-19 Refrigerant compressor Withdrawn JPH05321837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12591792A JPH05321837A (en) 1992-05-19 1992-05-19 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12591792A JPH05321837A (en) 1992-05-19 1992-05-19 Refrigerant compressor

Publications (1)

Publication Number Publication Date
JPH05321837A true JPH05321837A (en) 1993-12-07

Family

ID=14922137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12591792A Withdrawn JPH05321837A (en) 1992-05-19 1992-05-19 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JPH05321837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342557A (en) * 2003-03-17 2003-12-03 Toshiba Kyaria Kk Refrigerant, refrigerant compressor and refrigeration unit
JP2008002368A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Compressor
JP2009270551A (en) * 2008-05-12 2009-11-19 Panasonic Corp Hermetic compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342557A (en) * 2003-03-17 2003-12-03 Toshiba Kyaria Kk Refrigerant, refrigerant compressor and refrigeration unit
JP2008002368A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Compressor
JP2009270551A (en) * 2008-05-12 2009-11-19 Panasonic Corp Hermetic compressor

Similar Documents

Publication Publication Date Title
JP3473776B2 (en) Hermetic compressor
US5548973A (en) Sealed type compressor and refrigerating cycle
KR100339693B1 (en) Refrigeration Units & Lubricants
JPH10103279A (en) Refrigerant compressor and cooler on which it is mounted
KR100934843B1 (en) Composition for sliding member, sliding member and fluid machine
KR20070088442A (en) Composition for sliding member, sliding member, and fluid machine
US5408839A (en) Refrigerant compressor
US5199859A (en) Refrigerant compressor
JPH05321837A (en) Refrigerant compressor
JP2003028060A (en) Hermetically closed compressor
JPH04332793A (en) Refrigerating machine oil composition
JPH06159242A (en) Refrigerant compressor
JPH09189453A (en) Refrigerating plant
JPH09188891A (en) Lubricating oil composition
JP6761978B2 (en) Refrigerant compressor and freezing equipment using it
TW200406546A (en) Refrigerant compressor
JP3708194B2 (en) Hermetic rotary compressor
JPH08135585A (en) Slide member for rotary pump for freezer
JPH0932747A (en) Scroll compressor
JPH0932770A (en) Hermetic compressor
JP2003003956A (en) Closed type compressor
JPH0419386A (en) Coolant compressor
JPH05106581A (en) Refrigerant compressor
JP2001099502A (en) Refrigerating device
KR0125101Y1 (en) Enclosed type compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803