JPH0531744B2 - - Google Patents

Info

Publication number
JPH0531744B2
JPH0531744B2 JP28161684A JP28161684A JPH0531744B2 JP H0531744 B2 JPH0531744 B2 JP H0531744B2 JP 28161684 A JP28161684 A JP 28161684A JP 28161684 A JP28161684 A JP 28161684A JP H0531744 B2 JPH0531744 B2 JP H0531744B2
Authority
JP
Japan
Prior art keywords
endotoxin
time
amount
gelation
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28161684A
Other languages
Japanese (ja)
Other versions
JPS61159162A (en
Inventor
Yoshitsugu Sakata
Haruki Ooishi
Taido Hatayama
Hiroki Shiraishi
Kazuya Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP28161684A priority Critical patent/JPS61159162A/en
Priority to DE8585107877T priority patent/DE3586075D1/en
Priority to AT85107877T priority patent/ATE76507T1/en
Priority to DE89114580T priority patent/DE3587510T2/en
Priority to AT89114580T priority patent/ATE92630T1/en
Priority to EP85107877A priority patent/EP0173021B1/en
Priority to EP89114580A priority patent/EP0347951B1/en
Priority to US06/748,805 priority patent/US4740460A/en
Publication of JPS61159162A publication Critical patent/JPS61159162A/en
Publication of JPH0531744B2 publication Critical patent/JPH0531744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • G01N21/83Turbidimetric titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/579Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving limulus lysate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/04Batch operation; multisample devices
    • G01N2201/0407Batch operation; multisample devices with multiple optical units, e.g. one per sample

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、被検液中のエンドトキシンの測定方
法に関する。 エンドトキシンは、発熱性物質(パイロジエ
ン)の代表的なものであり、エンドトキシンが混
入した血液、輸液、注射液が生体内に注入される
と強い発熱やシヨツクなどの重篤な副作用を引き
起すことが知られている。このため、注射液等の
医薬品製造工程に於ては、原料水、洗浄水中のエ
ンドトキシン量を測定し、その混入を防ぐことが
必要不可欠になつている。また、超純水製造膜の
機能検査あるいは半導体製造用洗浄水の水質検査
として、エンドトキシンの測定が広く行なわれる
ようになつている。 近年、エンドトキシンの測定法として、リムル
ス・アメーボサイト・ライセート(カブトガニ血
球抽出成分、以下LALと略す。)がエンドトキシ
ンと反応してゲ化することが見出され、これを応
用したエンドトキシンの測定法が開発されてい
る。この測定法は、試験管内で被検液とLAL試
薬を混合し、一定温度で一定時間放置した後、反
応試験管を傾斜あるいは転倒し、試料がゲル化し
ているか否かを目視で観察して濃度既知のエンド
トキシン検体とLAL試薬との同様の反応結果と
の比較から、被検液中のエンドトキシン陽性
(+)あるいは陰性(−)を半定量的に捉えるも
のである。しかしながら、この判定方法は熟練を
要すると共に、+−判定基準が測定者の主観に依
存するため、判定に個人差が大きく出ること、判
定限界が0.05ng/ml程度で低濃度エンドトキシン
の検出ができないこと等の欠点があつた。 一方、合成基質として発色性ペプチド誘導体を
用い、該基質がLALと試料中のエンドトキシン
とにより水解されて発色する呈色度を比色定量す
ることによりエンドトキシン濃度を定量する測定
法も開発されているが、測定範囲が数pg/mlか
ら100pg/mlと狭いこと、測定操作が極めて繁雑
であること等の理由により、未だ日常検査に導入
されるまでには到つていない。 本発明者らは、上述した如き従来の欠点を解決
すべく鋭意研究を重ねた結果、被検液中のエンド
トキシンによるLALのゲル化を客観的基準で低
濃度まで検出することができ、低濃度から高濃度
迄の広い範囲にわたるエンドトキシン濃度の定量
を精度よく且つ極めて容易に実施し得る測定方法
を提供する本発明に到達した。 即ち、本発明は、エンドトキシンゲル化試薬と
被検液とを混合した試料液を保持するキユベツト
に光線を照射し、時間tに於ける試料液からの透
過光量I(t)と反応の進行により減少を開始する以
前の該試料液からの透過光量の初期値I0との比率
を求め、該比率が、I(t)/I0でみたとき75%以上
97%以下の範囲にある任意に設定された一定値に
到達した時点を前記試料液のゲル化時点と判定
し、前記試料液の混合時点から該ゲル化判定時点
までを前記試料液のゲル化時間として求め、該ゲ
ル化時間をエンドトキシン濃度測定の際の指標と
して使用することを特徴とするエンドトキシンの
測定方法の発明である。 本発明では、試料の透過光を測定するため、例
えば第1図に示す光学系を使用することができ
る。即ち、測定用キユベツト1(通常、内径6mm
から内径12mmの範囲のものを使用。)内に保持さ
れた、被検液とLAL試薬とを混合した試料液2
(通常、被検液0.1mlとLAL試薬0.1ml、或いは
LAL試薬の凍乾品と被検液0.2mlとから成る。)に
対し、光源5からの光線が絞り3を通して照射さ
れる。試料液2を通過した光線は、絞り4を通り
光電検出器6で透過光量に対応する電気量に変換
される。こで光源5は、例えばLED(発光ダイオ
ード)、タングステンランプ等の発光素子であり、
光電検出器6は、例えばフオトダイオード、光電
セル等の受光素子でよい。光電検出器6で検知さ
れた透過光量I(t)は、被検液とLAL試薬とを混
合した後の反応時間tに対して、第2図に示す様
な経時変化を示す。即ち、反応初期の透過光量が
ほぼ一定の初値I0を示すaの段階、次いで透過光
量I(t)が急激に減少するbの段階、最後にI(t)が
ほとんど変動のない値を示すcの段階、以上3つ
の段階を経て試料はゲル化する。本発明者等は、
このbの段階が試料内でゲル化が急速に進行して
いる状態であること、また、cの段階に到つた試
料液が従来の目視測定でゲル化反応陽性と判定さ
れる状態であること、更に反応開始からbの段階
およびcの段階へ到達する迄の所要時間が被検液
中のエンドトキシン濃度に相関することを実験的
に見出し、広い測定範囲にわたり良好な精度を有
しかつ日常検査への適用が可能な本発明のエンド
トキシンの測定方法を完成するに到つた。 本発明は、試料液が元々有している濁りや着色
に由来する透過光量の差を補正するため、透過光
量I(t)と反応の進行により減少を開始する以前の
透過光量の初期値I0との比率R(t)を測定する点に
特徴を有する。即ち、R(t)=〔I(t)/I0〕×100
〔%〕により求めた該比率R(t)は、第3図に示す
様にI(t)と相似な挙動を示すが、本発明では、ゲ
ル化反応の進行の段階bに相当する、R(t)が75%
以上97%以下の範囲に闘値Rthを設定し、R(t)が
Rthに到達した時点を試料液のゲル化時点と判定
する。又、試料液の混合時点からゲル化判定時点
に到達する迄の反応時間をゲル化時間TGとして
検知しこれを定量に使用する。 尚、RfはI(t)が殆ど変動のない一定値を示す
cの段階に於けるR(t)を示す。 本発明に於ける透過光量の初期値I0としては、
透過光量I(t)の最大値でも、初期段階一定時間内
での透過光量I(t)の平均値でも、初期段階一定時
間内での任意の点tsでの透過光量I(ts)でも、ま
た、初期段階一定時間内での透過光量I(t)の最小
値でも、いずれにてもよい。 第4図は、エンドトキシン濃度とR(t)の関係を
試料液の混合時点からの経過時間をパラメーター
としてプロツトしたものである。使用した試薬及
び測定方法は下記の通りである。 LAL試薬:Associates of Cape Cod社製 FDAリフアレンスによる目視ゲル
化転倒法感度0.05ng/ml エンドトキシン:Escherichia coli UKT−B
株(阪大微研)より精製。 FDAリフアレンスにて含量検
定。 測定方法:上記LAL試薬およびエンドトキシ
ンを夫々注射用蒸留水(大塚製薬(株)
製)で溶解し、各々0.1mlずつを直径
10mmの試験管内で撹拌混合し透過光量
の変化を測定。 図中A,B,C,D,E,Fは各々経過時間5
分、10分、20分、35分、60分、120分を示してい
る。 第4図より、測定したすべての濃度でR(t)はゲ
ル化に伴つて低下し、高濃度試料ほど早く低下を
開始していることが判る。又、R(t)が時間の経過
に対して殆んど低下を示さなくなる最終値Rfは
濃度変化に対応する顕著な差を示さず、エンドト
キシン量の指標として適当でないことはこの図か
らも明らかである。これに対し、R(t)がRfに到
達する以前の値であるRth(例えば第4図に於て
はR(t)=95%をRthとして破線を引いてある。)
に到達したことを検出することにより、広い濃度
範囲にわたり試料液のゲル化の判定ができ、ま
た、Rthに達するまでの反応時間をゲル化時間TG
として測定することにより、広範囲のエンドトキ
シン濃度が定量できることが判る。R(t)がRfに
到達するまでの時間は用いるLAL試薬の感度、
キユベツトの形状等によつて異なるので、本発明
に於ては、これらの点を考慮して、R(t)の値につ
いてR(o)からRfの間で広い濃度範囲にわたり
確実にゲル化を検出できる75%以上97%以下の範
囲に於てゲル化検知の闘値Rthを設定することと
した。Rthを75%よりも小さくした場合、例えば
Rth=70%とした場合にはゲル化を検出できず、
検量線が得られないが、或いは検量関係が得られ
る濃度範囲が例えばエンドトキシン濃度0.1〜
10ng/mlと非常に狭められる。一方、Rthを97%
よりも大きくとつた場合には、LAL試薬と被検
液とを混合した直後の試料液内の揺動(対流)や
気泡の動きによるR(t)の変動を誤つてゲル化と判
定してしまう可能性がある。従つてこのようなノ
イズによる誤検出を防止するためのノイズ余裕度
として3%が必要である。 即ち、本発明に於てはRthを75%以上、97%以
下、より好ましくは80%以上、95%以下の範囲の
一定値に設定することが必須構成要件である。 第5図は、同一被検液について、Rth=95%を
設定し本発明の方法によりゲル化を判定した結果
と、従来の目視ゲル化転倒法によりゲル化を判定
した結果を比較したものである。より詳しく述べ
れば、本発明の方法により得られるゲル化時間が
短いほど検体中のエンドトキシン濃度は高いこと
になるので、該ゲル化時間がある一定時間Tm
(第5図ではTm=25分)より短い場合には陽性、
該ゲル化時間がTmより長い場合には陰性とし
て、従来の目視ゲル化転倒法による判定結果との
相関図を作成したのが第5図である。尚、本発明
の方法に於て使用した試薬及び測定方法は、第4
図に於けるそれと同じである。第5図より明らか
な如く、両法の判定結果はよく一致している。従
来のゲル化転倒法は60分後の試料液のゲル化状態
について陽性(+)あるいは陰性(−)の2値判
定を行うのみであるため、本発明による判定も一
定の測定時間Tm内に自動判定陽性(AMJ+)
あるいは自動判定陰性(AMJ−)の2値判定を
行うようにした。従来法ではR(t)がRfに到達し
た試料液のみを陽性(+)と判定できるのに対
し、本発明によればR到達以前の早い段階で陽
性判定を行なうことができる。即ち、本実施例に
於ては、Tm=25分であり、従来法の半分以下の
測定時間で同一の判定結果を得ることができた。
しかも、判定に際しては熟練を必要とせず、個人
差の無い客観的な結果を得ることができる。又、
Tmを延長することで、従来法では判定不可能で
あつた低濃度でのゲル化を検出することもでき
る。 本発明は又、従来の測定範囲では実現不可能で
あつた広い測定範囲にわたる高精度の定量を可能
とするものであり、検出感度及び測定範囲は使用
するLAL試薬の感度により異なるが、いずれの
場合も従来法である目視ゲル化転倒法で得られる
感度よりもはるかに高く、又合成基質を用いる比
色法の測定範囲よりもはるかに広いダイナミツク
レンジである。 以上述べた如く本発明は、試料液の透過光量の
測定を独自の構成によつて行うことにより客観的
で感度の良い迅連なエンドトキシンの測定方法を
提供するものであると同時に、従来の測定法では
実現不可能であつた広い測定範囲にわたる高精度
の定量を簡便な操作で実現得る優れたエンドトキ
シンの測定方法を提供するものであり、斯業に貢
献するところ極めて大である。 以下に実施例を挙げて本発明の用効果について
更に詳細に説明するが、本発明はこれら実施例に
より何ら限定されるものではなく、本発明の範囲
内で各種の具体例に応用することができるもので
あることは言うまでもない。 実施例 1 以下の測定条件により、エンドトキシン濃度の
測定を行つた。 LAL試薬;Associates of Cape Cod社製 FDAリフアレンスによる目視ゲル
化転倒法感度0.05ng/ml エンドトキシンEscherichia coli UKT−B株
(阪大微研)より精製。 FDAリフアレンスにて含量検
定。 測定方法;上記LAL試薬およびエンドトキシ
ンを夫々注射用蒸留水(大塚製薬(株)
製)で溶解し、各々0.1mlずつを直径
10mmの試験管内で撹拌混合し透過光量
の変化を測定。 第6図に、Rth=95%に設定した本実施例に於
けるゲル化時間とエンドトキシン濃度との検量関
係を示す。第6図より明らかな如く、本実施例に
於ては0.0005ng/mlから100g/ml迄、非常に広い
範囲で良好な検量関係が得られた。これは同一試
薬を使つて目視ゲル化転倒法で得られる検出感度
の100倍の感度であり、また、合成基質を用いる
比色法の測定範囲の1000倍以上のダイナミツクレ
ンジである。 尚、本実施例に於て、Rth=70%とした場合に
は、ゲル化を検出できず、検量線が得られない。 実施例 2 実施例1と同じ測定条件で、実施例1の範囲内
でエンドトキシン濃度の異なる6種の試料液につ
いて、繰り返し数16でゲル化時間を測定した。ゲ
ル化時間TG、及び第6図の検量線を使つて換算
した濃度値の再現性を表1に示す。表1より明ら
かな如く、本法によりTGのCV値で4.5%以内、濃
度値のCV値で15%以内という極めて良好な結果
が得られた。このように広範囲なエンドトキシン
濃度範囲にわたり、上述した高精度の定量測定を
行なうことは、本発明に係る技術開示以前に於て
は実現不可能であつたが、本発明の方法により初
めて、しかも、目視ゲル化転倒と同様の簡便な測
定操作により実現できるようになつた。
The present invention relates to a method for measuring endotoxin in a test liquid. Endotoxin is a typical pyrogen, and when endotoxin-contaminated blood, transfusions, or injections are injected into a living body, it can cause severe side effects such as strong fever and shock. Are known. For this reason, in the manufacturing process of pharmaceuticals such as injection solutions, it has become essential to measure the amount of endotoxin in raw water and washing water to prevent contamination. In addition, endotoxin measurement has become widely used as a function test for ultrapure water production membranes or a water quality test for cleaning water used in semiconductor production. In recent years, as a method for measuring endotoxin, it has been discovered that Limulus amoebocyte lysate (limeshoe crab blood cell extract, hereafter abbreviated as LAL) reacts with endotoxin and turns into a gel, and a method for measuring endotoxin using this has been developed. has been done. This measurement method involves mixing the test liquid and LAL reagent in a test tube, leaving it at a constant temperature for a certain period of time, then tilting or overturning the reaction test tube and visually observing whether the sample has gelled. The positive (+) or negative (-) endotoxin in the test solution is determined semi-quantitatively by comparing the results of a similar reaction between an endotoxin sample of known concentration and the LAL reagent. However, this judgment method requires skill, and since the +/- judgment criteria depend on the subjectivity of the measurer, there are large individual differences in judgment, and the judgment limit is around 0.05 ng/ml, making it impossible to detect low-concentration endotoxins. There were some drawbacks. On the other hand, a measurement method has also been developed in which a chromogenic peptide derivative is used as a synthetic substrate, and the endotoxin concentration is determined by colorimetrically quantifying the degree of color development when the substrate is hydrolyzed by LAL and endotoxin in the sample. However, it has not yet been introduced into routine testing due to the narrow measurement range of several pg/ml to 100 pg/ml and the extremely complicated measurement operation. As a result of intensive research to solve the above-mentioned conventional drawbacks, the present inventors were able to detect gelation of LAL due to endotoxin in the test solution down to low concentrations using an objective standard. The present invention provides a method for quantifying endotoxin concentrations over a wide range from low to high concentrations with high precision and extremely ease. That is, the present invention irradiates a cube holding a sample solution containing an endotoxin gelling reagent and a test solution with light, and calculates the amount of light transmitted from the sample solution at time t, I(t), and the progress of the reaction. Find the ratio of the amount of transmitted light from the sample liquid to the initial value I0 before it starts decreasing, and make sure that the ratio is 75% or more when viewed as I(t)/ I0 .
The time when an arbitrarily set constant value in the range of 97% or less is reached is determined as the gelation time of the sample liquid, and the time from the mixing time of the sample liquid to the gelation determination time is the gelation of the sample liquid. This is an invention of a method for measuring endotoxin, which is characterized in that the gelation time is determined as time and used as an index when measuring endotoxin concentration. In the present invention, for example, the optical system shown in FIG. 1 can be used to measure the transmitted light of the sample. That is, the measurement cuvette 1 (usually 6 mm inner diameter)
Use items with an inner diameter of 12 mm. ) Sample solution 2 containing a mixture of test solution and LAL reagent
(Normally, 0.1ml of test solution and 0.1ml of LAL reagent, or
Consists of lyophilized LAL reagent and 0.2ml of test solution. ) is irradiated with a light beam from a light source 5 through an aperture 3. The light beam that has passed through the sample liquid 2 passes through an aperture 4 and is converted by a photoelectric detector 6 into an amount of electricity corresponding to the amount of transmitted light. Here, the light source 5 is, for example, a light emitting element such as an LED (light emitting diode) or a tungsten lamp.
The photoelectric detector 6 may be a light receiving element such as a photodiode or a photocell. The amount of transmitted light I(t) detected by the photoelectric detector 6 shows a change over time as shown in FIG. 2 with respect to the reaction time t after mixing the test liquid and the LAL reagent. That is, there is a stage a in which the amount of transmitted light at the beginning of the reaction shows an almost constant initial value I0 , then a stage b where the amount of transmitted light I(t) rapidly decreases, and finally a value where I(t) shows almost no fluctuation. Step c, the sample gels through the above three steps. The inventors,
This stage b is a state in which gelation is rapidly progressing within the sample, and the sample liquid that has reached stage c is a state in which the gelation reaction is determined to be positive by conventional visual measurement. Furthermore, it was experimentally discovered that the time required from the start of the reaction to reach stage b and stage c is correlated with the endotoxin concentration in the test solution, and it has good accuracy over a wide measurement range and is suitable for routine testing. We have completed the endotoxin measurement method of the present invention, which can be applied to. In order to correct the difference in the amount of transmitted light due to the turbidity and coloring that the sample liquid originally has, the present invention uses the amount of transmitted light I(t) and the initial value I of the amount of transmitted light before it starts to decrease due to the progress of the reaction. It is characterized by measuring the ratio R(t) with respect to 0 . That is, R(t)=[I(t)/I 0 ]×100
The ratio R(t) determined by [%] exhibits similar behavior to I(t) as shown in FIG. (t) is 75%
Set the threshold value Rth within the range of 97% or less, and R(t)
The time when Rth is reached is determined as the time when the sample solution gels. Further, the reaction time from the time of mixing the sample solution to the time of gelation determination is detected as the gelation time T G and used for quantitative determination. Note that Rf indicates R(t) at stage c, where I(t) is a constant value with almost no fluctuation. The initial value I 0 of the amount of transmitted light in the present invention is as follows:
Whether it is the maximum value of the amount of transmitted light I(t) or the average value of the amount of transmitted light I(t) within a certain time in the initial stage, the amount of transmitted light I(t s ) at any point t s within a certain time in the initial stage However, it may also be the minimum value of the amount of transmitted light I(t) within a certain period of time in the initial stage. FIG. 4 is a plot of the relationship between endotoxin concentration and R(t) using the elapsed time from the time of mixing the sample liquid as a parameter. The reagents and measurement methods used are as follows. LAL reagent: Associates of Cape Cod, Inc. Visual gelation fallover method using FDA reference Sensitivity: 0.05 ng/ml Endotoxin: Escherichia coli UKT-B
Purified from strain (Osaka University Institute of Technology). Content verified by FDA reference. Measurement method: The above LAL reagent and endotoxin were added to distilled water for injection (Otsuka Pharmaceutical Co., Ltd.).
Dissolve 0.1 ml of each in diameter
Stir and mix in a 10 mm test tube and measure the change in the amount of transmitted light. In the figure, A, B, C, D, E, and F each indicate elapsed time 5.
Indicates minutes, 10 minutes, 20 minutes, 35 minutes, 60 minutes, and 120 minutes. From FIG. 4, it can be seen that at all concentrations measured, R(t) decreases with gelation, and the higher the concentration of the sample, the earlier the decrease begins. Furthermore, it is clear from this figure that the final value Rf, at which R(t) shows almost no decrease over time, does not show any significant difference in response to changes in concentration and is not suitable as an indicator of the amount of endotoxin. It is. On the other hand, Rth is the value before R(t) reaches Rf (for example, in FIG. 4, a broken line is drawn with R(t) = 95% as Rth).
By detecting that Rth has been reached, gelation of the sample solution can be determined over a wide range of concentrations .
It can be seen that a wide range of endotoxin concentrations can be quantified by measuring as . The time it takes for R(t) to reach Rf depends on the sensitivity of the LAL reagent used,
Since it differs depending on the shape of the cube, etc., in the present invention, in consideration of these points, the value of R(t) is determined to ensure gelation over a wide concentration range between R(o) and Rf. It was decided to set the threshold value Rth for gelling detection in the detectable range of 75% or more and 97% or less. If Rth is smaller than 75%, e.g.
When Rth = 70%, gelation cannot be detected,
If a calibration curve cannot be obtained, or if the concentration range in which a calibration relationship can be obtained is, for example, endotoxin concentration 0.1~
It is very narrow at 10ng/ml. On the other hand, Rth to 97%
If the value is larger than , the fluctuation in R(t) due to vibration (convection) or movement of air bubbles in the sample solution immediately after mixing the LAL reagent and test solution may be mistakenly judged as gelation. There is a possibility that it will be stored away. Therefore, a noise margin of 3% is required to prevent false detection due to such noise. That is, in the present invention, it is an essential component to set Rth to a constant value in the range of 75% or more and 97% or less, more preferably 80% or more and 95% or less. Figure 5 compares the results of determining gelation using the method of the present invention with Rth = 95% for the same test solution, and the results of determining gelation using the conventional visual gelation inversion method. be. More specifically, the shorter the gelation time obtained by the method of the present invention, the higher the endotoxin concentration in the sample.
(Tm = 25 minutes in Figure 5) If shorter, positive;
If the gelation time is longer than Tm, it is considered negative, and FIG. 5 shows a correlation diagram with the determination result by the conventional visual gelation overturning method. Note that the reagents and measurement method used in the method of the present invention are as described in Section 4.
It is the same as that in the figure. As is clear from FIG. 5, the determination results of both methods are in good agreement. Since the conventional gelation inversion method only makes a binary judgment of positive (+) or negative (-) on the gelation state of the sample solution after 60 minutes, the judgment according to the present invention can also be made within a certain measurement time Tm. Automatic judgment positive (AMJ+)
Alternatively, a binary judgment of automatic negative judgment (AMJ-) was performed. In the conventional method, only a sample liquid in which R(t) reaches Rf can be determined as positive (+), whereas according to the present invention, a positive determination can be made at an early stage before R is reached. That is, in this example, Tm=25 minutes, and the same determination result could be obtained in less than half the measurement time of the conventional method.
Moreover, no skill is required for the determination, and objective results without individual differences can be obtained. or,
By extending the Tm, it is also possible to detect gelation at low concentrations, which was impossible to determine using conventional methods. The present invention also enables highly accurate quantitation over a wide measurement range that was impossible with conventional measurement ranges, and the detection sensitivity and measurement range vary depending on the sensitivity of the LAL reagent used, but any In this case, the sensitivity is much higher than that obtained by the conventional visual gelation inversion method, and the dynamic range is much wider than that of the colorimetric method using a synthetic substrate. As described above, the present invention provides an objective, sensitive, and rapid method for measuring endotoxin by measuring the amount of light transmitted through a sample liquid using a unique configuration. The present invention provides an excellent method for measuring endotoxin that can achieve high-accuracy quantification over a wide measurement range with simple operations, which is impossible to achieve with conventional methods, and thus makes an extremely large contribution to this industry. The effects of the present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples in any way, and may be applied to various specific examples within the scope of the present invention. It goes without saying that it is possible. Example 1 Endotoxin concentration was measured under the following measurement conditions. LAL reagent: Visual gelation inversion method using FDA reference manufactured by Associates of Cape Cod. Sensitivity: 0.05 ng/ml Endotoxin Purified from Escherichia coli UKT-B strain (Osaka University Institute of Technology). Content verified by FDA reference. Measurement method: The above LAL reagent and endotoxin were added to distilled water for injection (Otsuka Pharmaceutical Co., Ltd.).
Dissolve 0.1 ml of each in diameter
Stir and mix in a 10 mm test tube and measure the change in the amount of transmitted light. FIG. 6 shows the calibration relationship between gelation time and endotoxin concentration in this example, where Rth was set to 95%. As is clear from FIG. 6, in this example, a good calibration relationship was obtained over a very wide range from 0.0005 ng/ml to 100 g/ml. This is 100 times more sensitive than the detection sensitivity obtained by the visual gelation inversion method using the same reagents, and more than 1000 times more dynamic than the measurement range of the colorimetric method using a synthetic substrate. In this example, when Rth=70%, gelation cannot be detected and a calibration curve cannot be obtained. Example 2 Under the same measurement conditions as in Example 1, the gelation time was measured with 16 repetitions for six sample solutions having different endotoxin concentrations within the range of Example 1. Table 1 shows the gelation time T G and the reproducibility of the concentration value converted using the calibration curve shown in FIG. As is clear from Table 1, very good results were obtained using this method, with the CV value of T G being within 4.5% and the CV value of concentration being within 15%. Performing the above-mentioned highly accurate quantitative measurement over such a wide range of endotoxin concentrations was not possible before the disclosure of the technology according to the present invention, but with the method of the present invention, it has been possible for the first time. This can now be achieved using a simple measurement procedure similar to visual gelation and inversion.

【表】【table】

【表】 実施例 3 以下の測定条件によりエンドトキシン濃度の測
定を行つた。 LAL試薬;Associates of Cape Cod社製 FDAリフアレンスによる目視ゲル
化転倒法感度0.01ng/ml エンドトキシン;実施例1に同じ 測定方法;実施例1に同じ 第7図にRth=95%に設定した本実施例に於け
るゲル化時間とエンドトキシン濃度との検量関係
を示す。第7図より明らかな如く、本実施例に於
てはエンドトキシン濃度0.0001ng/mlから100g/
ml迄、検量関係が認められた。これは、同一試薬
を使つて目視ゲル化転倒法で得られる検出感度の
100倍の感度であり、又、合成基質を用いる比色
法の10000倍程度の測定範囲のダイナミツクレン
ジである。 尚、本実施例に於ても、Rth=70%とした場合
にはゲル化を検出できず、検量線が得られない。 実施例 4 以下の測定条件によりエンドトキシン濃度の測
定を行つた。 LAL試薬;Associates of Cape Cod社製 FDAリフアレンスによる目視ゲル
化転倒法感度0.1ng/ml エンドトキシン;実施例1に同じ 測定方法;上記エンドトキシンを注射用蒸留水
(大塚製薬(株)製)で溶解したものを被
検液とする。直径12mmの試験管に凍結
乾燥されたLAL試薬と被検液0.2mlを
加えて撹拌溶解し透過光量の変化を測
定。 第8図にRth=85%に設定した本実施例に於け
るゲル化時間とエンドトキシン濃度との検量関係
を示す。第8図より明らかな如く、本実施例に於
てはエンドトキシン濃度0.02ng/mlから100ng/
ml迄の範囲で検量関係が認められた。これは、同
一試薬による目視ゲル化転倒法の5倍の検出感度
であり、合成基質を用いる比色法の50倍程度の測
定範囲のダイナミツクレンジである。 尚、本実施例に於て、Rth=70%とした場合に
は、検量関係が得られる濃度範囲が、エンドトキ
シン濃度0.1〜10ng/mlと非常に狭められる。 実験例 1 エンドトキシンゲル化試薬の製造ロツトが異な
る場合の、Rthと反応時間との関係について検討
を行つた。 (エンドトキシンゲル化試薬) LAL−A:Associates of Cape Cod社製、
FDAリフアレンスによる目視ゲル化転倒法感度
0.025ng/ml。 LAL−B:Associates of Cape Cod社製、
(LAL−Aとはロツトが異なる。)、FDAリフアレ
ンスによる目視ゲル化転倒法感度0.025ng/ml。 LAL−C:Haemachem社製、FDAリフアレ
ンスによる目視ゲル化転倒法感度0.025ng/ml。 (エンドトキシン) 実施例1に同じ (被検液) 上記エンドトキシンを注射用蒸留水(大塚製薬
(株)製)で溶解して、エンドトキシン濃度が2ng/
ml及び0.01ng/mlの溶液を調製して被検液とし
た。 (操作法) 所定のエンドトキシンゲル化試薬0.1mlと、所
定の被検液0.1mlとを直径10mmの試験管内で撹拌
混合し透過光量の変化を測定した。 (結 果) 得られた結果を第9図に示す。尚、第9図中の
各記号の説明は、表2に記載の通りである。
[Table] Example 3 Endotoxin concentration was measured under the following measurement conditions. LAL reagent: Visual gelation inversion method using FDA reference manufactured by Associates of Cape Cod Sensitivity: 0.01 ng/ml Endotoxin: Same as Example 1 Measurement method: Same as Example 1 In this experiment, Rth was set to 95% in Figure 7. The calibration relationship between gelation time and endotoxin concentration in an example is shown. As is clear from FIG. 7, in this example, the endotoxin concentration ranged from 0.0001 ng/ml to 100 g/ml.
A calibration relationship was observed up to ml. This is higher than the detection sensitivity obtained by the visual gelation inversion method using the same reagents.
It is 100 times more sensitive and has a dynamic measurement range that is approximately 10,000 times greater than that of colorimetric methods using synthetic substrates. In this example as well, when Rth = 70%, gelation cannot be detected and a calibration curve cannot be obtained. Example 4 Endotoxin concentration was measured under the following measurement conditions. LAL reagent: Visual gelation inversion method using FDA reference manufactured by Associates of Cape Cod Sensitivity: 0.1 ng/ml Endotoxin: Same as Example 1 Measurement method: The above endotoxin was dissolved in distilled water for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.) as the test liquid. Add freeze-dried LAL reagent and 0.2 ml of test solution to a 12 mm diameter test tube, stir and dissolve, and measure the change in the amount of transmitted light. FIG. 8 shows the calibration relationship between gelation time and endotoxin concentration in this example where Rth was set to 85%. As is clear from FIG. 8, in this example, the endotoxin concentration ranged from 0.02 ng/ml to 100 ng/ml.
A calibration relationship was observed in the range up to ml. This has a detection sensitivity five times higher than that of the visual gelation inversion method using the same reagent, and a dynamic range of measurement that is about 50 times that of the colorimetric method using a synthetic substrate. In this example, when Rth=70%, the concentration range in which a calibration relationship can be obtained is extremely narrowed to an endotoxin concentration of 0.1 to 10 ng/ml. Experimental Example 1 We investigated the relationship between Rth and reaction time when the production lots of endotoxin gelling reagents were different. (Endotoxin gelation reagent) LAL-A: manufactured by Associates of Cape Cod,
Visual gelation tipping method sensitivity with FDA reference
0.025ng/ml. LAL-B: Manufactured by Associates of Cape Cod,
(The lot is different from LAL-A.) Visual gelation fallover method sensitivity according to FDA reference is 0.025 ng/ml. LAL-C: Manufactured by Haemachem, visual gelation fall-over method sensitivity 0.025 ng/ml based on FDA reference. (Endotoxin) Same as Example 1 (Test solution) The above endotoxin was mixed with distilled water for injection (Otsuka Pharmaceutical
Co., Ltd.) to achieve an endotoxin concentration of 2 ng/
ml and 0.01 ng/ml solutions were prepared and used as test solutions. (Procedure) 0.1 ml of a predetermined endotoxin gelation reagent and 0.1 ml of a predetermined test liquid were stirred and mixed in a test tube with a diameter of 10 mm, and changes in the amount of transmitted light were measured. (Results) The obtained results are shown in Figure 9. The explanation of each symbol in FIG. 9 is as shown in Table 2.

【表】【table】

【表】 第9図の結果から、R(t)と反応時間(分)と
の関係を示すグラフは、エンドトキシンゲル化試
薬のロツトにより異なること、LAL−Aのエ
ンドトキシンゲル化試薬を用いた測定に於いて
は、Rthは97〜85%の範囲内でしか設定できない
が、LAL−BやLAL−Cのエンドトキシンゲル
化試薬を用いた場合には、約97%〜75%の範囲内
の何れにRthを設定した場合でもエンドトキシン
の測定を行うことができること、等が判る。
[Table] From the results in Figure 9, it is clear that the graph showing the relationship between R(t) and reaction time (minutes) differs depending on the lot of endotoxin gelling reagent, and that the measurement using LAL-A's endotoxin gelling reagent In this case, Rth can only be set within the range of 97% to 85%, but when using LAL-B or LAL-C endotoxin gelling reagents, Rth can be set within the range of approximately 97% to 75%. It can be seen that endotoxin can be measured even when Rth is set to .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料液透過光量を測定するための光学
的系原理図、第2図は試料液透過光量I(t)の経時
変化特性図、第3図は試料液透過光量I(t)と、反
応の進行により減少を開始する以前の透過光量の
初期値I0との比率R(t)の経時変化持性図、第4図
はエンドトキシン濃度とR(t)の時間変化特性図、
第5図は本発明によるゲル化判定結果と従来法
(目視ゲル化転倒法)による判定結果との相関図、
第6図、第7図及び第8図は夫々、実施例1、実
施例3及び実施例4に於けるエンドトキシン濃度
とゲル化時間との検量関係図である。第9図は、
実験例1で得られた、各種ロツトのエンドトキシ
ンゲル化試薬にエンドトキシンを反応させた場合
のR(t)と反応時間との関係を示すグラフである。 1……測定用キユベツト、2……試料液、3,
4……絞り、5……光源、6……光電検出器。
Fig. 1 is a diagram of the principle of the optical system for measuring the amount of light transmitted through the sample liquid, Fig. 2 is a diagram showing the temporal change characteristics of the amount of light transmitted through the sample liquid I(t), and Fig. 3 is a diagram showing the amount of light transmitted through the sample liquid I(t). , Figure 4 is a diagram showing the temporal change characteristics of the ratio R(t) between the initial value I 0 of the amount of transmitted light before it starts to decrease due to the progress of the reaction, and Figure 4 is a diagram showing the temporal change characteristics of the endotoxin concentration and R(t).
FIG. 5 is a correlation diagram between the gelation determination results according to the present invention and the determination results according to the conventional method (visual gelation overturning method);
FIG. 6, FIG. 7, and FIG. 8 are calibration relationship diagrams between endotoxin concentration and gelation time in Example 1, Example 3, and Example 4, respectively. Figure 9 shows
2 is a graph showing the relationship between R(t) and reaction time when endotoxin is reacted with various lots of endotoxin gelling reagents obtained in Experimental Example 1. 1... measurement cuvette, 2... sample solution, 3,
4...Aperture, 5...Light source, 6...Photoelectric detector.

Claims (1)

【特許請求の範囲】 1 エンドトキシンゲル化試薬と被検液とを混合
した試料液を保持するキユベツトに光線を照射
し、時間tに於ける試料液からの透過光量I(t)と
反応の進行により減少を開始する以前の該試料液
からの透過光量の初期値I0との比率を求め、該比
率が、I(t)/I0でみたとき75%以上97%以下の範
囲にある任意に設定された一定値に到達した時点
を前記試料液のゲル化時点と判定し、前記試料液
の混合時点から該ゲル化判定時点までを前記試料
液のゲル化時間として求め、該ゲル化時間をエン
ドトキシン濃度測定の際の指標として使用するこ
とを特徴とするエンドトキシンの測定方法。 2 該ゲル化時間を、予め求めたエンドトキシン
濃度と該ゲル化時間との関係を示す検量線に当て
はめることにより被検液中のエンドトキシン濃度
を求める特許請求の範囲第1項に記載のエンドト
キシンの測定方法。 3 透過光量の初期値I0が、透過光量I(t)の最大
値である特許請求の範囲第1項又は第2項に記載
のエンドトキシンの測定方法。 4 透過光量の初期値I0が、初期段階一定時間内
での透過光量I(t)の平均値である特許請求の範囲
第1項又は第2項に記載のエンドトキシンの測定
方法。 5 透過光量の初期値I0が、初期段階一定時間内
での任意の特定の時点tsでの透過光量I(ts)であ
る特許請求の範囲第1項又は第2項に記載のエン
ドトキシンの測定方法。 6 透過光量の初期値I0が、初期段階一定時間内
での透過光量I(t)の最小値である特許請求の範囲
第1項又は第2項に記載のエンドトキシンの測定
方法。 7 試料液を保持するキユベツトが内径6mmから
内径12mmの範囲にある円筒試験管である特許請求
の範囲第1項〜第6項のいずれかに記載のエンド
トキシンの測定方法。 8 試料液が、エンドトキシンゲル化試薬0.1ml
と被検液0.1ml、あるいはエンドトキシンゲル化
試薬の凍結乾燥品と被検液0.2mlからなる特許請
求の範囲第1項〜第7項のいずれかに記載のエン
ドトキシンの測定方法。
[Claims] 1. A cube holding a sample solution containing a mixture of an endotoxin gelling reagent and a test solution is irradiated with a light beam, and the amount of transmitted light I(t) from the sample solution at time t and the progress of the reaction are determined. Find the ratio of the amount of transmitted light from the sample liquid to the initial value I0 before it starts to decrease, and select an arbitrary value in which the ratio is in the range of 75% or more and 97% or less when viewed as I(t)/ I0 . The time when a certain value set in is reached is determined as the gelation time of the sample liquid, and the time from the mixing time of the sample liquid to the gelation determination time is determined as the gelation time of the sample liquid, and the gelation time is determined as the gelation time of the sample liquid. 1. A method for measuring endotoxin, characterized in that it is used as an index when measuring endotoxin concentration. 2. Measurement of endotoxin according to claim 1, in which the endotoxin concentration in the test liquid is determined by applying the gelation time to a calibration curve showing the relationship between the endotoxin concentration determined in advance and the gelation time. Method. 3. The method for measuring endotoxin according to claim 1 or 2, wherein the initial value I 0 of the amount of transmitted light is the maximum value of the amount of transmitted light I(t). 4. The method for measuring endotoxin according to claim 1 or 2, wherein the initial value I 0 of the amount of transmitted light is an average value of the amount of transmitted light I(t) within a certain period of time in the initial stage. 5. The endotoxin according to claim 1 or 2, wherein the initial value I 0 of the amount of transmitted light is the amount of transmitted light I (t s ) at any specific time t s within a certain period of time in the initial stage How to measure. 6. The method for measuring endotoxin according to claim 1 or 2, wherein the initial value I 0 of the amount of transmitted light is the minimum value of the amount of transmitted light I(t) within a certain period of time in the initial stage. 7. The method for measuring endotoxin according to any one of claims 1 to 6, wherein the cuvette for holding the sample liquid is a cylindrical test tube with an inner diameter in the range of 6 mm to 12 mm. 8 The sample solution is 0.1ml of endotoxin gelation reagent.
8. The method for measuring endotoxin according to any one of claims 1 to 7, comprising 0.1 ml of the test solution and a lyophilized endotoxin gelling reagent and 0.2 ml of the test solution.
JP28161684A 1984-06-27 1984-12-28 Measuring method of endotoxin Granted JPS61159162A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP28161684A JPS61159162A (en) 1984-12-28 1984-12-28 Measuring method of endotoxin
DE8585107877T DE3586075D1 (en) 1984-06-27 1985-06-25 METHOD FOR DETERMINING ENDOTOXIN.
AT85107877T ATE76507T1 (en) 1984-06-27 1985-06-25 PROCEDURE FOR DETERMINING ENDOTOXIN.
DE89114580T DE3587510T2 (en) 1984-06-27 1985-06-25 Device for measuring endotoxin.
AT89114580T ATE92630T1 (en) 1984-06-27 1985-06-25 DEVICE FOR MEASURING ENDOTOXIN.
EP85107877A EP0173021B1 (en) 1984-06-27 1985-06-25 Process for measuring endotoxin
EP89114580A EP0347951B1 (en) 1984-06-27 1985-06-25 Apparatus for measuring endotoxin
US06/748,805 US4740460A (en) 1984-06-27 1985-06-26 Process for measuring endotoxin and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28161684A JPS61159162A (en) 1984-12-28 1984-12-28 Measuring method of endotoxin

Publications (2)

Publication Number Publication Date
JPS61159162A JPS61159162A (en) 1986-07-18
JPH0531744B2 true JPH0531744B2 (en) 1993-05-13

Family

ID=17641611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28161684A Granted JPS61159162A (en) 1984-06-27 1984-12-28 Measuring method of endotoxin

Country Status (1)

Country Link
JP (1) JPS61159162A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936682A (en) * 1987-08-11 1990-06-26 Associates Of Cape Cod, Inc. Instrument for independently and kinetically measuring light transpassion through a plurality of samples
WO1995014932A1 (en) * 1993-11-22 1995-06-01 Seikagaku Corporation Method of assaying limulus reagent-reactive substance
US20100129260A1 (en) * 2007-05-01 2010-05-27 Yoshiaki Shirasawa Gelation measuring apparatus and sample cell
JP4551980B2 (en) 2008-03-19 2010-09-29 徹 小幡 Gel particle measuring device
JP5312834B2 (en) * 2008-03-31 2013-10-09 シスメックス株式会社 Blood coagulation analyzer, blood coagulation analysis method, and computer program
EP3432002B1 (en) 2008-03-31 2023-11-08 Sysmex Corporation Blood coagulation analyzer and blood coagulation analysis method
JP5421622B2 (en) * 2009-03-13 2014-02-19 興和株式会社 Measuring method and measuring apparatus for biologically active substances derived from living organisms
US8507282B2 (en) 2009-03-13 2013-08-13 Kowa Company, Ltd. Method for measuring physiologically active substance of biological origin, program for implementing the same, and apparatus for measuring physiologically active substance of biological origin
JP5489680B2 (en) * 2009-12-02 2014-05-14 興和株式会社 Biologically-derived physiologically active substance measuring method, program for executing the same, and biologically-derived physiologically active substance measuring apparatus

Also Published As

Publication number Publication date
JPS61159162A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
EP0173021B1 (en) Process for measuring endotoxin
JPH0531744B2 (en)
JPWO2008139544A1 (en) Gelation measuring device and sample cell
JP2001249134A5 (en) Protein concentration measurement method
AU2001247614B2 (en) Lithium ion-selective electrode for clinical applications
CA2755276A1 (en) Method for measuring physiologically active substance of biological origin, program for implementing the same, and apparatus for measuring physiologically active substance of biological origin
US3531254A (en) Test article and method for the detection of urea
AU2001247614A1 (en) Lithium ion-selective electrode for clinical applications
EP0041089B1 (en) Improved chromogenic method of detecting endotoxins in blood
JP2004212120A (en) Measuring instrument having measured value estimating function and measuring method using the same
WO2010092950A1 (en) Method for assaying physiological substance of biological origin and assay device therefor
JPS6193958A (en) Quantitative determination of endotoxin
EP0845673A2 (en) Method of measuring concentration of specific constituent and apparatus for the same
JP3061418B2 (en) Measurement method for Limulus reagent reactive substance
Kohn et al. An immunological method for the detection and estimation of fetal haemoglobin.
Tada et al. A new method for screening for hyperammonemia
US4992382A (en) Porous polymer film calcium ion chemical sensor and method of using the same
JPH07113643B2 (en) New method for measuring endotoxin
CN1715925A (en) A kind ofly carry out method of checking bacterial endotoxin by measuring turbidity value
Yoshikazu et al. A simple and rapid microdiffusion method for blood ammonia using a reflectance meter and a reagent plate, and its clinical evaluation for liver diseases
SU1259163A1 (en) Method of determining content of methoxy groups in pectin substances
EP0731353A1 (en) Method of assaying limulus reagent-reactive substance
Pap et al. The H+‐induced dissociation of human plasma α2‐macroglobulin: An investigation using small‐angle neutron scattering and test of trypsin binding activity
CA1060323A (en) Limulus lysate turbidity test for pyrogens
CN115308141A (en) Quality detection method of Adenosine Deaminase (ADA) detection kit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term