JPH0531736B2 - - Google Patents

Info

Publication number
JPH0531736B2
JPH0531736B2 JP22717984A JP22717984A JPH0531736B2 JP H0531736 B2 JPH0531736 B2 JP H0531736B2 JP 22717984 A JP22717984 A JP 22717984A JP 22717984 A JP22717984 A JP 22717984A JP H0531736 B2 JPH0531736 B2 JP H0531736B2
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
light
zero
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22717984A
Other languages
Japanese (ja)
Other versions
JPS61105440A (en
Inventor
Yoshiaki Yamabayashi
Norihisa Oota
Junichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22717984A priority Critical patent/JPS61105440A/en
Publication of JPS61105440A publication Critical patent/JPS61105440A/en
Publication of JPH0531736B2 publication Critical patent/JPH0531736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光フアイバの基本特性の一つである
波長分散の測定方法に関する。特に、光フアイバ
のフアイバパラメータのバラツキに起因して、理
論値からずれている光フアイバの零分散波長を決
定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring chromatic dispersion, which is one of the basic characteristics of optical fibers. In particular, the present invention relates to a method for determining the zero-dispersion wavelength of an optical fiber that deviates from its theoretical value due to variations in fiber parameters of the optical fiber.

〔従来の技術〕[Conventional technology]

光フアイバ中を光信号が伝搬する速度は光信号
の波長によつて異なる。したがつて、波長広がり
がある光源から送出された光パルス信号のパルス
幅は、光フアイバを伝搬した後に広がるために、
帯域幅を狭めなければならず光信号の伝送速度が
制限される。このために、光フアイバの遅延時間
の波長依存性、すなわち光の波長に依存して群速
度が異なることにより生ずる波長分散を評価する
ことは、光通信装置を設計する上で重要である。
The speed at which an optical signal propagates through an optical fiber varies depending on the wavelength of the optical signal. Therefore, since the pulse width of an optical pulse signal sent out from a light source with a wavelength spread spreads after propagating through an optical fiber,
The bandwidth must be narrowed, which limits the transmission speed of optical signals. For this reason, it is important to evaluate the wavelength dependence of the delay time of an optical fiber, that is, the chromatic dispersion caused by the fact that the group velocity differs depending on the wavelength of light, when designing an optical communication device.

光フアイバの波長分散による帯域制限は、光源
波長と光フアイバの零分散波長とが一致したとき
にその影響が最小になる。この零分散波長は、フ
アイバパラメータ(コア径、コア材料およびクラ
ツド材料の物質定数、コア・ドーパント濃度、屈
折率分布形状)によつて理論的に求めることがで
きるが、実際に製造される光フアイバは、フアイ
バパラメータのバラツキによりこの理論値に必ず
しも一致しない。したがつて、光通信装置の設計
する上で実測により零分散波長を決定しておく必
要が生じる。
Bandwidth limitation due to chromatic dispersion of an optical fiber has the least effect when the light source wavelength and the zero dispersion wavelength of the optical fiber match. This zero-dispersion wavelength can be theoretically determined from the fiber parameters (core diameter, material constants of the core material and cladding material, core dopant concentration, and refractive index distribution shape), but it is does not necessarily match this theoretical value due to variations in fiber parameters. Therefore, when designing an optical communication device, it is necessary to determine the zero-dispersion wavelength through actual measurements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来はこのような光フアイバの零分
散波長を直接にしかも正確に測定する方法がなか
つた。
However, in the past, there was no method for directly and accurately measuring the zero dispersion wavelength of such an optical fiber.

すなわち、零分散波長の近傍の波長分散値を
種々の波長分散測定方法により求め、波長を横軸
としてこの測定値をプロツトした後に、内挿ある
いは外挿により零分散波長を決定する方法を用い
ていた。しかし、光フアイバの波長分散測定は、
分散値が小さい程その誤差の影響が大きくなるた
めに、零分散波長を直接的に決定することができ
る方法の開発が切望されていた。
In other words, the chromatic dispersion value in the vicinity of the zero-dispersion wavelength is determined using various chromatic dispersion measurement methods, the measured values are plotted with the wavelength as the horizontal axis, and then the zero-dispersion wavelength is determined by interpolation or extrapolation. Ta. However, chromatic dispersion measurement of optical fiber is
Since the smaller the dispersion value, the greater the influence of the error, there has been a strong desire to develop a method that can directly determine the zero-dispersion wavelength.

本発明は、このような要求に対してなされたも
ので、光フアイバの製造で生じるフアイバパラメ
ータのバラツキに起因して、理論値からずれてい
る光フアイバの零分散波長を実測により容易に求
めることができる、光フアイバの零分散波長測定
方法および装置を提供することを目的とする。
The present invention has been made in response to these demands, and it is a method to easily determine by actual measurement the zero dispersion wavelength of an optical fiber, which deviates from the theoretical value due to variations in fiber parameters that occur during the manufacturing of the optical fiber. An object of the present invention is to provide a method and apparatus for measuring zero dispersion wavelength of an optical fiber.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の零分散波長測定方法は、波長分散値が
零となる波長λ0の大略の値が理論的に計算される
被測定光フアイバの零分散波長を測定する方法に
おいて、その被測定光フアイバの一端から、強度
変調が施された入射光を入射させ、上記被測定光
フアイバの他端から出射する出射光を電気信号に
変換し、上記入射光または上記出射光に中心波長
λが上記波長λ0に近い波長変調を施し、上記電気
信号の位相変調成分の一次スペクトルが極小にな
るように上記中心波長を変化させ、上記スペク
トルが消失した時点の波長を上記被測定光フアイ
バの零分散波長とする。
The zero-dispersion wavelength measurement method of the present invention is a method for measuring the zero-dispersion wavelength of an optical fiber to be measured in which the approximate value of the wavelength λ 0 at which the chromatic dispersion value becomes zero is calculated theoretically. Input intensity-modulated incident light is input from one end, and the output light emitted from the other end of the optical fiber to be measured is converted into an electrical signal, and the center wavelength λ of the input light or the output light is set to the above wavelength. Apply wavelength modulation close to λ 0 , change the center wavelength so that the primary spectrum of the phase modulation component of the electrical signal becomes minimum, and set the wavelength at the time when the spectrum disappears as the zero-dispersion wavelength of the optical fiber under test. shall be.

本発明の零分散波長測定装置は、広い波長帯で
発光する光源と、発振器および電源と、この発振
器および電源の出力を入力とし、上記光源の出力
光に強度変調を施すための変調信号を発生し、上
記光源を駆動する強度変調回路と、上記光源の出
力光を被測定光フアイバに入射させる手段と、光
電気変換器と、上記被測定光フアイバの出射光を
上記光電気変換器に導く手段と、上記光源から上
記光電気変換器までの間に挿入され、上記出力光
に波長変調を施す波長変調器と、上記光電気変換
器から出力される電気信号を増幅する増幅器と、
この増幅器の出力を入力とする同期検波器と、こ
の同期検波器に上記発振器の出力を伝達する手段
と、上記同期検波器の出力のスペクトル観測を行
うスペクトラムアナライザとを備え、上記波長変
調器は変調波長が可変であり、この可変範囲は、
上記スペクトラムアナライザで観測される位相変
調成分の一次スペクトルが極小になるようにその
中心波長を設定できる範囲であることを特徴とす
る。
The zero-dispersion wavelength measuring device of the present invention receives a light source that emits light in a wide wavelength band, an oscillator, a power source, and the outputs of the oscillator and power source, and generates a modulation signal for intensity modulating the output light of the light source. and an intensity modulation circuit for driving the light source, means for making the output light of the light source enter the optical fiber to be measured, a photoelectric converter, and guiding the output light from the optical fiber to be measured to the photoelectric converter. a wavelength modulator inserted between the light source and the opto-electric converter to perform wavelength modulation on the output light; and an amplifier to amplify the electrical signal output from the opto-electric converter;
The wavelength modulator includes a synchronous detector that receives the output of the amplifier as an input, a means for transmitting the output of the oscillator to the synchronous detector, and a spectrum analyzer that observes the spectrum of the output of the synchronous detector. The modulation wavelength is variable, and this variable range is
It is characterized in that the center wavelength can be set within a range such that the primary spectrum of the phase modulation component observed by the spectrum analyzer becomes minimum.

〔作 用〕[Effect]

本発明は、被測定光フアイバの一端から、強度
変調および波長変調された光信号を入射させ、こ
の伝搬光を強度変調角周波数ωcで同期検波する。
この検波出力をスペクトラムアナライザに入力し
て、この波長変調角周波数ωnのスペクトル成分
に着目し、中心波長を掃引してゆくと、中心波
長が零分散波長λeに一致したときに波長変調角
周波数ωnのスペクトルが消失する。これにより、
零分散波長λeを決定することができる。
In the present invention, an intensity-modulated and wavelength-modulated optical signal is input from one end of an optical fiber to be measured, and this propagating light is synchronously detected at an intensity modulation angular frequency ω c .
Inputting this detection output into a spectrum analyzer, focusing on the spectrum component of this wavelength modulation angular frequency ω n , and sweeping the center wavelength, when the center wavelength matches the zero dispersion wavelength λ e , the wavelength modulation angle The spectrum of frequency ω n disappears. This results in
The zero dispersion wavelength λ e can be determined.

波長変調器は被測定光フアイバの出射端側に設
置しても、本発明を実施することができる。
The present invention can be practiced even if the wavelength modulator is installed on the output end side of the optical fiber to be measured.

〔実施例〕〔Example〕

光フアイバの波長分散値は、フアイバパラメー
タより計算することができ、この計算値が零に等
しくなる光波長を「理論的零分散波長」という。
The wavelength dispersion value of an optical fiber can be calculated from the fiber parameters, and the optical wavelength at which this calculated value is equal to zero is called the "theoretical zero dispersion wavelength."

通常の石英系単一モード光フアイバでは、クラ
ツドが純粋石英(125μmφ)、コアがゲルマニウ
ムドープ(10μmφ)、コア−クラツドの比屈折率
差が約0.3%の場合には、零分散波長は1.3μmの近
傍にある。コア屈折率分布形状が、理想的なステ
ツプ形状から若干ずれていることなどに起因する
零分散波長のバラツキはあまり大きくなく、1.30
〜1.32μmの波長領域の中にほぼ収まるとみてよ
い。光源としては、この波長領域をカバーする程
度の広波長帯域特性のものが必要である。
In a normal silica-based single mode optical fiber, if the cladding is pure quartz (125 μmφ), the core is germanium doped (10 μmφ), and the relative refractive index difference between the core and the cladding is approximately 0.3%, the zero dispersion wavelength is 1.3 μm. It is in the vicinity of The variation in the zero dispersion wavelength due to the fact that the core refractive index distribution shape slightly deviates from the ideal step shape is not very large, and is 1.30.
It can be assumed that the wavelength range is approximately 1.32 μm. The light source needs to have wide wavelength band characteristics that cover this wavelength range.

本発明は、被測定光フアイバの一端から、変調
角周波数ωcの強度変調、および変調角周波数ωn
中心波長、波長振幅Δλの波長変調の二重同時
変調を受けた光を入射させる。このような変調を
受けた光が、この被測定光フアイバを伝搬し、他
端から出射した後に光電気変換器で光強度に比例
した電気信号に変換される。この電気信号は、適
当なレベルまで増幅されたのちに、強度変調角周
波数ωcで同期検波する。この検波出力をスペク
トラムアナライザに入力すると、波長変調角周波
数ωnの成分、およびその2倍の高周波成分が観
測される。そこで、この波長変調角周波数ωn
スペクトル成分に着目し、中心波長を掃引して
ゆくと、中心波長が零分散波長λeに一致したと
きに波長変調角周波数ωnのスペクトルが消失す
る。これにより、零分散波長λeを決定することが
できる。
The present invention provides intensity modulation of modulation angular frequency ω c and modulation angular frequency ω n ,
Light that has undergone double simultaneous modulation of wavelength modulation with a center wavelength and a wavelength amplitude Δλ is made incident. The light that has undergone such modulation propagates through this optical fiber to be measured, and after exiting from the other end, is converted into an electrical signal proportional to the light intensity by a photoelectric converter. After this electrical signal is amplified to an appropriate level, it is synchronously detected at the intensity modulation angular frequency ω c . When this detection output is input to a spectrum analyzer, a component of wavelength modulation angular frequency ω n and a high frequency component twice that frequency are observed. Therefore, if we focus on the spectrum component of this wavelength modulation angular frequency ω n and sweep the center wavelength, the spectrum of the wavelength modulation angular frequency ω n disappears when the center wavelength matches the zero dispersion wavelength λ e . Thereby, the zero dispersion wavelength λ e can be determined.

以下、本発明の実施例方式を図面に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明測定装置の一実施例を示すブ
ロツク構成図である。第1図において、光源1は
発振器2および電流源3を接続する強度変調回路
4に接続される。この光源1の出力光は波長変調
器5に入射され、その出力光はレンズ6を介して
被測定光フアイバ7に入射する。被測定光フアイ
バ7からの出射光は、レンズ8を介して光電気変
換器9に入射され、その出力は増幅器10を介し
て発振器2の出力を入力している同期検波器11
に入力し、さらにその出力はスペクトラムアナラ
イザ12に入力する。
FIG. 1 is a block diagram showing an embodiment of the measuring device of the present invention. In FIG. 1, a light source 1 is connected to an intensity modulation circuit 4 which connects an oscillator 2 and a current source 3. In FIG. The output light from this light source 1 is incident on a wavelength modulator 5, and the output light is incident on an optical fiber 7 to be measured via a lens 6. The light emitted from the optical fiber 7 to be measured is input to a photoelectric converter 9 via a lens 8, and its output is input to a synchronous detector 11 which receives the output of an oscillator 2 via an amplifier 10.
and its output is further input to the spectrum analyzer 12.

光源1は広い波長帯で発光する発光ダイオード
が適当である。光源1は、発振器2からの正弦波
信号と電流源3からのバイアス電流とを重畳する
強度変調回路4により駆動される。強度変調され
た光源1の出力光は、波長変調器5に入射し波長
変調を受ける。波長変調器5は、通常の分光器に
光偏向器を備えたもので実現できる。波長変調器
5からの出力光は、被測定光フアイバ7を伝搬し
て光電気変換器9で光信号に比例した電気信号に
変換される。この電気信号は、適当な利得をもつ
増幅器10で増幅されたのち、発振器2の出力に
同期する同期検波器11に入力して強度変調成分
を落とし、スペクトラムアナライザ12でスペク
トル観測を行う。中心波長が零分散波長λeに一
致したときに波長変調角周波数ωnの成分は消失
するので、これを用いて零分散波長λeが決定され
る。
The light source 1 is suitably a light emitting diode that emits light in a wide wavelength band. The light source 1 is driven by an intensity modulation circuit 4 that superimposes a sine wave signal from an oscillator 2 and a bias current from a current source 3. The intensity-modulated output light from the light source 1 enters the wavelength modulator 5 and undergoes wavelength modulation. The wavelength modulator 5 can be realized by a normal spectrometer equipped with an optical deflector. The output light from the wavelength modulator 5 propagates through the optical fiber 7 to be measured and is converted by the opto-electrical converter 9 into an electrical signal proportional to the optical signal. After this electrical signal is amplified by an amplifier 10 with an appropriate gain, it is input to a synchronous detector 11 synchronized with the output of the oscillator 2 to remove the intensity modulation component, and a spectrum analyzer 12 performs spectrum observation. Since the component of the wavelength modulation angular frequency ω n disappears when the center wavelength matches the zero dispersion wavelength λ e , the zero dispersion wavelength λ e is determined using this component.

発振器2と同期検波器11とを接続する手段
は、被測定光フアイバ7が布設前で巻かれた状態
にあるときには問題はないが、布設された後では
被測定光フアイバ7の入射端と出射端とが離れて
いるために伝送路を必要とする。しかし、発振器
2の発振周波数は、音響周波数程度の低い周波数
を用いているので、この伝送路は通常の電話回線
あるいは被測定光フアイバに実装されたケーブル
の介在対を利用することがよい。
There is no problem with the means for connecting the oscillator 2 and the synchronous detector 11 when the optical fiber 7 to be measured is in a wound state before installation, but after installation, the input end and the output end of the optical fiber 7 to be measured are connected. Since the ends are far apart, a transmission path is required. However, since the oscillation frequency of the oscillator 2 uses a frequency as low as the acoustic frequency, it is preferable to use a normal telephone line or an intervening pair of cables mounted on the optical fiber to be measured as the transmission line.

第2図は、波長変調器5の構成例を示す概略図
である。本決定方法は、スペクトルの消失波長を
探すことによる零位法測定なので、波長振幅Δλ
が測定精度に影響することはないが、あまり小さ
いとスペクトル観測が困難になるので、大まかな
値は知つておく必要がある。
FIG. 2 is a schematic diagram showing an example of the configuration of the wavelength modulator 5. As shown in FIG. This determination method is a null method measurement by searching for the vanishing wavelength of the spectrum, so the wavelength amplitude Δλ
does not affect measurement accuracy, but if it is too small, it will be difficult to observe the spectrum, so it is necessary to know the approximate value.

第2図において、回折格子21により回折した
光が、光偏向素子22により正弦波的に出射スリ
ツト23(幅2W)を走査するように構成する。
このとき、光偏向素子22と出射スリツト23と
の間の距離をhとする。回折素子21の回折角変
化Δθに対応する波長変化Δλは、 dθ/dλ=1/cosθ m/d ……(1) を満たす。ここで、θは回折角(出射光と回折格
子面上の法線とがなす角)、mは回折次数、dは
回折格子間隔である。
In FIG. 2, the configuration is such that light diffracted by a diffraction grating 21 scans an output slit 23 (width 2W) in a sinusoidal manner by an optical deflection element 22.
At this time, the distance between the optical deflection element 22 and the output slit 23 is assumed to be h. The wavelength change Δλ corresponding to the diffraction angle change Δθ of the diffraction element 21 satisfies dθ/dλ=1/cosθ m/d (1). Here, θ is the diffraction angle (the angle between the emitted light and the normal line on the diffraction grating surface), m is the diffraction order, and d is the diffraction grating interval.

仮に、m=1、d=1/600〔mm〕、2W=100
〔μm〕、h=50〔cm〕およびcosθ=1/6とする
と、出射スリツトから出射される光の波長変動振
幅Δλは10〔μm〕になる。実際の分光器では回折
格子21と出射スリツト23との間に結像系が挿
入されるが、本実施例では本質的な影響がないの
で省略している。
For example, m=1, d=1/600 [mm], 2W=100
[μm], h=50 [cm], and cosθ=1/6, the wavelength fluctuation amplitude Δλ of the light emitted from the output slit is 10 [μm]. In an actual spectrometer, an imaging system is inserted between the diffraction grating 21 and the exit slit 23, but it is omitted in this embodiment because it has no essential effect.

中心波長の掃引は、回折格子を回転させるこ
とにより行うことができる。回折格子系として通
常の分光器を用いると、この分光器の波長読み取
り目盛が中心波長を示すので、この中心波長
が零分散波長λeであり、測定は極めて容易にな
る。
Sweeping of the center wavelength can be performed by rotating the diffraction grating. When a normal spectrometer is used as the diffraction grating system, the wavelength reading scale of this spectrometer indicates the center wavelength, and this center wavelength is the zero dispersion wavelength λ e , making measurement extremely easy.

以下、測定原理について詳細に説明する。光フ
アイバの出射光は、光フアイバの伝搬による遅延
時間をτとして、 S0(λ、t)∝1+cos〔ωc(t+τ)〕 ……(2) τ(k)=1/C(∂β/∂k)k ……(3) となる。ただし、S0は光フアイバの波長分散、k
は波数、βは伝搬定数である。
The measurement principle will be explained in detail below. The light emitted from the optical fiber is expressed as S 0 (λ, t)∝1+cos[ω c (t+τ)] ……(2) τ(k)=1/C(∂β /∂k) k ……(3). However, S 0 is the wavelength dispersion of the optical fiber, k
is the wave number and β is the propagation constant.

零分散波長(λe=2π/k0)のまわりで遅延時
間τを展開すると、光フアイバ長Lとして、 τ(k) =L/C〔(∂β/∂k)k0+(k−k0)(∂2β/∂
k2k0 +(k−k02/2!(∂3β/∂k3k0+…〕……(4
) ∴τ(k) L/C〔τ0−(λe−λ)2/2(dS/dλ)〕……
(5) となる。ここで、(5)式の導出には波長分散S、す
なわち、 S=2π/Cλ(∂2β/∂k2k ……(6) は、波長λe(=2π/k0)において零であるとし、
(4)式における4次以降の高次項は無視した。
Expanding the delay time τ around the zero dispersion wavelength (λ e = 2π/k 0 ), we get τ(k) = L/C [(∂β/∂k) k0 + (k−k 0 ) (∂ 2 β/∂
k 2 ) k0 + (k−k 0 ) 2 /2! (∂ 3 β/∂k 3 ) k0 +…〕……(4
) ∴τ(k) L/C [τ 0 −(λ e −λ) 2 /2(dS/dλ)]...
(5) becomes. Here, to derive equation (5), the chromatic dispersion S, that is, S=2π/Cλ(∂ 2 β/∂k 2 ) k ……(6) is calculated as follows at the wavelength λ e (=2π/k 0 ). Assume that it is zero,
Higher-order terms after the fourth order in equation (4) were ignored.

本発明では、光電気変換器9に受光される光波
長を中心波長のまわりにΔλの振幅で正弦的に
変化させているので、(5)式におけるλは、 λ=+Δλcosωnt ……(7) と表され、(2)式においてdS/dλ=S′とおけば、 S0(λ,t)1 +cos〔ωct′+S′Δλ2ωcL/4cos2ωnt +S′Δλ(λe−λ)ωcL/2cosωnt〕 ……(8) となる。(8)式で表される信号を強度変調角周波数
ωcで同期検波すると、波長変調角周波数ωnのス
ペクトル成分とその二次高調波成分が得られる。
中心波長と零分散波長λeが一致したときωn
一次スペクトルが消失することが(8)式よりわか
る。
In the present invention, the wavelength of light received by the photoelectric converter 9 is changed sinusoidally around the center wavelength with an amplitude of Δλ, so λ in equation (5) is λ=+Δλcosω n t ...( 7), and if we set dS/dλ=S' in equation (2), then S 0 (λ, t)1 +cos[ω c t'+S'Δλ 2 ω c L/4cos2ω n t +S'Δλ( λe−λ)ω c L/2cosω n t] ...(8). When the signal expressed by equation (8) is synchronously detected at the intensity modulation angular frequency ω c , a spectral component of the wavelength modulation angular frequency ω n and its second harmonic component are obtained.
It can be seen from equation (8) that when the center wavelength and the zero dispersion wavelength λ e match, the primary spectrum of ω n disappears.

したがつて、波長変調器5は被測定光フアイバ
7の出射端側に設置しても、同様に本発明を実施
することができる。
Therefore, even if the wavelength modulator 5 is installed on the output end side of the optical fiber 7 to be measured, the present invention can be implemented in the same manner.

第3図は、この場合の実施例を示すブロツク構
成図である。ここでは、発振器2の出力を同期検
波器11に伝達する伝送路手段として、電話回線
を使用した場合を示し、発振器2の出力を電話回
線に送出する送信器13、および伝送されてきた
信号を受信し同期検波器11に接続する受信器1
4を表示している。
FIG. 3 is a block diagram showing an embodiment in this case. Here, a case is shown in which a telephone line is used as a transmission line means for transmitting the output of the oscillator 2 to the synchronous detector 11, and a transmitter 13 that transmits the output of the oscillator 2 to the telephone line, and a transmitter 13 that transmits the transmitted signal. Receiver 1 that receives and connects to synchronous detector 11
4 is displayed.

〔発明の効果〕〔Effect of the invention〕

本発明の零分散波長方法は、零位法により高精
度の測定を可能にし、しかも分光器の読取り波長
がそのまま零分散波長になるので、至極簡便な直
接測定方法である。
The zero-dispersion wavelength method of the present invention enables highly accurate measurement by the zero-position method, and since the reading wavelength of the spectrometer becomes the zero-dispersion wavelength as it is, it is an extremely simple direct measurement method.

したがつて、光フアイバの入力端と出力端が遠
く離れている測定環境、すなわち現場に布設され
た後の伝送路光フアイバであつても、容易にしか
も正確に零分散波長を決定することができ、光通
信システムを形成する上でもより効率的な運用が
可能になる優れた効果がある。
Therefore, it is possible to easily and accurately determine the zero dispersion wavelength even in a measurement environment where the input end and output end of the optical fiber are far apart, that is, even in a transmission line optical fiber that has been installed on site. This has the excellent effect of enabling more efficient operation in forming an optical communication system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明測定装置の一実施例を示すブロ
ツク構成図。第2図は波長変調器の構成例を示す
概略図。第3図は本発明測定装置の別の実施例を
示すブロツク構成図。 1…光源、2…発振器、3…電流源、4…強度
変調回路、5…波長変調器、6,8…レンズ、7
…被測定光フアイバ(単一モード光フアイバ)、
9…光電気変換器、10…増幅器、11…同期検
波器、12…スペクトラムアナライザ、13…送
信器、14…受信器、21…回折格子、22…光
偏向素子、23…出射スリツト。
FIG. 1 is a block diagram showing an embodiment of the measuring device of the present invention. FIG. 2 is a schematic diagram showing an example of the configuration of a wavelength modulator. FIG. 3 is a block diagram showing another embodiment of the measuring device of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 2... Oscillator, 3... Current source, 4... Intensity modulation circuit, 5... Wavelength modulator, 6, 8... Lens, 7
...Optical fiber to be measured (single mode optical fiber),
9... Photoelectric converter, 10... Amplifier, 11... Synchronous detector, 12... Spectrum analyzer, 13... Transmitter, 14... Receiver, 21... Diffraction grating, 22... Optical deflection element, 23... Output slit.

Claims (1)

【特許請求の範囲】 1 波長分散値が零となる波長λ0の大略の値が理
論的に計算される被測定光フアイバの零分散波長
を測定する方法において、 その被測定光フアイバの一端から、強度変調が
施された入射光を入射させ、 上記被測定光フアイバの他端から出射する出射
光を電気信号に変換し、 上記入射光または上記出射光に中心波長が上
記波長λ0に近い波長変調を施し、 上記電気信号の位相変調成分の一次スペクトル
が極小になるように上記中心波長を変化させ、 上記スペクトルが消失した時点の波長を上記被
測定光フアイバの零分散波長とする 光フアイバの零分散波長測定方法。 2 中心波長の波長変調を被測定光フアイバの
入射光に与える 特許請求の範囲第1項に記載の光フアイバの零分
散波長測定方法。 3 中心波長の波長変調を被測定光フアイバの
出射光に与える 特許請求の範囲第1項に記載の光フアイバの零分
散波長測定方法。 4 広い波長帯で発光する光源と、 発振器および電源と、 この発振器および電源の出力を入力とし、上記
光源の出力光に強度変調を施すための変調信号を
発生し、上記光源を駆動する強度変調回路と、 上記光源の出力光を被測定光フアイバに入射さ
せる手段と、 光電気変換器と、 上記被測定光フアイバの出射光を上記光電気変
換器に導く手段と、 上記光源から上記光電気変換器までの間に挿入
され、上記出力光に波長変調を施す波長変調器
と、 上記光電気変換器から出力される電気信号を増
幅する増幅器と、 この増幅器の出力を入力とする同期検波器と、 この同期検波器に上記発振器の出力を伝達する
手段と、 上記同期検波器の出力のスペクトル観測を行う
スペクトラムアナライザと を備え、 上記波長変調器は変調波長が可変であり、この
可変範囲は、上記スペクトラムアナライザで観測
される位相変調成分の一次スペクトルが極小にな
るようにその中心波長を設定できる範囲である ことを特徴とする光フアイバの零分散波長測定装
置。
[Claims] 1. In a method for measuring the zero dispersion wavelength of an optical fiber to be measured, in which the approximate value of the wavelength λ 0 at which the chromatic dispersion value becomes zero is calculated theoretically, from one end of the optical fiber to be measured. , inputting intensity-modulated incident light, converting the outgoing light emitted from the other end of the optical fiber to be measured into an electrical signal, and making the incident light or the outgoing light have a center wavelength close to the wavelength λ 0 . An optical fiber that undergoes wavelength modulation, changes the center wavelength so that the primary spectrum of the phase modulation component of the electrical signal becomes minimum, and sets the wavelength at the time when the spectrum disappears as the zero-dispersion wavelength of the optical fiber to be measured. Zero dispersion wavelength measurement method. 2. The zero-dispersion wavelength measurement method for an optical fiber according to claim 1, wherein wavelength modulation of the center wavelength is applied to the incident light of the optical fiber to be measured. 3. The zero-dispersion wavelength measurement method for an optical fiber according to claim 1, wherein wavelength modulation of the center wavelength is applied to the output light of the optical fiber to be measured. 4. A light source that emits light in a wide wavelength band, an oscillator and a power source, and an intensity modulator that uses the outputs of the oscillator and power source as input, generates a modulation signal for intensity modulating the output light of the light source, and drives the light source. a circuit, means for introducing the output light of the light source into the optical fiber to be measured, a photoelectric converter, a means for guiding the output light of the optical fiber to be measured to the photoelectric converter, and A wavelength modulator that is inserted between the converter and performs wavelength modulation on the output light, an amplifier that amplifies the electrical signal output from the opto-electrical converter, and a synchronous detector that receives the output of this amplifier as input. a means for transmitting the output of the oscillator to the synchronous detector; and a spectrum analyzer for observing the spectrum of the output of the synchronous detector; the wavelength modulator has a variable modulation wavelength; A zero-dispersion wavelength measuring device for an optical fiber, characterized in that the center wavelength can be set within a range such that the primary spectrum of the phase modulation component observed by the spectrum analyzer becomes minimum.
JP22717984A 1984-10-29 1984-10-29 Method and instrument for zero dispersion wavelength of optical fiber Granted JPS61105440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22717984A JPS61105440A (en) 1984-10-29 1984-10-29 Method and instrument for zero dispersion wavelength of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22717984A JPS61105440A (en) 1984-10-29 1984-10-29 Method and instrument for zero dispersion wavelength of optical fiber

Publications (2)

Publication Number Publication Date
JPS61105440A JPS61105440A (en) 1986-05-23
JPH0531736B2 true JPH0531736B2 (en) 1993-05-13

Family

ID=16856723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22717984A Granted JPS61105440A (en) 1984-10-29 1984-10-29 Method and instrument for zero dispersion wavelength of optical fiber

Country Status (1)

Country Link
JP (1) JPS61105440A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614074B1 (en) * 1992-08-25 1998-05-13 Kabushiki Kaisha Toshiba Optical wavelength measuring instrument

Also Published As

Publication number Publication date
JPS61105440A (en) 1986-05-23

Similar Documents

Publication Publication Date Title
EP0147251B1 (en) Method and apparatus for measuring chromatic dispersion coefficient
US4260883A (en) Optical measurement system
US5268741A (en) Method and apparatus for calibrating a polarization independent optical coherence domain reflectometer
US6850318B1 (en) Polarization mode dispersion measuring device and polarization mode dispersion measuring method
JP2001511895A (en) Optical wavelength measurement device
JPH0674867A (en) Optical network analyzer
JP5487068B2 (en) Chromatic dispersion measuring apparatus and chromatic dispersion measuring method using the same
JP2002350236A (en) Light spectrum analysis system and light spectrum analysis method
JPH0354292B2 (en)
JPH0531736B2 (en)
JPH05248996A (en) Wavelength dispersion measuring device for optical fiber
CN212300381U (en) Fiber grating sensing demodulation device based on frequency shift interference fiber ring-down
US11243141B2 (en) Method and apparatus for chromatic dispersion measurement based on optoelectronic oscillations
CN109724633B (en) Demodulation system of low-reflectivity external cavity optical fiber F-P interference type sensor
JP2002509612A (en) Wavelength measurement system
CN212030564U (en) Light source frequency shift calibration auxiliary channel structure and optical fiber vibration measuring device
CN116972890B (en) Optical fiber sensor and modulation method thereof
JPH04177141A (en) Wave length dispersion measurement method of optical fiber
JP2000081374A (en) Method and device for measuring wavelength dispersion
JPH0672834B2 (en) Chromatic dispersion measurement device
US20220123835A1 (en) Fibre-optic measurement system, method of adaptation of the communication optical fibre into a measurement system, and fibre-optic measurement and communication system
JP3317654B2 (en) Chromatic dispersion measuring device for optical components using delay unit
KR100947731B1 (en) Apparatus for and method of measuring chromatic dispersion of optical fiber and otical waveguide using spectral interferometer
KR100335244B1 (en) An apparatus and a method for the measurement of phase fluctuation of optical fiber
CN117490980A (en) Ultra-wideband wavelength self-adaptive high-precision single-frequency laser linewidth testing system and method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term