JPH05318136A - Resistance welding method for aluminum and aluminum alloy materials - Google Patents

Resistance welding method for aluminum and aluminum alloy materials

Info

Publication number
JPH05318136A
JPH05318136A JP4143378A JP14337892A JPH05318136A JP H05318136 A JPH05318136 A JP H05318136A JP 4143378 A JP4143378 A JP 4143378A JP 14337892 A JP14337892 A JP 14337892A JP H05318136 A JPH05318136 A JP H05318136A
Authority
JP
Japan
Prior art keywords
welded
electrode
welding
alloy
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4143378A
Other languages
Japanese (ja)
Other versions
JP2744733B2 (en
Inventor
Tomiharu Okita
富晴 沖田
Masanori Ozaki
正則 尾崎
Hisao Orimo
尚夫 折茂
Mikihiro Sugimori
幹弘 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Furukawa Aluminum Co Ltd
Furukawa Electric Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Furukawa Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, Furukawa Electric Co Ltd, Kawasaki Steel Corp filed Critical Furukawa Aluminum Co Ltd
Priority to JP4143378A priority Critical patent/JP2744733B2/en
Publication of JPH05318136A publication Critical patent/JPH05318136A/en
Application granted granted Critical
Publication of JP2744733B2 publication Critical patent/JP2744733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve a service life of electrodes equally to or higher than the case of conventional resistance welding of rolled steel sheets at the time of resistance-welding of aluminum and aluminum alloy materials. CONSTITUTION:At the time of resistance-welding of the aluminum and aluminum alloy materials, foil-like inclusions 9 and 10 having 0.02-1mm thickness coated with 1-100mum Ni, Ti, Nb, Mo, W, Cr, Co or alloys of those on both sides or one side of copper or a copper alloy are interposed between electrodes 1 and 2 and materials 11 and 12 to be welded to perform joining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗溶接において、圧延
鋼板と比べて電極寿命の劣るアルミニウム及びアルミニ
ウム合金を被溶接材料とする場合に、電極の寿命を圧延
鋼板の場合と同等に改善した抵抗溶接方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to resistance welding in which resistance of an electrode is improved to the same level as that of a rolled steel plate when using aluminum and an aluminum alloy, which have a shorter electrode life than a rolled steel plate, as materials to be welded. The present invention relates to a welding method.

【0002】[0002]

【従来の技術】従来の圧延鋼板を用いた自動車等の大量
生産における組立工程の接合方法として、抵抗スポット
溶接方法が多く用いられていたが、その理由としては、
非常に能率的な溶接方法で大量生産に適していること、
および一度溶接条件を設定すると全く素人の人でも、ま
たロボットでも容易に溶接ができ、安定した溶接ナゲッ
トや継手強度が得られるからである。従来の抵抗スポッ
ト溶接方法は、被溶接材料を重ねて、上電極、下電極で
加圧、通電してナゲットを形成して接合する。従来の圧
延鋼板のみに限らず、アルミニウムおよびその合金や複
合材料を抵抗スポット溶接する場合においても、電極材
料としてJIS Z 3234−1977「抵抗溶接用銅電
極材料」の第1種、又は第2種を用い、電極形状は、J
ISC9304−1986「スポット溶接用電極の形状及び
寸法」で定める形状のものを用いるのが一般的である。
電極材料としてこれらの材料が使用される理由として
は、被溶接材料より熱伝導や導電率が高いので、接触部
で電極と被溶接材料が接合しにくいので連続して溶接で
きるためである。
2. Description of the Related Art A resistance spot welding method has been widely used as a joining method in an assembly process in mass production of automobiles using conventional rolled steel sheets.
Suitable for mass production with a very efficient welding method,
Also, once the welding conditions are set, welding can be performed easily even by an entirely amateur person or robot, and stable welding nuggets and joint strength can be obtained. In the conventional resistance spot welding method, the materials to be welded are stacked, and the nugget is formed by applying pressure and current to the upper electrode and the lower electrode to join them. Not limited to the conventional rolled steel sheet, aluminum and even when its alloys or composite materials resistance spot welding, JIS Z 3234- 1977 first kind of "copper electrode material for resistance welding" as the electrode material, or the two And the electrode shape is J
ISC9304- 1986 to use a shape specified by "the shape and dimensions of the spot welding electrode" is generally used.
The reason why these materials are used as the electrode material is that they have higher thermal conductivity and conductivity than the material to be welded, so that the electrode and the material to be welded are difficult to join at the contact portion, so that continuous welding is possible.

【0003】しかし、実際には、被溶接材料の種類によ
って、連続して所定の強度やナゲット径等の要求性能を
確保して溶接できる溶接点数(電極寿命)が異なってい
る。溶接する前に電極の先端を所定の形状に切削した
り、所定の表面粗度に磨いたりして整えるが、そのこと
をドレッシングと称する。1回のドレッシングで連続し
て所定の要求性能を有した溶接部が得られる打点数をそ
の電極の電極寿命と言うが、その判定方法として次のよ
うなものがある。 .ナゲット径、又は引張せん断強さが規定の値以下に
なるまでの連続打点数。 .電極先端に、電極と被溶接材料との合金層ができ
て、それが溶接部に転写されて外観が損なわれる現象を
ピックアップと称するが、これが発生し始める前までの
連続打点数。 .電極が被溶接材料に溶着してとれなくなる現象が起
こる前までの連続打点数等。 一般的には及びの方法が用いられることが多いの
で、この明細書の電極寿命の用語は、及びの判定方
法を用いることとする。この判定方法で従来の圧延鋼板
を用いた自動車の組み立てラインにおける抵抗スポット
溶接の電極寿命を示すと、10000打点以上であると
言われている。このように、圧延鋼板の抵抗スポット溶
接では非常に長い電極寿命であるが、アルミニウム及び
アルミニウム合金の抵抗スポット溶接の電極寿命は20
0〜1000打点と言われている。
However, in reality, the number of welding points (electrode life) at which welding can be continuously performed while ensuring required strength such as predetermined strength and nugget diameter is different depending on the type of material to be welded. Before welding, the tip of the electrode is cut into a predetermined shape or polished to a predetermined surface roughness, which is called dressing. The number of dots at which a weld having a predetermined required performance can be obtained continuously by one dressing is called the electrode life of the electrode, and there are the following determination methods. . The number of continuous dots until the nugget diameter or tensile shear strength falls below a specified value. . The phenomenon in which an alloy layer of the electrode and the material to be welded is formed at the tip of the electrode and is transferred to the welded part and the appearance is impaired is called pickup. The number of continuous dots before this starts to occur. . The number of continuous dots before the phenomenon that the electrode is welded to the material to be welded and cannot be removed. Since the method of and is often used, the term of electrode life in this specification is to use the method of and. When the electrode life of resistance spot welding in an automobile assembly line using a conventional rolled steel sheet is shown by this determination method, it is said to be 10,000 or more points. As described above, resistance spot welding of rolled steel plate has a very long electrode life, but resistance spot welding of aluminum and aluminum alloys has an electrode life of 20.
It is said to be 0-1000 RBI.

【0004】上記のように、アルミニウム合金の抵抗ス
ポット溶接における電極寿命は圧延鋼板より非常に劣る
ため、その改善方法が従来から検討がなされている。例
えば、特開昭61−159288号公報では、図6のご
とく、アルミニウム又はアルミニウム合金同士を電気抵
抗溶接するにあたり、電極1、2と被溶接材料11、1
2の間に電極より高電気伝導性のインサート材(箔状介
在物)9、10を介装して溶接する方法が提案されてい
る。これは、かなり過剰な入熱で溶接しても、溶込みが
板の表面まで到らず、表面割れを発生することなくアル
ミニウム合金同士を溶接する方法であるが、電極寿命を
ある程度改善する効果も有ると考えられる。
As described above, the electrode life in resistance spot welding of an aluminum alloy is much inferior to that of a rolled steel sheet. Therefore, a method for improving the electrode has been studied. For example, in Japanese Unexamined Patent Publication No. 61-159288, as shown in FIG. 6, when aluminum or aluminum alloys are electrically resistance-welded, electrodes 1 and 2 and materials 11 and 1 to be welded are used.
A method has been proposed in which insert materials (foil-like inclusions) 9 and 10 having higher electrical conductivity than the electrodes are interposed between the two and welding. This is a method of welding aluminum alloys to each other without causing surface cracks even when welding with a considerably excessive heat input, and the effect of improving electrode life to some extent. It is thought that there is also.

【0005】ところで、アルミニウムやアルミニウム合
金を抵抗溶接するにあたり、電極と被溶接材料との間に
銅及び銅合金の箔を用いた場合は、アルミニウムとの親
和性が良く、加圧、溶接する200℃付近において拡散
接合しやすい。このため導電性があり、かつアルミニウ
ムより溶融点が高いにもかかわらず抵抗溶接の介在物と
しては不向きであることがわかった。一方省エネルギー
の見地から自動車の軽量化が望まれ、軽く強度の高いア
ルミニウム及びアルミニウム合金が自動車用材料として
注目されてきた。しかし前述したように、アルミニウム
及びアルミニウム合金の抵抗溶接は、従来の圧延鋼板に
比較して著しく電極寿命が短く電極のドレッシングが頻
繁になり、自動車等の大量生産においてはこれがネック
になり問題であった。
In the case of resistance welding aluminum or aluminum alloy, when a foil of copper or copper alloy is used between the electrode and the material to be welded, the aluminum and aluminum alloy have a good affinity with each other and are pressed and welded. Diffusion bonding is easy at around ℃. Therefore, it has been found that it is not suitable as an inclusion for resistance welding although it has conductivity and has a higher melting point than aluminum. On the other hand, from the viewpoint of energy saving, the weight reduction of automobiles is desired, and light weight and high strength aluminum and aluminum alloys have attracted attention as materials for automobiles. However, as described above, resistance welding of aluminum and aluminum alloys has a significantly shorter electrode life than conventional rolled steel sheets and requires frequent electrode dressing, which is a problem in mass production of automobiles and the like. It was

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果なされたもので、アルミニウム及びア
ルミニウム合金の抵抗溶接にあたり、電極寿命を著しく
向上させる抵抗溶接方法を開発したものである。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of studying the above problems, and has developed a resistance welding method for remarkably improving the electrode life in resistance welding of aluminum and aluminum alloys.

【0007】[0007]

【課題を解決するための手段】本発明は、アルミニウム
及びアルミニウム合金材料の抵抗溶接にあたり、電極と
被溶接材料との間に、銅又は銅合金の両面にNi又はN
i合金、Ti又はTi合金、Nb又はNb合金、Mo又
はMo合金、W又はW合金、Cr又はCr合金、Co又
はCo合金のいずれかを1〜100μm被覆した厚さ
0.02〜1mmの箔状介在物を介して接合することを
特徴とするアルミニウム及びアルミニウム合金材料の抵
抗溶接方法を請求項1とし、アルミニウム及びアルミニ
ウム合金材料の抵抗溶接にあたり、電極と被溶接材料と
の間に、銅又は銅合金の表面にNi又はNi合金、Ti
又はTi合金、N6又はN6合金、Mo又はMo合金、
W又はW合金、Cr又はCr合金、Co又はCo合金の
中で、異なった金属を片面ずつに、それぞれ1〜100
μm被覆した厚さ0.02〜1mmの箔状介在物を介し
て接合することを特徴とするアルミニウム及びアルミニ
ウム合金材料の抵抗溶接方法を請求項2とするものであ
る。すなわち本発明は、アルミニウム及びアルミニウム
合金、例えばAl合金として、Al−Si系、Al−M
g系、Al−Mg−Si系、Al−Cu−Mg系、Al
−Zn−Mg系、Al−Zn−Cu−Mg系などの合金
材料を抵抗溶接するに際し、上下電極と被溶接材料の接
触する箇所に、上記の箔状介在物を挟んで加圧、通電し
て溶接する方法である。なお、この溶接に用いる溶接機
は、従来用いられている単相交流式抵抗溶接機、単相整
流式抵抗溶接機、三相低周波抵抗溶接機、三相整流式抵
抗溶接機、コンデンサー式抵抗溶接機、インバータ抵抗
溶接機等のいずれでも良い。また箔状介在物を自動的に
連続供給することもできる。
The present invention relates to resistance welding of aluminum and aluminum alloy materials, and Ni or N on both surfaces of copper or copper alloy between the electrode and the material to be welded.
A foil having a thickness of 0.02 to 1 mm coated with any one of i alloy, Ti or Ti alloy, Nb or Nb alloy, Mo or Mo alloy, W or W alloy, Cr or Cr alloy, Co or Co alloy in a range of 1 to 100 μm. The method for resistance welding of aluminum and aluminum alloy materials is characterized in that the electrodes and the material to be welded are made of copper or copper. Ni or Ni alloy, Ti on the surface of copper alloy
Or Ti alloy, N6 or N6 alloy, Mo or Mo alloy,
Among W or W alloys, Cr or Cr alloys, Co or Co alloys, different metals on each side are 1 to 100, respectively.
A resistance welding method for aluminum and aluminum alloy materials is characterized in that the welding is performed through a foil-shaped inclusion having a thickness of 0.02 to 1 mm coated with μm. That is, the present invention relates to aluminum and aluminum alloys, for example, Al alloys, such as Al-Si system and Al-M.
g type, Al-Mg-Si type, Al-Cu-Mg type, Al
When resistance-welding an alloy material such as -Zn-Mg-based or Al-Zn-Cu-Mg-based, the above foil-like inclusion is sandwiched between the upper and lower electrodes and the material to be welded, and pressure and current are applied. It is a method of welding. The welding machine used for this welding is a single-phase AC resistance welding machine, a single-phase rectification resistance welding machine, a three-phase low-frequency resistance welding machine, a three-phase rectification resistance welding machine, and a condenser-type resistance that have been conventionally used. Either a welding machine or an inverter resistance welding machine may be used. Also, the foil inclusions can be automatically and continuously supplied.

【0008】[0008]

【作用】前記の手段により、溶接電流は、電極から通電
性の箔状介物を通過して被溶接材料に流れ、被溶接材料
間の抵抗により発熱、溶解し、ナゲットを形成する。故
に、溶接電流は被溶接材料同士が健全に溶接できる入熱
量が得られる値とし、介在物まで溶ける入熱量は必要と
しない。箔状介在物まで溶ける溶接条件は、過剰入熱で
あり、被溶接材料自体の表面まで完全に溶けて割れ等の
欠陥も発生し、介在物を用いる意味がなくなる。箔状介
在物は鋭意研究した結果、銅又は銅合金板の両面、又は
片面ずつに、Ni、Ti、Nb、Mo、W、Cr、Co
又はそれらの合金を1〜100μm被覆した厚さ0.0
2〜1mmのものは、前記Cu等の金属材料より、電極
寿命が長く、しかも電極や被溶接物への溶着が無く、テ
ープ状にして連続供給が可能であると共に、溶接部の外
観、内部品質も良好であることが判った。被覆金属の厚
さが素板の厚さの1μm未満では、溶接電流をナゲット
形成以上にすると被覆金属まで溶けてしまうため望まし
くない。又、被覆金属の厚さが100μmを超える場合
は、単体金属の時と同じ程度の効果しか得られない。故
に銅又は銅合金板の両面、又は片面ずつにNi、Ti、
Nb、Mo、W、Cr、Co及びそれらの合金を被覆す
る割合は、1〜100μmとする。介在物の厚さは、
0.02mm未満では、通常の抵抗溶接で溶融して電極
や被溶接材料に溶着してしまい、1mmを越えると溶接
電流が通常の値ではナゲットが所定の大きさにならず、
強度が低下して溶接不可になるばかりでなく、テープ状
にして自動供給する場合は、不具合が起こりやすい。故
に、介在物の厚さは0.02〜1mmとする。
With the above-mentioned means, the welding current flows from the electrode through the electrically conductive foil-like material to the material to be welded, and is heated and melted by the resistance between the materials to be welded to form a nugget. Therefore, the welding current is set to a value at which the heat input amount at which the materials to be welded can be welded soundly is obtained, and the heat input amount at which the inclusions are melted is not required. The welding condition for melting even the foil-like inclusions is excessive heat input, and even the surface of the material to be welded is completely melted and defects such as cracks occur, which makes the use of inclusions meaningless. As a result of diligent research on the foil-like inclusions, Ni, Ti, Nb, Mo, W, Cr, Co was formed on both sides or each side of the copper or copper alloy plate.
Or a thickness of 0.0 to 1 to 100 μm coated with those alloys
2 to 1 mm has a longer electrode life than metal materials such as Cu and has no welding to the electrode or the object to be welded and can be continuously supplied in the form of a tape. The quality was also found to be good. If the thickness of the coating metal is less than 1 μm, which is the thickness of the blank, if the welding current is higher than the nugget formation, the coating metal will be melted, which is not desirable. Further, when the thickness of the coating metal exceeds 100 μm, only the same effect as that of the single metal can be obtained. Therefore, Ni, Ti,
The ratio of coating Nb, Mo, W, Cr, Co and their alloys is 1 to 100 μm. The thickness of inclusions is
If it is less than 0.02 mm, it is melted by ordinary resistance welding and welded to the electrode or the material to be welded, and if it exceeds 1 mm, the nugget does not have a predetermined size when the welding current is a normal value.
Not only the strength decreases and welding becomes impossible, but when tapes are automatically supplied, problems are likely to occur. Therefore, the thickness of the inclusions is 0.02 to 1 mm.

【0009】それらの被覆金属の被覆方法としては、溶
融めっき、電気めっき、気相めっき、合わせ圧延等のい
ずれの方法でもよい。箔状介在物は、溶接前に適当な大
きさに切断して被溶接物の溶接箇所に置いておくか、貼
りつけておき、それを電極で挟んで溶接し、溶接後箔状
介在物を取り除くことによってナゲット径及び圧こん表
面が健全な溶接部が得られる。この工程を繰り返すこと
によって全てのナゲットおよび圧こん表面が健全な溶接
部が連続して得られると共に、電極の消耗が極めて少な
く、電極寿命が飛躍的に向上する。また、箔状介在物を
リボン状(テープ状)にしておき、1点又は数点溶接毎
に溶接部に供給することにより、連続打点も可能にな
り、能率的に溶接することができる。
The coating method of these coating metals may be any method such as hot dipping, electroplating, vapor phase plating, and laminated rolling. Before welding, cut the foil-like inclusions to an appropriate size and place them on the welded part of the work piece or paste them together, sandwich them with electrodes, and weld them. By removing the welded part, the nugget diameter and the indented surface are sound. By repeating this process, all the nuggets and welded parts having a well-pressed surface are continuously obtained, and the consumption of the electrode is extremely small, resulting in a dramatic improvement in the electrode life. Further, by forming the foil-shaped inclusions in a ribbon shape (tape shape) and supplying them to the weld portion at every one-point or several-point welding, continuous spotting is also possible and efficient welding can be performed.

【0010】[0010]

【実施例】以下、添付の図面を参照して本発明の実施例
について具体的に説明する。 実施例1 図1は、本発明の実施例1を示す模式図である。上電極
1および下電極2はJIS Z 3234の2種に相当
するクロム銅の16mmφを使用し、電極先端形状は、
R形でR=80mmとした。電極1、2には、冷却用の
9mmφの穴3,4があけられ、それぞれ導管5、6を
通じて水7、8を3リットル/分の流量で流して電極を
冷却した。被溶接材料11、12はAl−Mg系合金で
ある5182−O材、1mm厚さの材料であり、上電極
1と被溶接材料11の間、および下電極2と被溶接材料
12との間に、純銅の両面にNi又はNi合金を1〜1
00μm各種方法で被覆させたもの、及び片面にNi又
はNi合金を、他面にTi、Nb、Mo、W、Cr、C
oのいずれかを被覆させたもの、17種類の各種箔状介
在物9、10を挟み、単相交流溶接機を用いて、溶接電
流23000A、電極加圧力2940N、通電時間5サ
イクルの溶接条件で溶接した。なお、被溶接材料は入荷
したままの表面状態とし、試験片の寸法は30×200
mmとし、これを2枚重ねて30mmピッチで5点溶接
した。Ni等を被覆した上記金属箔を被溶接材料と同じ
寸法に切断して電極と被溶接物の間に挟んで溶接した。
溶接前に、電極の先端は#1000のエメリー紙でドレ
ッシングした。そして連続12000点溶接し、溶接し
た試験片は、図2のごとく、バネ秤18で箔状介在物9
が被溶接材料11から剥がれる荷重を測定した。剥がれ
荷重は、自動供給装置の剥がれ能力を考慮して150g
を許容最大値とした。これ以上では、機械的に簡単に剥
がれないと考えられたからである。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. Example 1 FIG. 1 is a schematic diagram showing Example 1 of the present invention. For the upper electrode 1 and the lower electrode 2, 16 mmφ of chrome copper corresponding to two types of JIS Z 3234 is used, and the electrode tip shape is
In the R type, R = 80 mm. Holes 3 and 4 of 9 mmφ for cooling were formed in the electrodes 1 and 2, and water 7 and 8 were flowed through conduits 5 and 6 at a flow rate of 3 liter / min to cool the electrodes. The materials 11 and 12 to be welded are 5182-O material, which is an Al-Mg-based alloy, and a material having a thickness of 1 mm, and between the upper electrode 1 and the material to be welded 11 and between the lower electrode 2 and the material to be welded 12. 1 to 1 of Ni or Ni alloy on both sides of pure copper
00 μm coated by various methods, and Ni or Ni alloy on one side and Ti, Nb, Mo, W, Cr, C on the other side
With a coating of any one of o and 17 kinds of various foil-shaped inclusions 9 and 10, and using a single-phase AC welding machine, the welding current is 23000 A, the electrode pressure is 2940 N, and the welding time is 5 cycles. Welded. The material to be welded should be in the surface condition as received, and the size of the test piece shall be 30 x 200.
mm, and two pieces were stacked and welded at 5 points at a pitch of 30 mm. The metal foil coated with Ni or the like was cut into the same size as the material to be welded and sandwiched between the electrode and the object to be welded and welded.
Prior to welding, the tip of the electrode was dressed with # 1000 emery paper. Then, the continuous test piece was welded at 12000 points, and the welded test piece was subjected to the foil inclusion 9 by the spring scale 18 as shown in FIG.
Was peeled off from the material 11 to be welded. The peeling load is 150g, considering the peeling ability of the automatic feeder.
Was the maximum allowable value. This is because it was thought that if it was more than this, it would not easily peel mechanically.

【0011】また、図3のピール試験治具21に被溶接
材料11の一端を挟み、まるめながらひきはがして、ノ
ギスでナゲット13の長径および短径を測定し、次の式
で計算して求めた。 ナゲット径=(長径+短径)/2(mm) 電極寿命の限界ナゲット径は、JIS Z 3140
のA級の最小ナゲット径の4mmとした。比較例とし
て、箔状介在物の被覆厚さが、1μm未満、及び100
μmを超える場合や、箔状介在物の厚さが0.02mm
未満及び1mmを越える場合を示した。又、従来方法と
して、Cu単体金属箔を用いた場合と、箔状介在物を用
いないで同一条件で溶接した場合の電極寿命も調べた。
この結果を表1に示す。
In addition, one end of the material 11 to be welded is sandwiched between the peel test jigs 21 shown in FIG. It was Nugget diameter = (major diameter + minor diameter) / 2 (mm) The limit nugget diameter of the electrode life is JIS Z 3140
The minimum nugget diameter of Class A was 4 mm. As a comparative example, the coating thickness of the foil-like inclusions is less than 1 μm, and 100
If the thickness exceeds μm or the thickness of foil inclusions is 0.02 mm
The cases below 1 mm and above 1 mm are shown. Further, as a conventional method, the electrode life was also examined when using a Cu single metal foil and when welding was performed under the same conditions without using a foil-like inclusion.
The results are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】本発明実施例のものは、いずれのものも1
2000点溶接できて、箔状介在物の剥がれ荷重は15
0g以下であり、全てのナゲット径は4mm以上であっ
た。即ち、電極寿命は12000点(以上)であった。
この時の電極先端状態を感圧紙を用いて調べたが、溶接
開始前と12000点溶接後で、電極先端の形状はほと
んど変わっていなかった。これに対し、比較例として用
いたNi又はNi合金の被覆厚さが1μm未満のもの
は、1452点で被溶接材料と溶着し、ナゲット径が4
mm以下になった。逆に、Ni又はNi合金の被覆厚さ
が100μmを越えるものは、電極や被溶接材料とは溶
着しなかったが、1681点でナゲット径が4mm以下
になった。また、箔状介在物の厚さが0.02mm未満
のものは溶接で溶けてその電極寿命は1513点であ
り、1mmを超えるものは溶接不可であった。従来方法
の、Cu単体の場合の電極寿命は760点であり、箔状
介在物を使用しないで溶接したものの電極寿命は455
点であり、ナゲット径が規格以下になった。その時の電
極先端形状は50点目ですでに上下電極とも中心部が凹
形になっており、打点数が多くなるに従って電極の径が
大きくなり、被溶接材料への当たりが悪くなっていた。
以上のように、本発明の実施例によれば、比較例及び従
来方法と比べてそれらの10倍以上の電極寿命が得られ
た。
All of the embodiments of the present invention are 1
2000 points can be welded and the peeling load of foil inclusions is 15
It was 0 g or less, and all nugget diameters were 4 mm or more. That is, the electrode life was 12000 points (or more).
The state of the electrode tip at this time was examined using pressure-sensitive paper, but the shape of the electrode tip was almost unchanged before the start of welding and after 12000 spot welding. On the other hand, the Ni or Ni alloy having a coating thickness of less than 1 μm used as a comparative example is welded to the material to be welded at 1452 points and has a nugget diameter of 4
It became less than mm. On the contrary, when the coating thickness of Ni or Ni alloy exceeds 100 μm, it was not welded to the electrode or the material to be welded, but the nugget diameter was 4 mm or less at 1681 points. Further, the foil-like inclusions having a thickness of less than 0.02 mm were melted by welding and the electrode life was 1513 points, and those having a thickness of more than 1 mm were not weldable. In the conventional method, the electrode life in the case of Cu alone is 760 points, and the electrode life is 455 when welded without using the foil-like inclusions.
The point is that the nugget diameter fell below the standard. The shape of the electrode tip at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the diameter of the electrode increased as the number of hit points increased, making it difficult to hit the material to be welded.
As described above, according to the example of the present invention, the electrode life was 10 times or more that of the comparative example and the conventional method.

【0014】実施例2 図4は、本発明の実施例2を示す模式図である。上電極
1および下電極2はJIS Z 3234の2種に相当
するクロム銅の16mmφを使用し、電極先端形状はD
R形で、先端の6mmφ部をR=40mmとした。電極
1、2には、冷却用の9mmφの穴3、4があけられ、
導管5、6を通じて水7、8を3リットル/分の流量で
流して各電極を冷却した。被溶接材料11、12はAl
−Mg系合金である5052−O材、1mm厚さの材料
であり、上電極1と被溶接材料11の間、および下電極
2と被溶接材料12との間に銅又は銅合金板の両面にT
i又はTi合金を1〜100μm各種方法で被覆させた
もの、及び片面にTi合金を、他面にNi、Nb、M
o、W、Cr、Coのいずれかを被覆させたもの、17
種類の各種箔状介在物9、10を挟み、単相整流式抵抗
溶接機を用いて、溶接電流25000A、電極加圧力2
940N、通電時間5サイクルの溶接条件で溶接した。
なお、被溶接材料は入荷したままの表面状態とし、試験
片の寸法は30×200mmとし、これを2枚重ねて3
0mmピッチで5点溶接した。箔状介在物は16mm幅
のテープ状にし、送りリール22、23により電極と被
溶接材料の間に自動供給して溶接した。電極は各材料毎
に新品を使用した。そして連続12000点溶接し、溶
接した試験片の評価を実施例1と同様に行った。比較例
としては、箔状介在物の被覆厚さが1μm未満、及び1
00μmを超える場合を示した。また、従来方法とし
て、Cu単体金属箔を用いた場合と、箔状介在物を用い
ないで同一条件で溶接した場合について電極寿命を調べ
た。この結果を表2に示す。
Second Embodiment FIG. 4 is a schematic diagram showing a second embodiment of the present invention. For the upper electrode 1 and the lower electrode 2, 16 mmφ of chrome copper corresponding to JIS Z 3234 two types is used, and the electrode tip shape is D
In the R type, the 6 mmφ portion at the tip was R = 40 mm. The electrodes 1 and 2 have holes 3 and 4 of 9 mmφ for cooling,
Each electrode was cooled by flowing water 7 and 8 through conduits 5 and 6 at a flow rate of 3 l / min. Materials to be welded 11 and 12 are Al
-Mg alloy 5052-O material, 1 mm thick material, both surfaces of copper or copper alloy plate between upper electrode 1 and material 11 to be welded, and between lower electrode 2 and material 12 to be welded To T
i or Ti alloy coated with 1 to 100 μm by various methods, and Ti alloy on one surface and Ni, Nb, M on the other surface
O, W, Cr, Co coated, 17
Welding current 25000A, electrode pressure 2 using a single-phase rectification resistance welding machine sandwiching various kinds of foil inclusions 9 and 10.
Welding was carried out under the welding conditions of 940 N and energization time of 5 cycles.
The surface of the material to be welded is as received, and the size of the test piece is 30 x 200 mm.
Five spot welding was performed at a pitch of 0 mm. The foil inclusion was formed into a tape having a width of 16 mm, and was automatically supplied between the electrode and the material to be welded by the feed reels 22 and 23 for welding. New electrodes were used for each material. Then, continuous 12000 spot welding was performed, and the welded test piece was evaluated in the same manner as in Example 1. As a comparative example, the coating thickness of the foil inclusion is less than 1 μm, and 1
The case where it exceeds 00 μm is shown. Further, as a conventional method, the electrode life was examined for the case of using a Cu simple metal foil and the case of welding under the same conditions without using a foil-like inclusion. The results are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】本発明実施例のものは、いずれのものも1
2000点溶接できて、箔状介在物の剥がれ荷重は15
0g以下であり、全てのナゲット径は4mm以上であっ
た。即ち、電極寿命は12000点(以上)であった。
この時の電極先端状態を感圧紙を用いて調べたが、溶接
開始前と12000点溶接後で、電極先端の形状はほと
んど変わっていなかった。これに対し、比較例として用
いたTi又はTi合金の被覆厚さが1μm未満のもの
は、1314点で被溶接材料と溶着してナゲット径が4
mm以下になった。Ti又はTi合金の被覆厚さが10
0μmを越えるものは、被溶接材料とは溶着しなかった
が、自動供給において送りがスムースでなく、また、1
580点でナゲット径が4mm以下になった。箔状介在
物の厚さが0.02mm未満のものは溶接で溶けて電極
寿命は1422点であり、1mmを超えるものは溶接不
可であった。また、従来方法のCu単体のものの電極寿
命は712点であり、箔状介在物を使用しないで溶接し
たものは401点で、ナゲット径が規格以下になった。
また、その時の電極先端形状は50点目ですでに上下電
極とも中心部が凹形になっており、打点数が多くなるに
従って電極径が大きくなり、被溶接材料への当たりが悪
くなっていた。
All of the embodiments of the present invention are 1
2000 points can be welded and the peeling load of foil inclusions is 15
It was 0 g or less, and all nugget diameters were 4 mm or more. That is, the electrode life was 12000 points (or more).
The state of the electrode tip at this time was examined using pressure-sensitive paper, but the shape of the electrode tip was almost unchanged before the start of welding and after 12000 spot welding. On the other hand, the Ti or Ti alloy having a coating thickness of less than 1 μm used as a comparative example was welded to the material to be welded at 1314 points and had a nugget diameter of 4
It became less than mm. The coating thickness of Ti or Ti alloy is 10
Those exceeding 0 μm did not weld to the material to be welded, but the feed was not smooth during automatic feeding, and 1
At 580 points, the nugget diameter became 4 mm or less. If the thickness of the foil-like inclusions was less than 0.02 mm, it was melted by welding and the electrode life was 1422 points, and if it exceeded 1 mm, welding was impossible. In addition, the electrode life of the conventional Cu alone was 712 points, and that of the welding without the foil-like inclusion was 401 points, and the nugget diameter was below the standard.
In addition, the electrode tip shape at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the electrode diameter increased as the number of hit points increased, making it difficult to hit the material to be welded. ..

【0017】実施例3 抵抗溶接機は図1に示すものを用い、上電極1および下
電極2はJIS Z3234の2種に相当するクロム銅
の16mmφを使用し、電極先端形状は、R形で、R=
80mmとした。電極1、2には、冷却用の9mmφの
穴3、4があけられ、導管5、6を通じて水7、8を3
リットル/分の流量で流して電極を冷却した。被溶接材
料11、12はAl−Mg−Si系合金である6009
−T4材、1mm厚さの材料であり、上電極1と被溶接
材料11の間、および下電極2と被溶接材料12との間
に、銅又は銅合金板の両面にNb又はNb合金を1〜1
00μm各種方法で被覆させたもの、及び片面にNb又
はNb合金を、他面にNi、Ti、Mo、W、Cr、C
oのいずれかを被覆させたもの、17種類の各種箔状介
在物9、10を挟み、単相交流溶接機を用いて、溶接電
流27000A、電極加圧力2450N、通電時間8サ
イクルの溶接条件で溶接した。なお、被溶接材料は入荷
したままの表面状態とし、試験片の寸法は30×200
mmとし、これを2枚重ねて30mmピッチで5点溶接
した。箔状介在物は被溶接材料と同じ寸法に切断して電
極と被溶接物の間に挟んで溶接した。溶接前に、電極の
先端は、#1000のエメリー紙でドレッシングした。
そして連続12000点溶接し、溶接した試験片の評価
を実施例1と同様に行った。比較例としては、箔状介在
物の被覆厚さが1μm未満、及び100μmを越える場
合を示した。また、従来方法として、Cu単体金属箔を
用いた場合と、箔状介在物を用いないで同一条件で溶接
した場合について電極寿命を調べた。この結果を表3に
示す。
Example 3 The resistance welding machine shown in FIG. 1 was used, the upper electrode 1 and the lower electrode 2 were made of chromium copper 16 mmφ corresponding to two types of JIS Z3234, and the electrode tip shape was R type. , R =
It was set to 80 mm. The electrodes 1 and 2 are provided with holes 3 and 4 of 9 mmφ for cooling, and water 7 and 8 are collected through conduits 5 and 6, respectively.
The electrode was cooled by flowing at a flow rate of 1 / min. Materials to be welded 11 and 12 are Al-Mg-Si alloys 6009
-T4 material, a material having a thickness of 1 mm, and Nb or Nb alloy on both surfaces of a copper or copper alloy plate between the upper electrode 1 and the material to be welded 11 and between the lower electrode 2 and the material to be welded 12. 1-1
00 μm coated by various methods, and Nb or Nb alloy on one side and Ni, Ti, Mo, W, Cr, C on the other side
With one of o coated and 17 kinds of various foil-shaped inclusions 9 and 10, a welding current of 27,000 A, electrode pressure of 2450 N, and energization time of 8 cycles are used under the welding conditions using a single-phase AC welding machine. Welded. The material to be welded should be in the surface condition as received, and the size of the test piece shall be 30 x 200.
mm, and two pieces were stacked and welded at 5 points at a pitch of 30 mm. The foil inclusion was cut to the same size as the material to be welded, sandwiched between the electrode and the object to be welded, and welded. Prior to welding, the tip of the electrode was dressed with # 1000 emery paper.
Then, continuous 12000 spot welding was performed, and the welded test piece was evaluated in the same manner as in Example 1. As comparative examples, cases where the coating thickness of the foil-like inclusions is less than 1 μm and more than 100 μm are shown. Further, as a conventional method, the electrode life was examined for the case of using a Cu simple metal foil and the case of welding under the same conditions without using a foil-like inclusion. The results are shown in Table 3.

【0018】[0018]

【表3】 [Table 3]

【0019】本発明実施例のものは、いずれのものも1
2000点溶接できて、箔状介在物の剥がれ荷重は15
0g以下であり、全てのナゲット径は4mm以上であっ
た。即ち、電極寿命は12000点(以上)であった。
この時の電極先端状態を感圧紙を用いて調べたが、溶接
開始前と12000点溶接後で、電極先端の形状はほと
んど変わっていなかった。これに対し、比較例として用
いたNb又はNb合金の被覆厚さが1μm未満のもの
は、1584点で被溶接材料と溶着し、ナゲット径が4
mm以下になった。逆に、Nb又はNb合金被覆厚さが
100μmを越えるものは、被溶接材料とは溶着しなか
ったが、1751点でナゲット径が4mm以下になっ
た。介在物の厚さが0.02mm未満のものは溶接で溶
けて電極寿命は1631点であり、1mmを越えるもの
は溶接不可であった。従来方法のCu単体の場合は75
5点であり、箔状介在物を使用しないで溶接したものの
電極寿命は439点であり、ナゲット径が規格以下にな
った。また、その時の電極先端形状は50点目ですでに
上下電極とも中心部が凹形になっており、打点数が多く
なるに従って電極径が大きくなり、被溶接材料への当た
りが悪くなっていた。
All of the examples of the present invention are 1
2000 points can be welded and the peeling load of foil inclusions is 15
It was 0 g or less, and all nugget diameters were 4 mm or more. That is, the electrode life was 12000 points (or more).
The state of the electrode tip at this time was examined using pressure-sensitive paper, but the shape of the electrode tip was almost unchanged before the start of welding and after 12000 spot welding. On the other hand, the Nb or Nb alloy having a coating thickness of less than 1 μm used as a comparative example is welded to the material to be welded at 1584 points and has a nugget diameter of 4
It became less than mm. On the contrary, when the Nb or Nb alloy coating thickness exceeds 100 μm, it was not welded to the material to be welded, but the nugget diameter was 4 mm or less at 1751 points. The inclusions having a thickness of less than 0.02 mm were melted by welding and had an electrode life of 1631 points, and those having a thickness of more than 1 mm could not be welded. 75 for conventional Cu alone
It was 5 points, and the electrode life of the welding was 439 points without welding the foil-like inclusions, and the nugget diameter was below the standard. In addition, the electrode tip shape at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the electrode diameter increased as the number of hit points increased, making it difficult to hit the material to be welded. ..

【0020】実施例4 抵抗溶接機は図1に示すものを用い、上電極1および下
電極2はJIS Z3234の2種に相当するクロム銅
の16mmφを使用し、電極先端形状はDR形で、先端
部の6mmφのR=40mmとした。電極1、2には、
冷却用の9mmφの穴3、4があけられ、導管5、6を
通じて水7、8を3リットル/分の流量で流して電極を
冷却した。被溶接材料11、12は5083−O材、1
mm厚さの材料であり、上電極1と被溶接材料11の
間、および下電極2と被溶接材料12との間に、銅又は
銅合金板の両面にMo又はMo合金を1〜100μm各
種方法で被覆させたもの、及び片面にMo又はMo合金
を、他面にNi、Ti、Nb、Cr、W、Coのいずれ
かを被覆させたもの17種類の各種箔状介在物9、10
を挟み、単相交流溶接機を用いて、溶接電流25000
A、電極加圧力2650N、通電時間5サイクルの溶接
条件で溶接した。なお、被溶接材料は入荷したままの表
面状態とし、試験片の寸法は30×200mmとし、こ
れを2枚重ねて30mmピッチで5点溶接した。箔状介
在物9、10は被溶接材料と同じ寸法に切断して電極と
被溶接物の間に挟んで溶接した。電極は各溶接について
新品を使用した。そして連続12000点溶接し、溶接
した試験片の評価は実施例1と同様に行った。比較例と
して、箔状介在物の被覆厚さが、1μm未満、及び10
0μmを越える場合を示した。また、従来方法として、
Cu単体の電極寿命、及び箔状介在物を用いないで同一
条件で溶接した場合の電極寿命も調べた。この結果を表
4に示す。
Example 4 The resistance welding machine shown in FIG. 1 was used, the upper electrode 1 and the lower electrode 2 were made of chromium copper 16 mmφ corresponding to two kinds of JIS Z3234, and the electrode tip shape was DR type. R of the tip portion of 6 mmφ was set to 40 mm. The electrodes 1 and 2 are
Holes 3 and 4 of 9 mmφ for cooling were drilled, and water 7 and 8 were caused to flow through conduits 5 and 6 at a flow rate of 3 l / min to cool the electrodes. Materials to be welded 11 and 12 are 5083-O materials and 1
It is a material having a thickness of mm, and between the upper electrode 1 and the material to be welded 11 and between the lower electrode 2 and the material to be welded 12, Mo or Mo alloy is applied to both surfaces of a copper or copper alloy plate in an amount of 1 to 100 μm. Those coated by the method, and one side coated with Mo or Mo alloy, and the other side coated with any one of Ni, Ti, Nb, Cr, W, and Co. 17 kinds of various foil-like inclusions 9, 10
With a single-phase alternating current welding machine
Welding was performed under the welding conditions of A, electrode pressure 2650 N, and energization time 5 cycles. In addition, the material to be welded was in the surface state as it was received, the dimensions of the test piece were 30 × 200 mm, and two of these were stacked and welded at 5 points at a pitch of 30 mm. The foil-shaped inclusions 9 and 10 were cut to the same size as the material to be welded and sandwiched between the electrode and the object to be welded. The electrode used was new for each welding. Then, continuous 12000 spot welding was performed, and the welded test piece was evaluated in the same manner as in Example 1. As a comparative example, the coating thickness of the foil-like inclusions is less than 1 μm, and 10
The case where it exceeds 0 μm is shown. Also, as a conventional method,
The electrode life of Cu alone and the electrode life in the case of welding under the same conditions without using foil inclusions were also examined. The results are shown in Table 4.

【0021】[0021]

【表4】 [Table 4]

【0022】前記実施例の抵抗溶接方法によれば、いず
れの箔状介在物を使用した場合も12000点溶接でき
て、箔状介在物の剥がれ荷重は150g以下であり、全
てのナゲット径は4mm以上であった。即ち、電極寿命
は12000点(以上)であった。この時の電極先端状
態を感圧紙を用いて調べたが、溶接開始前と12000
点溶接後で電極先端の形状はほとんど変わっていなかっ
た。これに対し、比較例として用いたMo又はMo合金
の被覆厚さが1μm未満のものは、1325点で被溶接
材料と溶着し、ナゲット径が4mm以下になった。逆
に、Mo又はMo合金の被覆厚さが素板の100μmを
超えるものは、被溶接材料とは溶着しなかったが、15
53点でナゲット径が4mm以下になった。介在物の厚
さが0.02mm未満のものは溶接で溶けて電極寿命は
1421点であり、1mmを越えるものは溶接不可であ
った。また、従来方法のCu単体の場合の電極寿命は7
32点であり、箔状介在物を使用しないで溶接したもの
の電極寿命は516点であり、ナゲット径が規格以下に
なった。また、その時の電極先端形状は50点目ですで
に上下電極とも中心部が凹形になっており、打点数が多
くなるに従って電極径が大きくなり、被溶接材料への当
たりが悪くなっていた。
According to the resistance welding method of the above-mentioned embodiment, it is possible to weld 12000 points regardless of which foil inclusions are used, the peeling load of the foil inclusions is 150 g or less, and all the nugget diameters are 4 mm. That was all. That is, the electrode life was 12000 points (or more). The state of the electrode tip at this time was examined using pressure sensitive paper.
The shape of the electrode tip was almost unchanged after spot welding. On the other hand, the Mo or Mo alloy used as a comparative example having a coating thickness of less than 1 μm was welded to the material to be welded at 1325 points and had a nugget diameter of 4 mm or less. On the other hand, when the coating thickness of Mo or Mo alloy exceeds 100 μm of the bare plate, it was not welded to the material to be welded.
The nugget diameter became 4 mm or less at 53 points. The inclusions having a thickness of less than 0.02 mm were melted by welding and had an electrode life of 1421 points, and those having a thickness of more than 1 mm were not weldable. In addition, the life of the electrode is 7 with the conventional method of Cu alone.
There were 32 points, and the electrode life of the welding was 516 points without welding the foil-like inclusions, and the nugget diameter was below the standard. In addition, the electrode tip shape at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the electrode diameter increased as the number of hit points increased, making it difficult to hit the material to be welded. ..

【0023】実施例5 図5は、本発明の実施例5を示す模式図である。上電極
1および下電極2はJIS Z 3234の2種に相当
するクロム−ジルコニウム−銅合金の16mmφを使用
し、電極先端形状はR形で、R=80mmとした。電極
1、2には、冷却用の9mmφの穴3、4があけられ、
導管5、6を通じて水7、8を3リットル/分の流量で
流して電極を冷却した。被溶接材料11、12はAl−
Mg系合金である5182−O材、1mm厚さの材料で
あり、上電極1と被溶接材料11の間、および下電極2
と被溶接材料12との間に、銅又は銅合金板の表面にW
又はW合金を1〜100μm各種方法で被覆させたも
の、及び片面にW又はW合金を、他面にNi、Ti、N
b、Mo、Cr、Coのいずれかを被覆させたもの17
種類の各種箔状介在物9、10を挟み、単相整流式抵抗
溶接機を用いて、溶接電流26000A、電極加圧力2
650N、通電時間5サイクルの溶接条件で溶接した。
なお、被溶接材料は入荷したままの表面状態とし、試験
片の寸法は30×200mmとし、これを2枚重ねて3
0mmピッチで5点溶接した。箔状介在物は16mm幅
のテ−プ状にし、送りリ−ルにより電極と被溶接材料の
間に自動供給しながら溶接した。溶接前に、電極の先端
は#1000のエメリー紙でドレッシングした。そして
連続12000点溶接し、溶接した試験片の評価は実施
例1と同様に行った。比較例として、箔状介在物の被覆
厚さが、1μm未満、及び100μmを越える場合を示
した。また、従来方法として、Cu単体の金属箔を使用
した場合と、箔状介在物を用いないで同一条件で溶接し
た場合の電極寿命も調べた。この結果を表5に示す。
Embodiment 5 FIG. 5 is a schematic diagram showing Embodiment 5 of the present invention. As the upper electrode 1 and the lower electrode 2, 16 mmφ of a chromium-zirconium-copper alloy corresponding to two types of JIS Z 3234 was used, and the electrode tip shape was R-shaped, and R = 80 mm. The electrodes 1 and 2 have holes 3 and 4 of 9 mmφ for cooling,
The electrodes were cooled by flowing water 7 and 8 through conduits 5 and 6 at a flow rate of 3 l / min. The materials 11 and 12 to be welded are Al-
5182-O material, which is a Mg-based alloy, is a material with a thickness of 1 mm, and is between the upper electrode 1 and the material 11 to be welded, and the lower electrode 2.
Between the material to be welded 12 and the surface of the copper or copper alloy plate W
Alternatively, W alloy coated with various methods of 1 to 100 μm, and W or W alloy on one surface and Ni, Ti, N on the other surface.
b, Mo, Cr, or Co coated 17
Welding current 26000A, electrode pressure 2 using a single-phase rectification resistance welding machine sandwiching various kinds of foil inclusions 9 and 10.
Welding was performed under the welding conditions of 650 N and energization time of 5 cycles.
The surface of the material to be welded is as received, and the size of the test piece is 30 x 200 mm.
Five spot welding was performed at a pitch of 0 mm. The foil inclusion was formed into a tape having a width of 16 mm, and was welded while being automatically supplied between the electrode and the material to be welded by a feed reel. Prior to welding, the tip of the electrode was dressed with # 1000 emery paper. Then, continuous 12000 spot welding was performed, and the welded test piece was evaluated in the same manner as in Example 1. As comparative examples, cases where the coating thickness of the foil-like inclusions is less than 1 μm and more than 100 μm are shown. In addition, as a conventional method, the electrode life was examined when using a metal foil of Cu alone and when welding was performed under the same conditions without using foil inclusions. The results are shown in Table 5.

【0024】[0024]

【表5】 [Table 5]

【0025】本発明実施例のように、銅又は銅合金板に
W又はW合金を1〜100μm被覆した箔状介在物を用
いた場合は、いずれのものも12000点溶接できて、
箔状介在物の剥がれ荷重は150g以下であり、全ての
ナゲット径は4mm以上であった。即ち、電極寿命は1
2000点(以上)であった。この時の電極先端状態を
感圧紙を用いて調べたが、溶接開始前と12000点溶
接後で、電極先端の形状はほとんど変わっていなかっ
た。また、箔状介在物の自動供給も円滑に行われて問題
はなかった。これに対し、比較例として用いたW又はW
合金の被覆厚さが1μm未満のものは、1499点で被
溶接材料と溶着し、ナゲット径が4mm以下になった。
逆に、W又はW合金の被覆厚さが100μmを超えるも
のは、被溶接材料とは溶着しなかったが、自動供給の送
りが円滑に行われず、1725点でナゲット径が4mm
以下になった。箔状介在物の厚さが0.02mm未満の
ものは溶接で溶けて電極寿命は1614点であり、1m
mを越えるものは溶接不可であった。また、従来方法
の、Cu単体の場合の電極寿命は782点であり、箔状
介在物を使用しないで溶接したものの電極寿命は496
点であり、ナゲット径は規格以下になった。また、その
時の電極先端形状は50点目ですでに上下電極とも中心
部が凹形になっており、打点数が多くなるに従って電極
径が大きくなり、被溶接材料への当たりが悪くなってい
た。
When a foil-like inclusion obtained by coating a copper or copper alloy plate with W or a W alloy in a range of 1 to 100 μm is used as in the examples of the present invention, any of them can be welded at 12000 points,
The peeling load of the foil-like inclusions was 150 g or less, and all the nugget diameters were 4 mm or more. That is, the electrode life is 1
It was 2000 points (or higher). The state of the electrode tip at this time was examined using pressure-sensitive paper, but the shape of the electrode tip was almost unchanged before the start of welding and after 12000 spot welding. Further, there was no problem because the automatic supply of foil-like inclusions was smoothly performed. On the other hand, W or W used as a comparative example
If the alloy coating thickness was less than 1 μm, it was welded to the material to be welded at 1499 points, and the nugget diameter was 4 mm or less.
On the contrary, if the coating thickness of W or W alloy exceeds 100 μm, it was not welded to the material to be welded, but the automatic supply was not smoothly performed, and the nugget diameter was 4 mm at 1725 points.
It became below. If the thickness of foil inclusions is less than 0.02 mm, it will be melted by welding and the electrode life will be 1614 points, 1 m.
Welding was impossible for those exceeding m. In addition, the electrode life of the conventional method in the case of Cu alone is 782 points, and the electrode life of welded without using the foil-shaped inclusions is 496.
The point is that the nugget diameter fell below the standard. In addition, the electrode tip shape at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the electrode diameter increased as the number of hit points increased, making it difficult to hit the material to be welded. ..

【0026】実施例6 抵抗溶接機は図1に示したものを使用し、上電極1およ
び下電極2はJISZ 3234の2種に相当するクロ
ム−ジルコニウム−銅合金の16mmφを使用し、電極
先端形状はR形で、R=80mmとした。電極1、2に
は、冷却用の9mmφの穴3、4があけられ、導管5、
6を通じて水7、8を3リットル/分の流量で流して電
極を冷却した。被溶接材料11、12はAl−Mg系合
金である5182−O材、1mm厚さの材料であり、上
電極1と被溶接材料11の間、および下電極2と被溶接
材料12との間に、銅又は銅合金板の表面にCr又はC
r合金を1〜100μm各種方法で被覆させたもの、及
び片面にCr又はCr合金を、他面にNi、Ti、N
b、Mo、W、Coのいずれかを被覆させたもの17種
類の各種箔状介在物9、10を挟み、単相交流溶接機を
用いて、溶接電流25000A、電極加圧力2950
N、通電時間7サイクルの溶接条件で溶接した。なお、
被溶接材料は入荷したままの表面状態とし、試験片の寸
法は30×200mmとし、これを2枚重ねて30mm
ピッチで5点溶接した。箔状介在物は、被溶接材料と同
じ寸法に切断して電極と被溶接材料の間に挟んで溶接し
た。溶接前に、電極の先端は#1000のエメリー紙で
ドレッシングした。そして連続12000点溶接し、溶
接した試験片の評価は実施例1と同様に行った。比較例
として、箔状介在物の被覆厚さが、1μm未満、及び1
00μmを越える場合を示した。また、従来方法とし
て、Cu単体の金属箔を使用した場合と、箔状介在物を
用いないで同一条件で溶接した場合の電極寿命も調べ
た。この結果を表6に示す。
Example 6 The resistance welding machine shown in FIG. 1 was used, the upper electrode 1 and the lower electrode 2 were made of chromium-zirconium-copper alloy 16 mmφ corresponding to two types of JIS Z 3234, and the electrode tip was used. The shape was R-shaped, and R = 80 mm. The electrodes 1 and 2 are provided with holes 3 and 4 of 9 mmφ for cooling, and the conduits 5 and
The electrodes were cooled by flowing water 7 and 8 through 6 at a flow rate of 3 l / min. The materials 11 and 12 to be welded are 5182-O material, which is an Al-Mg-based alloy, and a material having a thickness of 1 mm, and between the upper electrode 1 and the material to be welded 11 and between the lower electrode 2 and the material to be welded 12. , Cr or C on the surface of copper or copper alloy plate
r alloy coated with various methods of 1 to 100 μm, Cr or Cr alloy on one surface, and Ni, Ti, N on the other surface
b, Mo, W, Co coated with 17 kinds of various foil-like inclusions 9 and 10 and using a single-phase AC welding machine, welding current 25000A, electrode pressure 2950
Welding was performed under the welding conditions of N and energization time of 7 cycles. In addition,
The material to be welded is as received, and the dimensions of the test piece are 30 x 200 mm.
Welded at 5 points on the pitch. The foil inclusion was cut into the same size as the material to be welded, sandwiched between the electrode and the material to be welded, and welded. Prior to welding, the tip of the electrode was dressed with # 1000 emery paper. Then, continuous 12000 spot welding was performed, and the welded test piece was evaluated in the same manner as in Example 1. As a comparative example, the coating thickness of the foil inclusion is less than 1 μm, and 1
The case where it exceeds 00 μm is shown. In addition, as a conventional method, the electrode life was examined when using a metal foil of Cu alone and when welding was performed under the same conditions without using foil inclusions. The results are shown in Table 6.

【0027】[0027]

【表6】 [Table 6]

【0028】本発明実施例のように、銅又は銅合金板に
Cr又はCr合金を1〜100μm被覆した箔状介在物
を用いた場合は、いずれのものも12000点溶接でき
て、箔状介在物の剥がれ荷重は150g以下であり、全
てのナゲット径は4mm以上であった。即ち、電極寿命
は12000点(以上)であった。この時の電極先端状
態を感圧紙を用いて調べたが、溶接開始前と12000
点溶接後で、電極先端の形状はほとんど変わっていなか
った。これに対し、比較例として用いたCr又はCr合
金の被覆厚さが1μm未満のものは、1375点で被溶
接材料と溶着し、ナゲット径が4mm以下になった。逆
に、Cr又はCr合金の被覆厚さが100μmを超える
ものは、被溶接材料とは溶着しなかったが、1622点
でナゲット径が4mm以下になった。箔状介在物の厚さ
が0.02mm未満のものは溶接で溶けて電極寿命は1
491点であり、1mmを越えるものは溶接不可であっ
た。また、従来方法の、Cu単体の場合の電極寿命は7
18点であり、箔状介在物を使用しないで溶接したもの
の電極寿命は521点であり、ナゲット径は規格以下に
なった。また、その時の電極先端形状は50点目ですで
に上下電極とも中心部が凹形になっており、打点数が多
くなるに従って電極径が大きくなり、被溶接材料への当
たりが悪くなっていた。
When a foil-like inclusion in which Cr or a Cr alloy is coated with Cr or a Cr alloy in a range of 1 to 100 μm is used as in the embodiment of the present invention, any of them can be welded at 12000 points and the foil-like inclusion can be obtained. The peeling load of the article was 150 g or less, and all the nugget diameters were 4 mm or more. That is, the electrode life was 12000 points (or more). The state of the electrode tip at this time was examined using pressure sensitive paper.
After the spot welding, the shape of the electrode tip was almost unchanged. On the other hand, the Cr or Cr alloy having a coating thickness of less than 1 μm used as a comparative example was welded to the material to be welded at 1375 points and had a nugget diameter of 4 mm or less. Conversely, Cr or Cr alloys with a coating thickness of more than 100 μm did not weld to the material to be welded, but the nugget diameter was 4 mm or less at 1622 points. If the thickness of foil inclusions is less than 0.02 mm, it will be melted by welding and the electrode life will be 1
It was 491 points, and welding exceeding 1 mm was not possible. In addition, the electrode life of the conventional method when using Cu alone is 7
It was 18 points, the electrode life of the welding was 521 points without using the foil-like inclusions, and the nugget diameter was below the standard. In addition, the electrode tip shape at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the electrode diameter increased as the number of hit points increased, making it difficult to hit the material to be welded. ..

【0029】実施例7 図5は本発明方法による実施例7を示す模式図である。
上電極1及び下電極2はJIS Z 3234の2種に
相当するクロム銅の16mmφを使用し、電極先端形状
はDR形で、先端部の6mmφのR=40mmとした。
電極1、2には、冷却用の9mmφの穴3、4があけら
れ、導管5、6を通じて水7、8を3リットル/分の流
量で流して電極を冷却した。被溶接材料11、12はA
l−Mg系合金である5082−O材、1mm厚さの材
料であり、上電極1と被溶接材料11の間、および下電
極2と被溶接材料12との間に、銅又は銅合金板の両面
にCo又はCo合金を1〜100μm各種方法で被覆さ
せたもの、及び片面にCo又はCo合金を、他面にN
i、Ti、Nb、Mo、Cr、Wのいずれかを被覆させ
たもの17種類の各種箔状介在物9、10を挟み、単相
交流溶接機を用いて、溶接電流24500A、電極加圧
力2940N、通電時間8サイクルの溶接条件で溶接し
た。なお、被溶接材料は入荷したままの表面状態とし、
試験片の寸法は30×200mmとし、これを2枚重ね
て30mmピッチで5点溶接した。箔状介在物9、10
は被溶接材料と同じ寸法に切断して電極と被溶接物の間
に挟んで溶接した。電極の先端は溶接前に#1000の
エメリ−紙でドレッシングした。そして連続12000
点溶接し、溶接した試験片の評価は実施例1と同様に行
った。比較例として、箔状介在物の被覆厚さが、1μm
未満、及び100μmを越える場合を示した。また、従
来方法として、Cu単体の場合の電極寿命、及び箔状介
在物を用いないで同一条件で溶接した場合の電極寿命も
調べた。この結果を表7に示す。
Embodiment 7 FIG. 5 is a schematic diagram showing Embodiment 7 according to the method of the present invention.
For the upper electrode 1 and the lower electrode 2, 16 mmφ of chrome copper corresponding to two types of JIS Z 3234 was used, the electrode tip shape was DR type, and 6 mmφ of the tip portion was R = 40 mm.
Holes 3 and 4 of 9 mmφ for cooling were formed in the electrodes 1 and 2, and water 7 and 8 were caused to flow through conduits 5 and 6 at a flow rate of 3 liter / min to cool the electrodes. Materials to be welded 11 and 12 are A
A 5082-O material that is an 1-Mg alloy, a material having a thickness of 1 mm, and a copper or copper alloy plate between the upper electrode 1 and the material 11 to be welded and between the lower electrode 2 and the material 12 to be welded. Coated on both sides with Co or Co alloy by various methods of 1 to 100 μm, and Co or Co alloy on one side and N on the other side.
i, Ti, Nb, Mo, Cr, W coated with 17 kinds of various foil-like inclusions 9 and 10 and using a single-phase AC welding machine, welding current 24500A, electrode pressure 2940N Welding was carried out under welding conditions of 8 cycles of energization time. In addition, the material to be welded should be in the surface condition as received,
The size of the test piece was 30 × 200 mm, and two pieces were stacked and welded at 5 points at a pitch of 30 mm. Foil inclusions 9, 10
Was cut to the same size as the material to be welded and sandwiched between the electrode and the object to be welded. The tip of the electrode was dressed with # 1000 emery paper before welding. And 12000 consecutively
The spot-welded and welded test pieces were evaluated in the same manner as in Example 1. As a comparative example, the coating thickness of the foil inclusion is 1 μm.
The case was less than 100 μm. Further, as a conventional method, the electrode life in the case of Cu alone and the electrode life in the case of welding under the same conditions without using foil-like inclusions were also examined. The results are shown in Table 7.

【0030】[0030]

【表7】 [Table 7]

【0031】前記実施例の抵抗溶接方法によれば、いず
れの箔状介在物を使用した場合も12000点溶接でき
て、箔状介在物の剥がれ荷重は150g以下であり、全
てのナゲット径は4mm以上であった。即ち、電極寿命
は12000点(以上)であった。この時の電極先端状
態を感圧紙を用いて調べたが、溶接開始前と12000
点溶接後で電極先端の形状はほとんど変わっていなかっ
た。これに対し、比較例として用いたCo又はCo合金
の被覆厚さが1μm未満のものは、1522点で被溶接
材料と溶着し、ナゲット径が4mm以下になった。逆
に、Co又はCo合金の被覆厚さが100μmを超える
ものは、被溶接材料とは溶着しなかったが、1755点
でナゲット径が4mm以下になった。介在物の厚さが
0.02mm未満のものは溶接で溶けて電極寿命は16
18点であり、1mmを越えるものは溶接不可であっ
た。また、従来方法のCu単体の場合の電極寿命は81
1点であり、箔状介在物を使用しないで溶接したものの
電極寿命は564点であり、ナゲット径が規格以下にな
った。また、その時の電極先端形状は50点目ですでに
上下電極とも中心部が凹形になっており、打点数が多く
なるに従って電極径が大きくなり、被溶接材料への当た
りが悪くなっていた。
According to the resistance welding method of the above-mentioned embodiment, it is possible to weld 12000 points regardless of which foil inclusion is used, the peeling load of the foil inclusion is 150 g or less, and all the nugget diameters are 4 mm. That was all. That is, the electrode life was 12000 points (or more). The state of the electrode tip at this time was examined using pressure sensitive paper.
The shape of the electrode tip was almost unchanged after spot welding. On the other hand, the Co or Co alloy having a coating thickness of less than 1 μm used as a comparative example was welded to the material to be welded at 1522 points and had a nugget diameter of 4 mm or less. On the other hand, when the coating thickness of Co or Co alloy exceeds 100 μm, it was not welded to the material to be welded, but the nugget diameter was 4 mm or less at 1755 points. If the thickness of inclusions is less than 0.02 mm, it will be melted by welding and the electrode life will be 16
There were 18 points, and those exceeding 1 mm could not be welded. In addition, the life of the electrode is 81 when using the conventional Cu alone.
It was 1 point, the electrode life of the welding was 564 points without welding the foil-like inclusions, and the nugget diameter was below the standard. In addition, the electrode tip shape at that time was the 50th point, and the center of both the upper and lower electrodes had already been concave, and the electrode diameter increased as the number of hit points increased, making it difficult to hit the material to be welded. ..

【0032】[0032]

【発明の効果】本発明に係る抵抗溶接方法によれば、ア
ルミニウム及びアルミニウム合金材料の抵抗溶接の際
に、十分なナゲット径と良好な圧こん表面が電極、被溶
接材料への溶着なしに連続して10000点以上得ら
れ、圧延鋼板の溶接と同等の電極寿命が得られ、特に自
動車のアルミ化の最大のネックとされていた抵抗溶接の
改善に大きく寄与するものである。
According to the resistance welding method of the present invention, when performing resistance welding of aluminum and aluminum alloy materials, a sufficient nugget diameter and a good indented surface are continuously formed without welding to the electrode and the material to be welded. It is possible to obtain more than 10,000 points and obtain an electrode life equivalent to that of welding a rolled steel sheet, and in particular, it greatly contributes to the improvement of resistance welding, which has been the biggest bottleneck in the aluminization of automobiles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る抵抗溶接方法を示す模
式図。
FIG. 1 is a schematic diagram showing a resistance welding method according to an embodiment of the present invention.

【図2】本発明の実施例における箔状介在物の剥がれ荷
重測定状況を示す正面図。
FIG. 2 is a front view showing a peeling load measurement state of a foil-like inclusion in an example of the present invention.

【図3】本発明の実施例におけるピール試験状況を示す
斜視図。
FIG. 3 is a perspective view showing a peel test situation in the example of the present invention.

【図4】本発明の一実施例に係る抵抗溶接方法の他の例
を示す模式図。
FIG. 4 is a schematic view showing another example of the resistance welding method according to the embodiment of the present invention.

【図5】本発明の一実施例に係る抵抗溶接方法のさらに
他の例を示す模式図。
FIG. 5 is a schematic view showing still another example of the resistance welding method according to the embodiment of the present invention.

【図6】従来の抵抗溶接方法を示す模式図。FIG. 6 is a schematic diagram showing a conventional resistance welding method.

【符号の説明】[Explanation of symbols]

1 上電極 2 下電極 3 上電極の冷却穴 4 下電極の冷却穴 5 上電極の導管 6 下電極の導管 7、8 冷却水 9、10 箔状介在物 11、12 被溶接材料 13 ナゲット 18 バネ秤 19 クリップ 20 溶接箇所 21 ピール試験具 22、23 箔状介在物送りリール 24、25 箔状介在物巻き取りリール 26、27 箔状介在物巻き取りモーター 28、29、30、31 支持ロール 1 Upper Electrode 2 Lower Electrode 3 Upper Electrode Cooling Hole 4 Lower Electrode Cooling Hole 5 Upper Electrode Pipe 6 Lower Electrode Pipe 7, 8 Cooling Water 9, 10 Foil-like Inclusion 11, 12 Welding Material 13 Nugget 18 Spring Scale 19 Clip 20 Welding point 21 Peel test tool 22, 23 Foil-shaped inclusion feeding reel 24, 25 Foil-shaped inclusion winding reel 26, 27 Foil-shaped inclusion winding motor 28, 29, 30, 31 Support roll

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖田 富晴 東京都千代田区丸の内2丁目6番1号 古 河アルミニウム工業株式会社内 (72)発明者 尾崎 正則 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 折茂 尚夫 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 杉森 幹弘 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tomiharu Okita 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Aluminum Co., Ltd. (72) Masanori Ozaki 2-6-1 Marunouchi, Chiyoda-ku, Tokyo No. Furukawa Electric Co., Ltd. (72) Inventor Nao Origamo 2-6-1, Marunouchi, Chiyoda-ku, Tokyo No. 2 Furukawa Electric Co., Ltd. (72) Inventor, Mikihiro Sugimori 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム及びアルミニウム合金材料
の抵抗溶接にあたり、電極と被溶接材料との間に、銅又
は銅合金の両面にNi又はNi合金、TiまたはTi合
金、Nb又はNb合金、Mo又はMo合金、W又はW合
金、Cr又はCr合金、Co又はCo合金のいずれかを
1〜100μm被覆した厚さ0.02〜1mmの箔状介
在物を介して接合することを特徴とする、アルミニウム
及びアルミニウム合金材料の抵抗溶接方法。
1. In resistance welding of aluminum and aluminum alloy materials, Ni or Ni alloy, Ti or Ti alloy, Nb or Nb alloy, Mo or Mo is provided on both surfaces of copper or copper alloy between an electrode and a material to be welded. Alloy, W or W alloy, Cr or Cr alloy, Co or Co alloy and bonded through a foil-like inclusion having a thickness of 0.02 to 1 mm coated with 1 to 100 μm, and aluminum and Resistance welding method for aluminum alloy materials.
【請求項2】 アルミニウム及びアルミニウム合金材料
の抵抗溶接にあたり、電極と被溶接材料との間に、銅又
は銅合金の表面にNi又はNi合金、Ti又はTi合
金、Nb又はNb合金、Mo又はMo合金、W又はW合
金、Cr又はCr合金、Co又はCo合金の中で、異な
った金属を片面ずつに、それぞれ1〜100μm被覆し
た厚さ0.02〜1mmの箔状介在物を介して接合する
ことを特徴とする、アルミニウム及びアルミニウム合金
材料の抵抗溶接方法。
2. In resistance welding of aluminum and aluminum alloy materials, Ni or Ni alloy, Ti or Ti alloy, Nb or Nb alloy, Mo or Mo is provided on the surface of copper or copper alloy between the electrode and the material to be welded. Among alloys, W or W alloys, Cr or Cr alloys, Co or Co alloys, different metals are bonded to each one side by 1 to 100 μm each through a foil-like inclusion having a thickness of 0.02 to 1 mm. A resistance welding method for aluminum and aluminum alloy materials, comprising:
JP4143378A 1992-05-07 1992-05-07 Resistance welding method for aluminum and aluminum alloy materials Expired - Lifetime JP2744733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4143378A JP2744733B2 (en) 1992-05-07 1992-05-07 Resistance welding method for aluminum and aluminum alloy materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143378A JP2744733B2 (en) 1992-05-07 1992-05-07 Resistance welding method for aluminum and aluminum alloy materials

Publications (2)

Publication Number Publication Date
JPH05318136A true JPH05318136A (en) 1993-12-03
JP2744733B2 JP2744733B2 (en) 1998-04-28

Family

ID=15337389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143378A Expired - Lifetime JP2744733B2 (en) 1992-05-07 1992-05-07 Resistance welding method for aluminum and aluminum alloy materials

Country Status (1)

Country Link
JP (1) JP2744733B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552573A (en) * 1993-12-08 1996-09-03 The Furukawa Electric Co., Ltd. Resistance welding process for aluminum and aluminum alloy materials
EP0745451A1 (en) * 1995-06-03 1996-12-04 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Electrode for resistance spot welding of aluminium sheets
WO2007090212A2 (en) 2006-02-08 2007-08-16 Fronius International Gmbh Band for protecting the electrodes of a spot welding gun
CN100341657C (en) * 2005-05-10 2007-10-10 武佩 Resistive spot welding process
CN102133682A (en) * 2011-03-18 2011-07-27 华霆(合肥)动力技术有限公司 Resistance welding method
CN108098125A (en) * 2017-12-27 2018-06-01 北京北冶功能材料有限公司 A kind of foil material welding method
CN111451618A (en) * 2020-04-03 2020-07-28 燕山大学 Welding device and process for improving quality of antirust aluminum alloy welded joint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141387A (en) * 1979-04-23 1980-11-05 Hitachi Ltd Spot welding method
JPS60221183A (en) * 1984-04-13 1985-11-05 Mitsubishi Electric Corp Resistance welding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141387A (en) * 1979-04-23 1980-11-05 Hitachi Ltd Spot welding method
JPS60221183A (en) * 1984-04-13 1985-11-05 Mitsubishi Electric Corp Resistance welding device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552573A (en) * 1993-12-08 1996-09-03 The Furukawa Electric Co., Ltd. Resistance welding process for aluminum and aluminum alloy materials
EP0745451A1 (en) * 1995-06-03 1996-12-04 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Electrode for resistance spot welding of aluminium sheets
CN100341657C (en) * 2005-05-10 2007-10-10 武佩 Resistive spot welding process
WO2007090212A2 (en) 2006-02-08 2007-08-16 Fronius International Gmbh Band for protecting the electrodes of a spot welding gun
AT503193B1 (en) * 2006-02-08 2007-10-15 Fronius Int Gmbh BAND TO PROTECT THE ELECTRODES OF A POINT WELDING TONG
EP2204253A1 (en) 2006-02-08 2010-07-07 Fronius International GmbH Band for protecting electrodes of a spot welding gun.
CN102133682A (en) * 2011-03-18 2011-07-27 华霆(合肥)动力技术有限公司 Resistance welding method
CN108098125A (en) * 2017-12-27 2018-06-01 北京北冶功能材料有限公司 A kind of foil material welding method
CN108098125B (en) * 2017-12-27 2020-07-03 北京北冶功能材料有限公司 Foil strip welding method
CN111451618A (en) * 2020-04-03 2020-07-28 燕山大学 Welding device and process for improving quality of antirust aluminum alloy welded joint
CN111451618B (en) * 2020-04-03 2021-03-19 燕山大学 Welding device and process for improving quality of antirust aluminum alloy welded joint

Also Published As

Publication number Publication date
JP2744733B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5599467A (en) Aluminum weldment and method of welding aluminum workpieces
US5552573A (en) Resistance welding process for aluminum and aluminum alloy materials
US5302797A (en) Resistance welding of aluminum
US4972047A (en) Resistance welding of aluminium
CN110461528A (en) The manufacturing method of joint for resistance spot welding
JPH04251676A (en) Method for resistance welding steel and aluminum material
JP2744733B2 (en) Resistance welding method for aluminum and aluminum alloy materials
US4633054A (en) Resistance welding method
JP2744729B2 (en) Resistance welding method for aluminum and aluminum alloy materials
JP2744750B2 (en) Insert material for resistance welding of aluminum and aluminum alloy materials
JP7003806B2 (en) Joined structure and its manufacturing method
WO2018181232A1 (en) Production method for resistance spot welded joint
JPH05200563A (en) Resistance welding method for galvanized steel sheets
JPH04322886A (en) Method and device for resistance welding of metallic plate
JPH0531586A (en) Resistance welding method for steel sheets
JP7047543B2 (en) Joined structure and its manufacturing method
JPH05318140A (en) Electrode for resistance spot welding
JP7003805B2 (en) Joined structure and its manufacturing method
JP2004351507A (en) Method and joint for spot-welding of ferrous material to aluminum material
JP3359398B2 (en) Resistance welding of aluminum
JPH0732163A (en) Welding method for aluminum alloy sheets
JPH04356371A (en) Resistance welding method for aluminum and aluminum alloy materials
JPH067954A (en) Spot welding method for aluminum alloy sheet
JPH0999378A (en) Series spot welding method for resin laminated metallic plate
JPS5970481A (en) Spot welding method