JPH05320968A - Method for organic electrolytic fluoration - Google Patents

Method for organic electrolytic fluoration

Info

Publication number
JPH05320968A
JPH05320968A JP4248952A JP24895292A JPH05320968A JP H05320968 A JPH05320968 A JP H05320968A JP 4248952 A JP4248952 A JP 4248952A JP 24895292 A JP24895292 A JP 24895292A JP H05320968 A JPH05320968 A JP H05320968A
Authority
JP
Japan
Prior art keywords
fluoride
electrolytic
electrolysis
anode
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4248952A
Other languages
Japanese (ja)
Other versions
JP3212712B2 (en
Inventor
Nobuatsu Watanabe
信淳 渡辺
Youhou Tei
容宝 鄭
Hiroaki Sakaguchi
博昭 阪口
Yoshiyuki Kobayashi
義幸 小林
Yasushi Kida
康 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP24895292A priority Critical patent/JP3212712B2/en
Publication of JPH05320968A publication Critical patent/JPH05320968A/en
Application granted granted Critical
Publication of JP3212712B2 publication Critical patent/JP3212712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To improve the yield of a perfluoro compound by using an anode coated with an Ni-based composite film at the time of producing the perfluoro compound using hydrofluoric acid anhydride as an electrolyte by a method for organic electrolytic fluorination. CONSTITUTION:In the case of synthesizing the perfluoro compound such as perfluorooctane sulfonyl fluoride (C8H17SO2F) in a cell into which hydrofluoric acid anhydride is added as the electrolyte by electrolysis, an electrode made of Fe, Ni or the like is used as the cathode, an electrode coated with the composite plated film formed by eutectoid-dispersing polytetrafluoroethylene particle and fluorinated graphite into Ni plated film is used as the anode and sodium fluoride is added as the electroconductive material after previous electrolyzing and furthermore octanesulfonyl fluoride (C8H17SO2F) is added, then electrolysis is executed. Perfluorooctanesulfonyl fluoride is obtained in high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、界面活性剤、撥水撥油
剤、不活性液体などとして有用なパーフルオロ化合物等
を製造する有機電解フッ素化法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolytic fluorination method for producing a perfluoro compound useful as a surfactant, a water / oil repellant, an inert liquid and the like.

【0002】[0002]

【従来の技術とその解決しようとする課題】無水フッ化
水素酸を電解液とした有機電解フッ素化は、他の方法で
得られない有用な化合物を製造し得るということと、高
価なフッ素化剤を使用しないで一段で合成できるという
ことで有利な方法であり、陽極にニッケルまたはその合
金を用いるのが常法である。しかし、電解フッ素化は一
般の電極反応に比べて目的物の収率や電流効率が低いと
いう欠点がある。これは陽極フッ素化反応の時にフッ素
化されるべき有機化合物の炭素−炭素結合が開裂し、ま
た陽極で電解液である無水フッ化水素酸に微量に存在す
るH2Oがフッ素化されてOF2が発生し、それが上記の
開裂反応を更に促進し、多種類の副生成物が生じるため
と考えられる。実際に水分を含む化合物の電解フッ素化
において、脱水された化合物に比べて極端な電解反応収
率の低下が観測される。
2. Description of the Related Art Organic electrolytic fluorination using anhydrous hydrofluoric acid as an electrolytic solution is capable of producing a useful compound which cannot be obtained by other methods, and is expensive. This is an advantageous method because it can be synthesized in one step without using an agent, and it is a usual method to use nickel or its alloy for the anode. However, electrolytic fluorination has a drawback in that the yield of the target substance and the current efficiency are low as compared with general electrode reactions. This is because the carbon-carbon bond of the organic compound to be fluorinated during the anodic fluorination reaction is cleaved, and a small amount of H 2 O present in the anhydrous hydrofluoric acid, which is the electrolytic solution, is fluorinated at the anode to cause OF. It is considered that 2 occurs, which further accelerates the cleavage reaction described above and produces many kinds of by-products. In the actual electrolytic fluorination of a compound containing water, an extreme decrease in the yield of the electrolytic reaction is observed as compared with the dehydrated compound.

【0003】また、比較的炭素数の多い化合物の電解フ
ッ素化では多量のタールを生成し、それが電極表面にフ
ィルム状物質として付着するため槽電圧が次第に上昇し
長期の安定した電解操業が困難となる。
Further, in the electrolytic fluorination of a compound having a relatively large number of carbon atoms, a large amount of tar is produced and adheres to the surface of the electrode as a film-like substance, so that the cell voltage gradually rises and stable electrolytic operation for a long period of time is difficult. Becomes

【0004】無水フッ化水素酸を電解液とする有機電解
フッ化反応において、陽極にニッケルまたはその合金以
外の材質を使用した場合、電極表面に不導態が生じた
り、陽極材質が溶出するため電解フッ素化に適さず、一
般にニッケル電極が使用される。しかし、ニッケルまた
はその合金を用いた陽極を使用しても上記したように、
目的物の収率は低くその向上が要求されている。
In an organic electrolytic fluorination reaction using anhydrous hydrofluoric acid as an electrolytic solution, when a material other than nickel or its alloy is used for the anode, a non-conductivity occurs on the electrode surface or the anode material is eluted. Not suitable for electrolytic fluorination, nickel electrodes are commonly used. However, even if an anode using nickel or its alloy is used, as described above,
The yield of the target product is low and its improvement is required.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記した
従来法の問題点に鑑み、鋭意検討の結果、ポリテトラフ
ルオロエチレン及び/又はフッ化グラファイト粒子がニ
ッケルめっき中に共析分散してなるニッケル系複合被膜
で破覆された電極を陽極として用いると、意外にも、目
的物としてパーフルオロ化合物の収率が向上し、また、
電解フッ素化時に生成するタールの付着を抑制すること
ができ、目的物を容易かつ効率的に製造できる方法を見
いだし本発明に到達したものである。
Means for Solving the Problems In view of the problems of the above-mentioned conventional methods, the present inventors have made earnest studies, and as a result, polytetrafluoroethylene and / or fluorinated graphite particles were co-deposited and dispersed during nickel plating. Surprisingly, the use of an electrode overlaid with a nickel-based composite coating as the anode improves the yield of the perfluoro compound as the target product, and
The present invention has been accomplished by finding a method capable of suppressing the adhesion of tar generated during electrolytic fluorination and easily and efficiently producing a target product.

【0006】すなわち、本発明によれば、ポリテトラフ
ルオロエチレン粒子及び又はフッ化グラファイト粒子が
ニッケルめっき被膜中に共折分散した複合めっき被膜で
表面が被覆された電極を陽極として用いることを特徴と
する無水フッ化水素酸を電解液とする有機電解フッ素化
法が提供される。
That is, according to the present invention, an electrode whose surface is coated with a composite plating film in which polytetrafluoroethylene particles and / or graphite fluoride particles are co-dispersed in a nickel plating film is used as an anode. An organic electrolytic fluorination method using anhydrous hydrofluoric acid as an electrolytic solution is provided.

【0007】本発明の方法で用いられる陽極は、一般的
には、ニッケルめっきのための電解めっき浴又は無電解
めっき浴中にポリテトラフルオロエチレン(以下、屡
々、”PTFE”と略記する)粒子及び/又はフッ化黒
鉛粒子を分散せしめたニッケル系複合めっき液を用い
て、ニッケル又はニッケル合金などの電極基材をめっき
し、PTFE粒子及び/又はフッ化グラファイト粒子が
ニッケルめっき被膜中に共析分散した複合めっき被膜を
上記電極基材の表面に形成させることにより得ることが
できる。この種の複合めっき被膜の一般的形成法につい
ては、特公昭第52−006252号、特公昭第52−
023983号などを参照することができる。
The anode used in the method of the present invention is generally polytetrafluoroethylene (hereinafter often abbreviated as "PTFE") particles in an electrolytic or electroless plating bath for nickel plating. And / or a nickel-based composite plating solution in which fluorinated graphite particles are dispersed is used to plate an electrode base material such as nickel or a nickel alloy, and PTFE particles and / or fluorinated graphite particles are co-deposited in the nickel plating film. It can be obtained by forming the dispersed composite plating film on the surface of the electrode base material. For general methods of forming this type of composite plating film, see Japanese Patent Publication No. 52-006252 and Japanese Patent Publication No. 52-
No. 023983 can be referred to.

【0008】用いるPTFEとしては分子量が10万以
上のものも用いることができるが、複合めっき被膜表面
中のPTFE表面のフッ素原子数の割合を増大させて本
発明の効果を更に発揮するために分子量1万以下のPT
FEオリゴマーを用いるのが、好ましく、それにより、
複合めっき被膜表面中のPTFE表面のフッ素原子数の
割合を40%以上にまで高めることができ有利である.
また、更に複合めっきの前にフッ素ガスと接触処理する
ことによりフッ素原子数の割合を60%にまで挙げるこ
ともできる.またフッ化グラファイトとしては、非晶質
炭素又はグラファイトの直接フッ素化で得られる(C
F)n又は(C2F)nが知られている(”Solid State I
onics" Vol.1, No.12, PP.87〜110, April 1980, North
-Holland Publishing Company参照)。
As the PTFE to be used, one having a molecular weight of 100,000 or more can be used, but in order to further increase the effect of the present invention by increasing the ratio of the number of fluorine atoms on the PTFE surface in the composite plating film surface, the molecular weight is further increased. PT less than 10,000
It is preferred to use FE oligomers, whereby
This is advantageous because the ratio of the number of fluorine atoms on the PTFE surface in the composite plating film surface can be increased to 40% or more.
Further, the ratio of the number of fluorine atoms can be increased to 60% by further performing contact treatment with fluorine gas before the composite plating. The graphite fluoride can be obtained by direct fluorination of amorphous carbon or graphite (C
F) n or (C 2 F) n is known (“Solid State I
onics "Vol.1, No.12, PP.87 ~ 110, April 1980, North
-See Holland Publishing Company).

【0009】PTFE粒子及びフッ化グラファイト粒子
の平均粒径は0.1〜150μm、特に0.1〜15μ
mとすることができるが、できるだけ微細な粒子を用い
ることが好ましい.
The average particle size of the PTFE particles and the graphite fluoride particles is 0.1 to 150 μm, particularly 0.1 to 15 μm.
However, it is preferable to use as fine particles as possible.

【0010】上記PTFE粒子及び/又はフッ化グラフ
ァイト粒子を分散させるめっき液は、複合めっきに用い
る公知のめっき液を使用することができ、この場合電気
めっき液及び無電会めっき液のいずれでもよいが、通常
は電気めっき液を用いることができる。電気めっき液と
しては、ワット浴、スルファミン酸ニッケル等のニッケ
ルめっき液のほか、ニッケル合金めっき液を用いること
もでき、これらは公知の浴組成のものを使用し得る。
As the plating solution for dispersing the PTFE particles and / or the graphite fluoride particles, a known plating solution used for composite plating can be used. In this case, either an electroplating solution or an electroless plating solution may be used. Generally, an electroplating solution can be used. As the electroplating solution, a Watt bath, a nickel plating solution such as nickel sulfamate, or a nickel alloy plating solution can be used, and those having a known bath composition can be used.

【0011】これらのめっき液に対するPTFE粒子及
び/又はフッ化グラファイト粒子の分散量は1〜300
g/lとすることができるが、特に10〜100g/l
とするのが好ましい。この場合、これらめっき液にはP
TFE粒子及びフッ化グラファイト粒子の液中の分散を
均一にしたり、めっき被膜への共析量を増大させる目的
で界面活性剤を添加し得る。界面活性剤としてはパーフ
ルオロアルキル系界面活性剤等の1種又は2種以上を使
用することができるが、特にカチオン系のパーフルオロ
アルキルアンモニウム塩が好ましい。これらの界面活性
剤の添加料は0.001〜10g/l、特に0.01〜
1g/lとするのがよい。
The amount of PTFE particles and / or graphite fluoride particles dispersed in these plating solutions is 1 to 300.
g / l, but especially 10-100 g / l
Is preferred. In this case, these plating solutions have P
A surfactant may be added for the purpose of making the dispersion of TFE particles and graphite fluoride particles in the liquid uniform and increasing the amount of co-deposition on the plating film. As the surfactant, one kind or two or more kinds such as a perfluoroalkyl-based surfactant can be used, and a cationic perfluoroalkylammonium salt is particularly preferable. The amount of these surfactant additives is 0.001 to 10 g / l, especially 0.01 to 10 g / l.
It is good to set it to 1 g / l.

【0012】上記めっき液を用いて複合めっきを行なう
場合の条件は、そのめっき液についての通常の条件でよ
いが、PTFE粒子/及びフッ化グラファイト粒子をめ
っき液中に均一かつできるだけ非凝集状態に分散させ、
めっき被膜への該粒子の共析量を多くし、めっき被膜中
に単一粒子で均一に分散、複合するため、十分撹拌を行
なうことが好ましく、例えば超音波撹拌などを用いるこ
とができる。また、複合めっき被膜中のPTFE粒子及
び/又はフッ化黒鉛の共析分散量は2〜50容量%、特
に10〜25容量%とすることが好ましい。
The conditions for performing composite plating using the above plating solution may be the usual conditions for the plating solution, but the PTFE particles / and the fluorinated graphite particles are uniformly and as non-aggregated as possible in the plating solution. Disperse,
In order to increase the eutectoid amount of the particles on the plating film and to uniformly disperse and combine the single particles in the plating film, it is preferable to sufficiently stir, for example, ultrasonic stirring can be used. The eutectoid dispersion amount of the PTFE particles and / or fluorinated graphite in the composite plating film is preferably 2 to 50% by volume, and particularly preferably 10 to 25% by volume.

【0013】本発明の方法においてフッ素化される原料
化合物は、炭素原子に結合した水素原子を有する飽和お
よび不飽和の有機化合物である。例えば、スルホン酸お
よびその誘導体である酸クロライド、酸フロライドある
いはエステル等;カルボン酸およびその誘導体である酸
クロライド、酸フロライドあるいはエステル等;第一ア
ミン、第二アミン、第三アミン等のアミン類;エーテル
類;フェノール類;アルコール類;ケトン類;アルデヒ
ド類;チオエーテル類等の含硫黄化合物等の脂肪族およ
び芳香族化合物を挙げることができる。また、上記した
有機化合物の水素原子が一部フッ素原子あるいは塩素原
子に置換された有機化合物も原料化合物として用いるこ
とができる。
The starting compounds to be fluorinated in the method of the present invention are saturated and unsaturated organic compounds having hydrogen atoms bonded to carbon atoms. For example, sulfonic acid and its derivatives such as acid chloride, acid fluoride and ester; carboxylic acid and its derivatives such as acid chloride, acid fluoride and ester; and amines such as primary amine, secondary amine and tertiary amine; Examples thereof include ethers; phenols; alcohols; ketones; aldehydes; aliphatic and aromatic compounds such as sulfur-containing compounds such as thioethers. Further, an organic compound in which a part of hydrogen atoms of the above-mentioned organic compound is replaced with a fluorine atom or a chlorine atom can also be used as a raw material compound.

【0014】本発明の電解フッ素化法を実証するための
条件には特に制限はなく公知の電解フッ素化条件の範囲
から適宜選択することができる。通常は、温度−15〜
20℃、電流密度0.2〜6A/dm2、槽電圧4〜8V
の範囲で行われる。また、原料の有機化合物と無水フッ
化水素酸の供給はバッチ方式および連続方式のいずれの
方法でもよい。
The conditions for demonstrating the electrolytic fluorination method of the present invention are not particularly limited and can be appropriately selected from the range of known electrolytic fluorination conditions. Usually, temperature -15 to
20 ° C, current density 0.2-6A / dm 2 , tank voltage 4-8V
It is done in the range of. The organic compound as a raw material and anhydrous hydrofluoric acid may be supplied by either a batch method or a continuous method.

【0015】次に、電解槽は特に限定されず公知のもの
が使用できる。電解槽の材質は、鉄、ステンレス鋼、ニ
ッケルおよびニッケル合金等が使用でき、陰極は鉄、ニ
ッケルが一般に使用できる。
Next, the electrolytic cell is not particularly limited, and a known one can be used. Iron, stainless steel, nickel and nickel alloys can be used as the material of the electrolytic cell, and iron and nickel can be generally used as the cathode.

【0016】電解フッ素化反応において陰極で発生する
水素および有機化合物の分解により発生した沸点の低い
低分子量の化合物は、通常、電解槽の上部に設けられた
還流冷却器を通して排出される。
Hydrogen and low-molecular-weight compounds having a low boiling point generated by decomposition of hydrogen and organic compounds generated at the cathode in the electrolytic fluorination reaction are usually discharged through a reflux condenser provided in the upper part of the electrolytic cell.

【0017】本発明の電解フッ素化法によってフッ素化
されたパーフルオロ有機化合物は、沸点が高い場合、電
解液から層分離して沈降するため電解槽の下部より回収
することができる。また、目的物の沸点が低く気体とな
る場合、電解槽の上部より取り出し、これを冷却して回
収することができる。
When the boiling point is high, the perfluorinated organic compound fluorinated by the electrolytic fluorination method of the present invention is separated into layers from the electrolytic solution and settles, so that it can be recovered from the lower part of the electrolytic cell. When the target substance has a low boiling point and becomes a gas, it can be taken out from the upper portion of the electrolytic cell, cooled, and recovered.

【0018】[0018]

【実施例】以下、本発明を次の実施例により具体的に説
明するが、本発明はそれらの実施例により限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to the following examples, but the present invention is not limited to these examples.

【0019】実施例1 陽極はニッケル平板(幅5cm、高さ12.5cm、厚さ
0.1cm)に低分子量PTFE〔商品名:セフラルルー
ブ(セントラル硝子(株)製)〕を分散させたワット浴
で共折めっきを行い製作した。この表面には低分子量P
TFEが20%存在し、水との接触角が140度の撥水
性を示した。鉄製の電解槽内(容量800ml)に陽極
としてのこの電極5枚と鉄平板陰極(幅5cm、高さ1
2.5cm、厚さ0.1cm)6枚を3mm間隔で交互に配
列した。電解槽には無水フッ化水素酸を623ml導入
し槽電圧5.5Vで予備電解を行った後、導電剤として
フッ化ナトリウムを0.6g加えた。その後オクタンス
ルホニルフロライド(C817SO2F)を30.6g加
え、約1A/dm2の電流密度で52.6時間、電気量2
60AHまで通電した。電解槽は外部から冷却して電解液
の温度を10℃に保った。槽電圧は5.4〜5.6Vで
安定していた。全電解中にオクタンスルホニルフロライ
ドを56.0g使用した。生成物は電解槽底部から取り
出し、その量を測定すると共に組成をガスクロマトグラ
フィーにより定量したところパーフルオロオクタンスル
ホニルフロライド(C817SO2F)が58.1g合成
できた。その収率は40.5%であった。
Example 1 The anode was a watt bath in which a low molecular weight PTFE [trade name: Cefraral Lube (manufactured by Central Glass Co., Ltd.)] was dispersed on a nickel plate (width 5 cm, height 12.5 cm, thickness 0.1 cm). It was produced by co-fold plating. This surface has a low molecular weight P
20% of TFE was present, and the contact angle with water was 140 degrees, which showed water repellency. In an iron electrolytic cell (capacity 800 ml), these 5 electrodes as an anode and an iron plate cathode (width 5 cm, height 1)
Six sheets (2.5 cm, thickness 0.1 cm) were alternately arranged at 3 mm intervals. After 623 ml of anhydrous hydrofluoric acid was introduced into the electrolytic cell and preliminary electrolysis was performed at a cell voltage of 5.5 V, 0.6 g of sodium fluoride was added as a conductive agent. Then, 30.6 g of octane sulfonyl fluoride (C 8 H 17 SO 2 F) was added, and the current density was about 1 A / dm 2 for 52.6 hours.
Energized up to 60 AH. The electrolytic cell was cooled from the outside to maintain the temperature of the electrolytic solution at 10 ° C. The cell voltage was stable at 5.4 to 5.6V. 56.0 g of octane sulfonyl fluoride was used in all electrolysis. The product was taken out from the bottom of the electrolytic cell, the amount thereof was measured, and the composition was quantified by gas chromatography. As a result, 58.1 g of perfluorooctanesulfonyl fluoride (C 8 F 17 SO 2 F) was synthesized. The yield was 40.5%.

【0020】比較例1 実施例1と同様の電解槽にニッケル平板陽極5枚と鉄平
板陰極6枚を3mm間隔で交互に配列した。電解槽には無
水フッ化水素酸を614ml導入し槽電圧5.5Vで予
備電解を行った後、導電剤としてフッ化ナトリウムを
0.6g加えた。その後オクタンスルホニルフロライド
を30.4g加え、約1A/dm2電流密度で53.6時
間、電気量258AHまで通電した。電解槽は外部から冷
却して電解液の温度を10℃に保った。槽電圧は電解初
期5.5Vであったが約40時間で導電性が低下し電解
終了時には6.5Vとなった。全電解中にオクタンスル
ホニルフロライドを55.4g使用した。生成物は電解
槽底部から取り出し、その量を測定すると共に組成をガ
スクロマトグラフィーにより定量したところパ−フルオ
ロオクタンスルホニルフロライドは22.3g合成でき
た。その収率は15.7%であった。
Comparative Example 1 In the same electrolytic cell as in Example 1, 5 nickel plate anodes and 6 iron plate cathodes were alternately arranged at 3 mm intervals. After 614 ml of anhydrous hydrofluoric acid was introduced into the electrolytic cell and preliminary electrolysis was performed at a cell voltage of 5.5 V, 0.6 g of sodium fluoride was added as a conductive agent. After that, 30.4 g of octanesulfonyl fluoride was added, and electricity was supplied to about 258 AH of electricity at a current density of about 1 A / dm 2 for 53.6 hours. The electrolytic cell was cooled from the outside to maintain the temperature of the electrolytic solution at 10 ° C. The cell voltage was 5.5 V in the initial stage of electrolysis, but the conductivity decreased in about 40 hours and reached 6.5 V at the end of electrolysis. 55.4 g of octane sulfonyl fluoride was used in the whole electrolysis. The product was taken out from the bottom of the electrolytic cell, the amount thereof was measured, and the composition was quantified by gas chromatography, whereby 22.3 g of perfluorooctanesulfonyl fluoride could be synthesized. The yield was 15.7%.

【0021】実施例2 実施例1と同様の電解槽および陽極を用いて、無水フッ
化水素酸を614ml導入し槽電圧5.5Vで予備電解
を行なった後、トリペンチルアミン((C511)3N)
を22.5g加え、約1A/dm2の電流密度で250時
間、電気量1250AHまで通電した。電解槽は外部から
冷却して電解液の温度を10℃に保った。電解中はトリ
ペンチルアミンおよび無水フッ化水素酸を間欠的に投入
した。全通電中にトリペンチルアミン139gを使用し
た。槽電圧は電解終了まで上昇せず5.5〜5.7Vで
安定していた。生成物は電解槽底部から間欠的に取出し
水洗後、その量を測定すると共に組成をガスクロマトグ
ラフィーにより定量したところパーフルオロトリペンチ
ルアミン((C511)3N)は210g合成できた。そ
の収率は42.8%であった。
Example 2 Using the same electrolytic cell and anode as in Example 1, 614 ml of anhydrous hydrofluoric acid was introduced and preliminary electrolysis was carried out at a cell voltage of 5.5 V. Then, tripentylamine ((C 5 H 11 ) 3 N)
Was added for 2 hours at a current density of about 1 A / dm 2 for 250 hours to supply electricity of 1250 AH. The electrolytic cell was cooled from the outside to maintain the temperature of the electrolytic solution at 10 ° C. During the electrolysis, tripentylamine and anhydrous hydrofluoric acid were intermittently added. 139 g of tripentylamine was used during all energization. The cell voltage did not rise until the end of electrolysis and was stable at 5.5 to 5.7V. The product was intermittently taken out from the bottom of the electrolytic cell, washed with water, the amount thereof was measured, and the composition was quantified by gas chromatography. As a result, 210 g of perfluorotripentylamine ((C 5 F 11 ) 3 N) was synthesized. The yield was 42.8%.

【0022】電解終了後、電極を取り出し観察したとこ
ろ陽極にはタール状の付着物はなく撥水性を示した。
After the completion of electrolysis, the electrode was taken out and observed. As a result, there was no tar-like deposit on the anode and it showed water repellency.

【0023】比較例2 実施例1と同様の電解槽で陽極にニッケル平板を用い
て、無水フッ化水素酸を600ml導入し槽電圧5.5V
で予備電解を行った後、トリペンチルアミンを21.3
g加え、約1A/dm2の電流密度、槽電圧5.5Vで電解
したところ通電後40時間で通電性の低下による槽電圧
の上昇が生じたため電流密度を下げて電解を続けた。約
90時間後には電流密度0.25A/dm2で槽電圧8.
5Vに達したので電解を終了した。通電した電気量は3
72AHであった。電解中はトリペンチルアミンおよび無
水フッ化水素酸を間欠的に投入した。全通電中にトリペ
ンチルアミン40.5gを使用した。生成物は電解槽底
部から間欠的に取りだし水洗後、その量を測定するとと
もに組成をガスクロマトグラフィーにより定量したとこ
ろパーフルオロトリペンチルアミンは29.1g合成で
きた。その収率は19.8%であった。電解終了後、電
極を取り出し観察したところ陽極はタール状の化合物で
覆われていた。
Comparative Example 2 In the same electrolytic cell as in Example 1, using a nickel plate as the anode, 600 ml of anhydrous hydrofluoric acid was introduced, and the cell voltage was 5.5V.
After performing a pre-electrolysis in
When electrolysis was carried out at a current density of about 1 A / dm 2 and a cell voltage of 5.5 V, 40 hours after energization, the cell voltage increased due to a decrease in conductivity, so the current density was lowered and electrolysis was continued. After about 90 hours, the current density was 0.25 A / dm 2 and the cell voltage was 8.
Since it reached 5V, electrolysis was terminated. The amount of electricity supplied is 3
It was 72 AH. During the electrolysis, tripentylamine and anhydrous hydrofluoric acid were intermittently added. 40.5 g of tripentylamine was used during all energization. The product was intermittently taken out from the bottom of the electrolytic cell, washed with water, the amount thereof was measured, and the composition was quantified by gas chromatography. As a result, 29.1 g of perfluorotripentylamine was synthesized. The yield was 19.8%. After completion of electrolysis, the electrode was taken out and observed, and the anode was covered with a tar-like compound.

【0024】実施例3 陽極は実施例1と同様のニッケル平板にフッ化グラファ
イト〔商品名:セフボン(セントラル硝子(株)製)〕
を分散させたワット浴で共析メッキを行い製作した。こ
の表面にはフッ化グラファイトが3%存在し、水との接
触角が130度の撥水性を示した。実施例1と同様の電
解槽に陽極としてこの電極5枚と鉄平板陰極6枚を3m
m間隔で交互に配列した。電解槽には無水フッ化水素酸
を614ml導入し槽電圧5.5Vで予備電解を行った
後、導電剤としてフッ化ナトリウムを0.6g加えた。
その後オクタンスルホニルフロライドを30.0g加
え、約1A/dm2の電流密度で53.9時間、電気量
258AHまで通電した。全電解中にオクタンスルホニ
ルフロライドを55.5g使用した。電解槽は外部から
冷却して電解液の温度を10℃に保った。槽電圧は5.
3〜5.9Vで安定していた。生成物は電解槽底部から
取り出し、その量を実施例1と同様の方法で測定したと
ころパーフルオロオクタンスルホニルフロライドが4
7.6g合成できた。その収率は33.5%であった。
Example 3 The anode was a nickel plate similar to that used in Example 1 and graphite fluoride [trade name: Cefbon (manufactured by Central Glass Co., Ltd.)].
It was manufactured by performing eutectoid plating in a Watts bath in which was dispersed. Graphite fluoride was present on the surface in an amount of 3% and exhibited a water repellency with a contact angle with water of 130 degrees. In the same electrolytic cell as in Example 1, 5 m of this electrode and 6 m of iron flat plate cathode were used as anodes for 3 m.
It was arranged alternately at m intervals. After 614 ml of anhydrous hydrofluoric acid was introduced into the electrolytic cell and preliminary electrolysis was performed at a cell voltage of 5.5 V, 0.6 g of sodium fluoride was added as a conductive agent.
After that, 30.0 g of octane sulfonyl fluoride was added, and electricity was supplied to the electric quantity of 258 AH at a current density of about 1 A / dm 2 for 53.9 hours. 55.5 g of octane sulfonyl fluoride was used in all electrolysis. The electrolytic cell was cooled from the outside to maintain the temperature of the electrolytic solution at 10 ° C. The cell voltage is 5.
It was stable at 3 to 5.9V. The product was taken out from the bottom of the electrolytic cell, and its amount was measured by the same method as in Example 1 to find that perfluorooctanesulfonyl fluoride was 4%.
7.6 g could be synthesized. The yield was 33.5%.

【0025】実施例4 実施例3と同様の電解槽および陽極を用いて、無水フッ
化水素酸を614ml導入し槽電圧5.5Vで予備電解
を行った後、トリペンチルアミンを23.0g加え、約
1A/dm2の電流密度で252時間、電気量1210
AHまで通電した。電解中はトリペンチルアミンおよび
無水フッ化水素酸を間欠的に投入した。全電解中にトリ
ペンチルアミンを135g使用した。電解槽は外部から
冷却して電解液の温度を10℃に保った。槽電圧は5.
3〜5.9Vで安定していた。生成物は電解槽底部から
間欠的に取り出し、その量を実施例2と同様の方法で測
定したところパ−フルオロトリペンチルアミンが16
8.8g合成できた。その収率は34.6%であった。
Example 4 Using the same electrolytic cell and anode as in Example 3, 614 ml of anhydrous hydrofluoric acid was introduced, preliminary electrolysis was performed at a cell voltage of 5.5 V, and then 23.0 g of tripentylamine was added. , With a current density of about 1 A / dm 2 for 252 hours, with an electric charge of 1210
Power was supplied to AH. During the electrolysis, tripentylamine and anhydrous hydrofluoric acid were intermittently added. 135 g of tripentylamine was used during the whole electrolysis. The electrolytic cell was cooled from the outside to maintain the temperature of the electrolytic solution at 10 ° C. The cell voltage is 5.
It was stable at 3 to 5.9V. The product was intermittently taken out from the bottom of the electrolytic cell, and the amount thereof was measured by the same method as in Example 2 to find that perfluorotripentylamine was 16%.
8.8 g could be synthesized. The yield was 34.6%.

【0026】[0026]

【発明の効果】PTFE粒子及び/又はフッ化グラファ
イト粒子がニッケルめっきに共析分散してなる低表面エ
ネルギー性のニッケル系複合被膜で被覆された電極を陽
極として用いることにより、電解フッ素化によるパーフ
ルオロ化合物製造の収率の向上が達せられ、且つ長時間
にわたる電解フッ素化操業が可能となる。
EFFECTS OF THE INVENTION By using as an anode an electrode coated with a nickel-based composite coating of low surface energy in which PTFE particles and / or graphite fluoride particles are co-eutectically dispersed in nickel plating, it is possible to achieve a performance by electrolytic fluorination. The yield of the fluoro compound production can be improved, and the electrolytic fluorination operation can be performed for a long time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 博昭 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部研究所内 (72)発明者 小林 義幸 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部研究所内 (72)発明者 喜田 康 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Sakaguchi 5253 Oki Ube, Ube City, Yamaguchi Prefecture Ube Laboratory, Central Rural Glass Co., Ltd. Ube Laboratory Co., Ltd. (72) Inventor Yasushi Kida 5253 Oki Obe, Ube City, Yamaguchi Prefecture Central Rural Glass Co., Ltd. Ube Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリテトラフルオロエチレン粒子及び/
又はフッ化グラファイト粒子がニッケルめっき被膜中に
共折分散した複合めっき被膜で表面が被覆された電極を
陽極として用いることを特徴とする無水フッ化水素酸を
電解液とする有機電解フッ素化法。
1. Polytetrafluoroethylene particles and / or
Alternatively, an organic electrolytic fluorination method using anhydrous hydrofluoric acid as an electrolytic solution, wherein an electrode whose surface is coated with a composite plating film in which graphite fluoride particles are co-dispersed in a nickel plating film is used as an anode.
JP24895292A 1991-08-30 1992-08-26 Organic electrolytic fluorination method Expired - Fee Related JP3212712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24895292A JP3212712B2 (en) 1991-08-30 1992-08-26 Organic electrolytic fluorination method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-244052 1991-08-30
JP24405291 1991-08-30
JP24895292A JP3212712B2 (en) 1991-08-30 1992-08-26 Organic electrolytic fluorination method

Publications (2)

Publication Number Publication Date
JPH05320968A true JPH05320968A (en) 1993-12-07
JP3212712B2 JP3212712B2 (en) 2001-09-25

Family

ID=17113015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24895292A Expired - Fee Related JP3212712B2 (en) 1991-08-30 1992-08-26 Organic electrolytic fluorination method

Country Status (1)

Country Link
JP (1) JP3212712B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071721A (en) * 1996-08-30 1998-03-17 Ricoh Co Ltd Ink jet head, its manufacture, and ink jet recorder
CN111962096A (en) * 2020-08-13 2020-11-20 沧州信联化工有限公司 Synthetic method and equipment for tetramethylammonium hydroxide
CN115323412A (en) * 2022-10-11 2022-11-11 山东海科创新研究院有限公司 Preparation method of difluoroethylene carbonate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071721A (en) * 1996-08-30 1998-03-17 Ricoh Co Ltd Ink jet head, its manufacture, and ink jet recorder
CN111962096A (en) * 2020-08-13 2020-11-20 沧州信联化工有限公司 Synthetic method and equipment for tetramethylammonium hydroxide
CN111962096B (en) * 2020-08-13 2021-12-10 沧州信联化工有限公司 Synthetic method and equipment for tetramethylammonium hydroxide
CN115323412A (en) * 2022-10-11 2022-11-11 山东海科创新研究院有限公司 Preparation method of difluoroethylene carbonate

Also Published As

Publication number Publication date
JP3212712B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US4253921A (en) Electrochemical synthesis of butane-1,4-diol
CN101994128A (en) Method for preparing Al-Ti alloy or plated Al-Ti alloy by low-temperature electrolytic deposition of ionic liquid
US6267865B1 (en) Electrochemical fluorination using interrupted current
JPH0581677B2 (en)
US4072584A (en) Electrochemical production of organic thiols
JP3212712B2 (en) Organic electrolytic fluorination method
CA1172991A (en) Aluminium reduction cell with carbon cathode having titanium diboride surfaces
CA1313362C (en) Process for the dehalogenation of chloroacetic and bromoacetic acids
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
US5277767A (en) Electrochemical synthesis of diaryliodonium salts
JP4587329B2 (en) Method for producing primary amines having a primary amino group and a cyclopropyl unit bonded to an aliphatic or alicyclic C-atom
JP2006348382A (en) Electrolytic fluorination method
US3193475A (en) Coupling cyclic olefins by electrolysis
JPH0261081A (en) Method for electrolytically decarboxilating perfluorocarboxylic acid and its soluble salt and subsequently dimerizing generated free radicals
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPH06207292A (en) Method for preparation of perfluoroalkylsulfonyl fluoride and electrode for use in said method
US3312610A (en) Electrolytic process for producing phosphine
JPH0230785A (en) Method for electrolytic fluorination
JPS63310987A (en) Electrochemical manufacture of fluorinated hydrocarbon
US2145241A (en) Electroplating method and product
JP2584825B2 (en) Electrolytic fluorination method
JP2002514688A (en) Electrochemical fluorination of alkane substrates
US3321387A (en) Electrochemical synthesis of cyclopropane ring compounds
JPH09104993A (en) Electrolytic fluorination method
JPS6256236B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees