JPH05317279A - Biomagnetism measuring instrument - Google Patents

Biomagnetism measuring instrument

Info

Publication number
JPH05317279A
JPH05317279A JP3164058A JP16405891A JPH05317279A JP H05317279 A JPH05317279 A JP H05317279A JP 3164058 A JP3164058 A JP 3164058A JP 16405891 A JP16405891 A JP 16405891A JP H05317279 A JPH05317279 A JP H05317279A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic field
magnetic
living body
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3164058A
Other languages
Japanese (ja)
Inventor
Katsuyuki Ara
克之 荒
Kaoru Sakasai
馨 坂佐井
Yukio Sumata
幸生 数又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP3164058A priority Critical patent/JPH05317279A/en
Publication of JPH05317279A publication Critical patent/JPH05317279A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a three-dimensional inverse problem to a two-dimensional inverse problem or one-dimensional inverse problem by enclosing the magnetic field sensor of the superconducting quantum interferometer with one piece or plural pieces of superconductors and selectively detecting and measuring only the magnetic fields generated from the currents existing within the arbitrary sectional part having a certain thickness in a living body. CONSTITUTION:The magnetic field sensor 3 of the superconducting quantum interferometer (SQUID) is enclosed with one piece or plural pieces of the superconducting plates 2, 2 and only the currents j existing within the arbitrary sectional part having a certain thickness or within the arbitrary columnar part having a certain sectional area or the magnetic fields (m) generated from a magnetic flux source in the living body 7 are selectively detected and measured. A region 8 to be detected and measured is nearly equalled to the section cut off by two sheets of the superconducting plates 2, 2 within a limited range by adequately selecting the spacing between two sheets of the superconducting plates 2 and 2 and the position and size of the magnetic sensor 3 of the SQUID at this time. As a result, the biomagnetic information effective for the medical and clinical observation and diagnosis of the local part of the lesion is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体磁気計測装置に関す
る。脳が活動すると、脳の神経組織の刺激に基づく電流
が脳の内部に流れる。したがって、脳の内部にどのよう
な電流が分布して流れているかを知ることができれば、
脳の活動状況を把握することができる。このことは、医
学臨床面からは、脳の機能的欠陥および場所の同定がで
きることとなり、その外科的治療に対して非常に有効な
情報となる。また、心臓の筋肉の運動に伴って、心臓筋
肉内の神経に電流が流れる。したがって、心臓内にどの
ような電流が分布して流れているかを知ることができれ
ば、心臓の活動状況を把握することができる。このこと
は、医学臨床面からは、心臓の機能的欠陥および場所の
同定ができることとなり、その外科的治療に極めて有効
な情報となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomagnetism measuring device. When the brain is activated, an electric current based on the stimulation of the nerve tissue of the brain flows inside the brain. Therefore, if we can know what kind of current is distributed and flowing inside the brain,
You can grasp the activity status of the brain. From a clinical point of view, this makes it possible to identify functional defects and locations of the brain, which is very useful information for the surgical treatment. In addition, with the movement of the heart muscle, an electric current flows through the nerve in the heart muscle. Therefore, if it is possible to know what kind of current is distributed and flowing in the heart, the activity status of the heart can be grasped. From the medical and clinical point of view, this makes it possible to identify the functional defect and location of the heart, which is extremely useful information for its surgical treatment.

【0002】一方、電流が流れれば、必ず磁界を発生す
る。したがって、人体の外側に漏れ出てくる磁界を測定
し、その情報から逆に人体の脳や心臓内に流れている電
流分布を知ろうとする、いわゆる生体磁気計測技術の研
究開発が世界各国で精力的に進められており、わが国に
おいても、通産省の一つの開発プロジェクトに取り上げ
られ研究開発が行われている。
On the other hand, when a current flows, a magnetic field is always generated. Therefore, the research and development of so-called biomagnetic measurement technology, which measures the magnetic field leaking outside the human body and tries to know the current distribution flowing in the brain and heart of the human body from the information on the contrary, is energetically pursued in many countries around the world. In Japan, research and development is being carried out in one of the development projects of the Ministry of International Trade and Industry.

【0003】[0003]

【従来の技術】従来、生体磁界の測定には、磁界センサ
として超電導量子干渉計(SQUID、以下「スキッ
ド」と称する)が用いられており、その多チャンネル化
が現在の開発課題である(図1参照)。また、チャンネ
ルスキッドの出力信号から、生体内部(脳、心臓など)
に流れている電流分布を求める計算方法の開発も重要な
課題となっている。この2つの課題が解決されれば、い
わゆるSQUID−CTを実現することができる。
2. Description of the Related Art Conventionally, a superconducting quantum interferometer (SQUID, hereinafter referred to as a "skid") has been used as a magnetic field sensor for measuring a biomagnetic field, and the current development task is to increase the number of channels (Fig. 1). Also, from the output signal of the channel skid, the inside of the living body (brain, heart, etc.)
The development of a calculation method for obtaining the distribution of current flowing in is also an important issue. If these two problems are solved, so-called SQUID-CT can be realized.

【0004】しかしながら、多チャンネルスキッドの出
力信号、すなわち、生体外部の磁界分布から逆に生体内
部(脳、心臓など)に流れている電流分布を求める計算
は、本質的に一意に解が定まらない逆問題の典型的な例
で、この問題の解決が最も困難な研究課題となってい
る。すなわち、従来の生体磁気測定においては、生体外
部の磁界測定結果から生体内に3次元に分布して流れて
いる電流を求めるという3次元逆問題が存在し、その解
決を求めることは非常に困難なもので、いまだに有効な
方法が開発されていない。
However, the calculation for obtaining the distribution of the output signal of the multi-channel skid, that is, the distribution of the electric current flowing inside the living body (brain, heart, etc.) from the distribution of the magnetic field outside the living body is not inherently uniquely determined. A typical example of the inverse problem, solving this problem is the most difficult research problem. That is, in the conventional biomagnetic measurement, there is a three-dimensional inverse problem in which the current flowing in a three-dimensional distribution in the living body is obtained from the measurement result of the magnetic field outside the living body, and it is very difficult to solve the problem. However, no effective method has been developed yet.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、この
ような3次元逆問題に対し、これを2次元逆問題、或い
は一次元逆問題に簡単化して、医学臨床において病巣局
部観察診断に有効な生体磁気情報を得ることのできる生
体磁気計測装置を提供することにある。
The object of the present invention is to simplify such a three-dimensional inverse problem into a two-dimensional inverse problem or a one-dimensional inverse problem, and to perform local observation and diagnosis of lesions in clinical medicine. An object of the present invention is to provide a biomagnetism measuring device capable of obtaining effective biomagnetic information.

【0006】[0006]

【課題を解決するための手段】本願発明者は、この目的
達成のため鋭意研究の結果、超電導平行平板、或いは超
電導円筒と磁気センサ(スキッド)によって、生体任意
断面、或いは生体任意方向に存在する磁束源(電流ダイ
ポール、磁気ダイポール)からの磁界を選択的に検出す
ることを想到し、この知見に基づいて、本発明を発明す
るに到った。
The inventor of the present invention, as a result of earnest research for achieving this object, has a superconducting parallel plate, or a superconducting cylinder and a magnetic sensor (skid), which exist in an arbitrary cross section or in an arbitrary direction of the living body. The present invention has been devised to selectively detect a magnetic field from a magnetic flux source (current dipole, magnetic dipole), and the present invention has been invented based on this finding.

【0007】本願発明の生体磁気計測装置においては、
スキッド磁界センサを一個又は複数個の超電導体で囲
み、生体内部のある厚さを有する任意の断面部内、或い
はある断面積を有する任意の柱部内に存在する電流から
発生する磁界のみを選択的に検出測定するもので、超電
導平行平板でスキッドを囲んだ装置(図2)及び横断面
が電気的に開いた超電導円筒でスキッドを囲んだ装置
(図3)がある。その他、超電導体としては、図4に示
すごとき形状のものも可能である。
In the biomagnetism measuring device of the present invention,
The skid magnetic field sensor is surrounded by one or more superconductors to selectively select only the magnetic field generated from the electric current existing in an arbitrary cross section having a certain thickness inside the living body or an arbitrary column having a certain cross sectional area. There is a device in which the skid is surrounded by a superconducting parallel plate (Fig. 2) and a device in which the skid is surrounded by a superconducting cylinder whose cross section is electrically open (Fig. 3). In addition, the superconductor may have a shape as shown in FIG.

【0008】さて、電流ダイポールSが、超電導板の前
方aのところにあるとき、位置yにおける磁界Bは、
Now, when the current dipole S is at the front a of the superconducting plate, the magnetic field B at the position y is

【数1】 ここに、Sは磁束源、S’はその鏡像である。S=−
S’なので、
[Equation 1] Here, S is a magnetic flux source and S'is a mirror image thereof. S =-
S ', so

【数2】 となる。右辺第2項が鏡像による成分で、これだけ磁界
が弱くなる。
[Equation 2] Becomes The second term on the right side is a component due to a mirror image, and the magnetic field becomes weaker by this amount.

【0009】超電導板前方では数式で示されるように、
磁束源Sとその鏡像S’による合成磁界を計測すること
ができる。しかし超電導板後方では磁界は0である。換
言すれば、超電導板後方では磁束源Sによるによる磁界
を計測することはできない。これは光源と無限の大きさ
の鏡の場合と一致する。すなわち、鏡の前方では光源と
その鏡像を見ることができるが、鏡の後方では見ること
ができない。
In front of the superconducting plate, as shown by the equation,
It is possible to measure the combined magnetic field of the magnetic flux source S and its mirror image S ′. However, the magnetic field is 0 behind the superconducting plate. In other words, the magnetic field generated by the magnetic flux source S cannot be measured behind the superconducting plate. This is consistent with the case of a light source and a mirror of infinite size. That is, the light source and its mirror image can be seen in front of the mirror, but not behind the mirror.

【0010】図5において、円内の磁束源及び超電導板
を含む限られた領域A、B、Cに分けることができる。
すなわち、Aは磁束源による磁界を直接計測できる領
域、Bは磁束源による磁界を鏡像の影響を受けつつ計測
できる領域、Cは磁束源による磁界を計測できない領域
である。したがって、空間に多くの磁束源が分布してい
る場合、超電導体を利用して限られた領域の磁束源のみ
を選択検出する計測体系を実現することができる。
In FIG. 5, it is possible to divide into a limited area A, B and C which includes a magnetic flux source and a superconducting plate within a circle.
That is, A is a region where the magnetic field of the magnetic flux source can be directly measured, B is a region where the magnetic field of the magnetic flux source can be measured while being influenced by the mirror image, and C is a region where the magnetic field of the magnetic flux source cannot be measured. Therefore, when many magnetic flux sources are distributed in the space, it is possible to realize a measurement system that selectively detects only the magnetic flux sources in a limited area by using the superconductor.

【0011】[0011]

【実施例】本発明を実施例について具体的に説明する。
ただし、本発明はこれらの実施例によって限定されるも
のではない。 実施例1 超電導平行平板/磁界センサによる生体中の磁束源の検
出 図5において、Sを磁気センサとすると、領域Aに存在
する磁束源は超電導板の影響をあまり受けずに磁気セン
サによって検知される。領域Bに存在する磁束源は超電
導板の影響を受けつつ検知される。領域Cに存在する磁
束源は検知されない。したがって、図6に示すように、
磁気センサを2枚の超電導平行平板で挟んだ磁気検出体
系を構成すると、この体系で検出できる磁束源空間は図
に示す狭い領域に限定される。
EXAMPLES The present invention will be specifically described with reference to Examples.
However, the present invention is not limited to these examples. Example 1 Detection of Magnetic Flux Source in Living Body by Superconducting Parallel Plate / Magnetic Field Sensor In FIG. 5, when S is a magnetic sensor, the magnetic flux source existing in the area A is detected by the magnetic sensor without being much influenced by the superconducting plate. It The magnetic flux source existing in the region B is detected while being influenced by the superconducting plate. The magnetic flux source existing in the area C is not detected. Therefore, as shown in FIG.
When a magnetic detection system is constructed by sandwiching a magnetic sensor between two superconducting parallel plates, the magnetic flux source space that can be detected by this system is limited to the narrow region shown in the figure.

【0012】一方、超電導平行平板の間に容易に浸入で
きる磁束は平板に平行に流入する磁束である。そこで、
磁束源が電流ダイポールの場合、磁束の流れが超電導平
行平板間に十分な強さで浸入できる電流ダイポールの方
向を求めると、図7(a)に示すように、検知可能領域
に存在する平板面に直角な電流ダイポールであることが
分かる。同様に、磁束源が磁気ダイポールの場合は、図
7(b)に示すように平板面に平行な磁気ダイポールで
あることが分かる。
On the other hand, the magnetic flux that can easily enter between the superconducting parallel flat plates is the magnetic flux flowing in parallel to the flat plates. Therefore,
When the magnetic flux source is a current dipole, the direction of the current dipole that allows the flow of magnetic flux to infiltrate between the superconducting parallel plates with sufficient strength is obtained. As shown in FIG. It can be seen that the current dipole is perpendicular to. Similarly, when the magnetic flux source is a magnetic dipole, it can be seen that the magnetic dipole is parallel to the flat plate surface as shown in FIG. 7B.

【0013】以上から、図8に示すような超電導平行平
板/磁界センサによる生体中の磁束源検出測定体系を構
成することができる。2枚の超電導平行平板の間隔及び
磁気センサ(スキッド)の位置と大きさを適当に選ぶこ
とにより、検出測定対象空間は限定された範囲内におい
て、2枚の超電導平行平板で切り取れる断面とほぼ等し
くすることができる。
From the above, it is possible to construct a magnetic flux source detection and measurement system in a living body by a superconducting parallel plate / magnetic field sensor as shown in FIG. By appropriately selecting the distance between the two superconducting parallel plates and the position and size of the magnetic sensor (skid), the space to be detected and measured is within a limited range and the cross section cut by the two superconducting parallel plates is almost the same. Can be equal.

【0014】実施例2 超電導円筒/磁界センサによる生体中の磁束源の検出 図9において、超電導円筒は断面が電気的に開ループと
なっており、超電導円筒の内部には円筒軸に平行な磁束
のみが浸入できる。また、超電導円筒/磁界センサによ
る検知可能な磁束源領域は、超電導平行平板/磁界セン
サの場合の厚さのある生体断面に対応して、超電導円筒
内面によって切り取られる面積のある生体軸(丸棒状)
となる。したがって、超電導円筒/磁界センサによって
感度好く検出できる磁束源は検知領域内に存在する円筒
軸に平行な磁気ダイポールのみとなる。
Example 2 Detection of Magnetic Flux Source in Living Body by Superconducting Cylinder / Magnetic Field Sensor In FIG. 9, the cross section of the superconducting cylinder is an electrically open loop, and the magnetic flux parallel to the cylinder axis is inside the superconducting cylinder. Only can penetrate. In addition, the magnetic flux source region that can be detected by the superconducting cylinder / magnetic field sensor corresponds to the thick cross section of the living body in the case of the superconducting parallel plate / magnetic field sensor, and has a body axis (round bar shape) with an area cut by the inner surface of the superconducting cylinder. )
Becomes Therefore, the only magnetic flux source that can be detected with good sensitivity by the superconducting cylinder / magnetic field sensor is the magnetic dipole parallel to the cylinder axis existing in the detection region.

【0015】[0015]

【発明の効果】本発明によって、3次元の問題を2次
元、或いは1次元の問題に簡単化でき、逆問題の取扱を
容易にすることができる。また、生体の局部からの磁気
信号のみを選択的に検出測定できるので、医学臨床にお
ける病巣局部の観察診断に有効である。
According to the present invention, a three-dimensional problem can be simplified into a two-dimensional or one-dimensional problem and an inverse problem can be easily handled. Further, since only the magnetic signal from the local part of the living body can be selectively detected and measured, it is effective for the observation and diagnosis of the local site of the lesion in the medical clinic.

【図面の簡単な説明】[Brief description of drawings]

【図1】生体磁界計測の1例を示す脳磁界計測(SQU
ID−CT)の概要説明図である。而して、要目は次の
とおりである。
FIG. 1 is a brain magnetic field measurement (SQUA) showing an example of biomagnetic field measurement.
It is a schematic explanatory drawing of (ID-CT). Then, the main points are as follows.

【表1】 [Table 1]

【図2】超電導平行平板/磁界センサによる生体磁界計
測の説明図である。
FIG. 2 is an explanatory diagram of biomagnetic field measurement by a superconducting parallel plate / magnetic field sensor.

【図3】超電導円筒/磁界センサによる生体磁界計測の
説明図である。
FIG. 3 is an explanatory diagram of biomagnetic field measurement by a superconducting cylinder / magnetic field sensor.

【図4】SQUIDを囲む超電導体の例である。(a)
は非平行な2枚の超電導平板、(b)は両側端部がめく
られた超電導平行平板、(c)は横断面が電気的に開い
た角状の超電導筒、(d)は横断面が電気的に開いた先
端方向に狭まる超電導円筒、(e)横断面が電気的に開
いた先端の一部が狭くなった超電導円筒、(f)は2枚
の平行平板において先端の一部が狭くなった超電導平板
である。
FIG. 4 is an example of a superconductor surrounding a SQUID. (A)
Is a non-parallel two superconducting flat plate, (b) is a superconducting parallel plate with both ends turned up, (c) is a rectangular superconducting tube whose cross section is electrically open, and (d) is a cross section. Superconducting cylinder narrowed in the direction of the electrically opened tip, (e) Superconducting cylinder whose cross section is electrically opened and part of the tip is narrowed, (f) Part of the tip is narrow in two parallel plates It is a superconducting flat plate.

【図5】有限の大きさの超電導板と磁束源によって分け
られた三つの空間領域を示す図である。
FIG. 5 is a diagram showing three spatial regions divided by a finite-sized superconducting plate and a magnetic flux source.

【図6】超電導平行平板/磁界センサ体系によって検知
可能な磁束源領域を示す図である。
FIG. 6 is a diagram showing a magnetic flux source region detectable by a superconducting parallel plate / magnetic field sensor system.

【図7】超電導平行平板/磁界センサ体系によって検出
測定される(a)電流ダイポールと(b)磁気ダイポー
ルの向きを示す図である。
FIG. 7 is a diagram showing directions of (a) current dipole and (b) magnetic dipole detected and measured by a superconducting parallel plate / magnetic field sensor system.

【符号の説明】[Explanation of symbols]

1 マルチチャンネルSQUID、 2 超電導板、 3 磁界センサ(SQUID)、 4 センサ冷却ヘッド、 5 真空、 6 液体ヘリウム、 7 生体、 8 測定対象領域、 9 測定非対象領域、 10 超電導円筒、 11 磁界センサ(SQUID)、 12 電気絶縁部、 13 生体、 14 磁気ダイポール、 15 測定対象領域、 16 測定非対象領域、 17 超電導板、 18 磁界センサ、 19 検知可能な磁束源領域、 20 超電導板、 21 磁界センサ、 22 電流ダイポール、 23 磁界ダイポール、 24 検知可能な磁束源領域。 1 multi-channel SQUID, 2 superconducting plate, 3 magnetic field sensor (SQUID), 4 sensor cooling head, 5 vacuum, 6 liquid helium, 7 living body, 8 measurement target area, 9 measurement non-target area, 10 superconducting cylinder, 11 magnetic field sensor ( SQUID), 12 electrical insulation part, 13 living body, 14 magnetic dipole, 15 measurement target region, 16 measurement non-target region, 17 superconducting plate, 18 magnetic field sensor, 19 detectable magnetic flux source region, 20 superconducting plate, 21 magnetic field sensor, 22 current dipole, 23 magnetic field dipole, 24 detectable flux source area.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月4日[Submission date] June 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】生体磁界計測の1例を示す脳磁界計測(SQU
ID−CT)の概要説明図である。
FIG. 1 is a brain magnetic field measurement (SQUA) showing an example of biomagnetic field measurement.
It is a schematic explanatory drawing of (ID-CT).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スキッド(SQUID、超電導量子干渉
計)磁界センサを一個又は複数個の超電導体で囲み、生
体内部のある厚さを有する任意の断面部内或いはある断
面積を有する任意の柱部内に存在する電流又は磁束源か
ら発生する磁界のみを選択的に検出測定することを特徴
とする生体磁気測定装置。
1. A skid (SQUID, superconducting quantum interferometer) magnetic field sensor is surrounded by one or a plurality of superconductors, and inside a living body inside an arbitrary cross-section having a certain thickness or within an arbitrary pillar having a certain cross-sectional area. A biomagnetism measuring device characterized by selectively detecting and measuring only a magnetic field generated from an existing current or magnetic flux source.
【請求項2】 請求項1の超電導体は平行平板から成る
ことを特徴とする請求項1の生体磁気測定装置。
2. The biomagnetism measuring device according to claim 1, wherein the superconductor according to claim 1 comprises a parallel plate.
【請求項3】 請求項1の超電導体は円筒から成り、か
つそのすべての横断面において、横断面を一周するとき
に電気的に閉ループとならないための電気絶縁部を有す
ることを特徴とする請求項1の生体磁気測定装置。
3. The superconductor according to claim 1, wherein the superconductor is made of a cylinder and has an electric insulating portion in all cross sections thereof so as not to be an electrically closed loop when the circuit crosses the cross section. Item 1. A biomagnetism measuring device according to item 1.
JP3164058A 1991-04-10 1991-04-10 Biomagnetism measuring instrument Pending JPH05317279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3164058A JPH05317279A (en) 1991-04-10 1991-04-10 Biomagnetism measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164058A JPH05317279A (en) 1991-04-10 1991-04-10 Biomagnetism measuring instrument

Publications (1)

Publication Number Publication Date
JPH05317279A true JPH05317279A (en) 1993-12-03

Family

ID=15785987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164058A Pending JPH05317279A (en) 1991-04-10 1991-04-10 Biomagnetism measuring instrument

Country Status (1)

Country Link
JP (1) JPH05317279A (en)

Similar Documents

Publication Publication Date Title
US6735460B2 (en) Biomagnetic field measuring method and apparatus
US6397095B1 (en) Magnetic resonance—electrical impedance tomography
JP5333832B2 (en) Magnetic measurement of position and orientation
JP2015504705A (en) Background signal removal in MPI
Chen et al. Combined planar magnetic induction tomography for local detection of intracranial hemorrhage
JPH02246926A (en) System for displaying estimated current source
KR20190005891A (en) Apparatus for measuring biomagnetic field
Roth Biomagnetism: the first sixty years
Voitovych et al. Application of SQUIDs for registration of biomagnetic signals
De Oliveira et al. Automatic system for locating magnetic foreign bodies using GMI magnetometer
JPH05317279A (en) Biomagnetism measuring instrument
US7805179B2 (en) Method of examining dynamic cardiac electromagnetic activity and detection of cardiac functions using results thereof
Koch et al. Magnetic field mapping of cardiac electrophysiological function
RU2646747C2 (en) Device for measuring the magnetic field of skeletal muscles when determining muscular activity
Beadle et al. Assessing heart disease using a novel magnetocardiography device
Rosen et al. A study of the vector magnetocardiographic waveform
Adachi et al. A SQUID biomagnetometer system for measurement of spinal cord evoked magnetic fields
EP0444151B1 (en) Magnetic susceptibility imaging (msi)
Zuo et al. Modelling and analysis of magnetic fields from skeletal muscle for valuable physiological measurements
JPH04303416A (en) Device for measuring magnetism of living body
Watson et al. Magnetic induction tomography
Smith et al. Errors in repolarization measurement using magnetocardiography
CN113662528B (en) Quantum detection therapeutic instrument and quantum resonance analysis method
Öisjöen High-Tc SQUIDs for biomedical applications: immunoassays, magnetoencephalography, and ultra-low field magnetic resonance imaging
JPH05154122A (en) Living body magnetic image device