JPH05316674A - Motor - Google Patents

Motor

Info

Publication number
JPH05316674A
JPH05316674A JP11734092A JP11734092A JPH05316674A JP H05316674 A JPH05316674 A JP H05316674A JP 11734092 A JP11734092 A JP 11734092A JP 11734092 A JP11734092 A JP 11734092A JP H05316674 A JPH05316674 A JP H05316674A
Authority
JP
Japan
Prior art keywords
hole
diameter
flow path
holes
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11734092A
Other languages
Japanese (ja)
Inventor
Masamichi Sakane
正道 坂根
Hideo Terasawa
英男 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11734092A priority Critical patent/JPH05316674A/en
Publication of JPH05316674A publication Critical patent/JPH05316674A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the pressure loss of cooling air so as to improve the cooling efficiency of the cooling air by forming the openings of flowing-in and flowing- out ports of the flow passage of the cooling air composed of a plurality of through holes from one end of a frame to a rotor core or from one end of the frame to the other end of the frame through the rotor core by gradually increasing the diameters of the ports from the diameters of the through holes. CONSTITUTION:Cooling air flowing into ports 20 formed at one ends of a plurality of holes 19 formed through a rotor core 11 in parallel with the shaft 10 of the rotor 11, have diameters larger than those of the holes 19 at their end sections and are connected to the holes 19 by gradually reducing the diameters toward the holes 19. The diameters at the ends of cooling air flowing-out ports provided on the other end sides of the holes 19 are larger than those of the holes 19 and gradually increased from the holes 19. When flow passages 22 provided with the flowing-in ports 20, the diameters of which are gradually decreased toward the holes 19, and flowing-out ports 21, the diameters of which are gradually increased from the holes 19, at both ends are provided, the cooling efficiency of the cooling air can be improved, since the pressure loss of the cooling air can be reduced remarkably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷却特性を向上する
ようにした電動機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor having improved cooling characteristics.

【0002】[0002]

【従来の技術】図7は,例えば1989年2月三菱電機
株式会社発行のカタログ「三菱車両駆動用誘導電動機」
A−C6785−Cに示された従来の電動機を断面で示
す側面図である。図において、1は筒状のフレーム、2
はフレーム1の一端側に取付けられたエンドフレーム
で、外周部に中心に向かって開口した吸気口2aが設け
られている。3はフレーム1の他端に取付けられたエン
ドフレームで、外周部に中心に向かって開口した排気口
3aが設けられている。4はエンドフレーム2の中心部
に設けられた軸受、5はエンドフレーム3の中心部に設
けられた軸受、6はフレーム1の内周部に取付けられた
固定子鉄心、7は固定子鉄心6の軸方向の両側に取付け
られた鉄心押え、8は固定子鉄心7に取付けられた固定
子コイル、上記6〜8で固定子9が構成される。10は軸
受4と5とで回転可能に支持された回転子軸、11は回転
子軸10に取付けられた回転子鉄心で、固定子鉄心6と所
定の間隙を介して第1の流路14を形成している。12は回
転子鉄心11の軸方向の一端に設けられた鉄心押え、13は
回転子鉄心11の他端に設けられた鉄心押え、15は回転子
鉄心11と鉄心押え12,13とを回転子軸10とほぼ平行に貫
通して周方向に複数個設けられた穴、16は回転子鉄心11
の外周部に設けられた回転子導体で、端部に回転子環16
aが設けられている。17は回転子軸10に取付けられた冷
却ファンである。上記10〜16で回転子18が構成される。
2. Description of the Related Art FIG. 7 shows, for example, a catalog "Mitsubishi Motor Drive Induction Motor" issued by Mitsubishi Electric Corporation in February 1989.
It is a side view which shows the conventional electric motor shown by AC6785-C in a cross section. In the figure, 1 is a cylindrical frame, 2
Is an end frame attached to one end of the frame 1, and has an intake port 2a opened toward the center on the outer peripheral portion. An end frame 3 is attached to the other end of the frame 1, and has an exhaust port 3a opened toward the center on the outer peripheral portion. 4 is a bearing provided in the center of the end frame 2, 5 is a bearing provided in the center of the end frame 3, 6 is a stator core attached to the inner periphery of the frame 1, 7 is a stator core 6 The iron core retainers attached to both sides in the axial direction, 8 is a stator coil attached to the stator iron core 7, and the stator 9 is constituted by the above 6 to 8. Reference numeral 10 is a rotor shaft rotatably supported by bearings 4 and 5, 11 is a rotor core attached to the rotor shaft 10, and a first flow path 14 is provided between the stator core 6 and a predetermined gap. Is formed. 12 is an iron core retainer provided at one end of the rotor iron core 11 in the axial direction, 13 is an iron core retainer provided at the other end of the rotor iron core 11, 15 is a rotor iron core 11 and the iron iron retainers 12, 13 are rotors. A plurality of holes are provided in the circumferential direction penetrating substantially parallel to the shaft 10, and 16 is a rotor core 11
The rotor conductor provided on the outer periphery of the
a is provided. Reference numeral 17 is a cooling fan attached to the rotor shaft 10. The rotor 18 is composed of 10 to 16 described above.

【0003】次に動作について説明する。図7におい
て、回転子軸10の駆動によって冷却ファン17が回転する
と、排気口3bから空気が排出されることにより、フレー
ム1の内部が負圧状態となって吸気口2aから外気を吸入
し、回転子18と固定子9との間の第1の流路14と、回転
子鉄心11に設けられた風穴15とを通る冷却風によって電
動機が冷却される。図8は、冷却ファン17の送風機とし
ての能力を、風量と静圧との関係で表す特性図である。
図において、N1,N2,N3はそれぞれ電動機の回転数を示
す曲線で、N1>N2>N3の関係にある。Aは電動機風量と
圧力損失の関係を示す曲線、例えば、Q2は電動機の回転
数N2の曲線と曲線Aとの交点で、電動機の回転数がN2
ときの風量・静圧動作点である。このように、電動機の
回転数曲線N1〜N3と曲線Aとの交点Q1〜Q3の範囲で通風
されることになる。図7の電動機は、回転数により冷却
ファン17の送風機としての能力が決定され、図8に示す
ように、電動機の回転数が変化すると風量・静圧が変化
するため、電動機の回転数が高くなるに従い風量は増大
するが、逆に圧力損失が増大して穴15を通過する風量が
減少する。
Next, the operation will be described. In FIG. 7, when the cooling fan 17 is rotated by driving the rotor shaft 10, air is exhausted from the exhaust port 3b, the inside of the frame 1 is in a negative pressure state, and the outside air is sucked from the intake port 2a. The electric motor is cooled by the cooling air passing through the first flow path 14 between the rotor 18 and the stator 9 and the air holes 15 provided in the rotor core 11. FIG. 8 is a characteristic diagram showing the capacity of the cooling fan 17 as a blower by the relationship between the air volume and the static pressure.
In the figure, N 1 , N 2 and N 3 are curves showing the number of rotations of the motor, respectively, and have a relationship of N 1 > N 2 > N 3 . A is a curve showing the relationship between the electric motor air volume and pressure loss, for example, Q 2 is the intersection of the curve of the electric motor rotation speed N 2 and the curve A, and the air volume / static pressure operating point when the electric motor rotation speed is N 2. Is. Thus, it will be ventilated in the range of intersection Q 1 to Q 3 in the rotational speed curve N 1 to N 3 and the curve A of the motor. In the electric motor of FIG. 7, the capacity of the cooling fan 17 as a blower is determined by the rotation speed. As shown in FIG. 8, when the rotation speed of the electric motor changes, the air volume and static pressure also change. However, the pressure loss increases and the air volume passing through the hole 15 decreases.

【0004】[0004]

【発明が解決しようとする課題】従来の電動機は以上の
ように構成されているので,回転数を増大すると冷却風
の流路抵抗が大きくなって圧力損失が増加し、穴15を通
過する風量が減少するため、冷却効率の低下をきたすと
いう問題点があった。
Since the conventional electric motor is constructed as described above, the flow resistance of the cooling air increases and the pressure loss increases as the number of revolutions increases, so that the amount of air passing through the hole 15 increases. Therefore, there is a problem in that the cooling efficiency is reduced because

【0005】この発明は上記のような問題点を解消する
ためになされたもので,冷却風の圧力損失を低減し、冷
却効率を向上できる電動機を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain an electric motor which can reduce the pressure loss of the cooling air and improve the cooling efficiency.

【0006】[0006]

【課題を解決するための手段】この発明に係わる請求項
1の電動機は,フレームの一端から導入した冷却風を固
定子と回転子との間を通過させてフレームの他端から排
出する第1の流路、回転子の鉄心に第1の流路とほぼ平
行に貫通して設けられた複数個の穴と、この穴の両端部
に設けられ穴の径より大きい径の開口から漸次縮小して
穴と接続された流入口と、穴から径が漸次拡大した排出
口とで形成される第2の流路を備えたものである。
According to a first aspect of the present invention, there is provided a first motor in which cooling air introduced from one end of a frame is passed between a stator and a rotor and is discharged from the other end of the frame. , A plurality of holes penetrating the iron core of the rotor substantially in parallel with the first flow path, and the holes gradually decreasing from the openings provided at both ends of the hole and having a diameter larger than the diameter of the hole. The second flow path is formed by an inflow port connected to the hole and a discharge port whose diameter gradually increases from the hole.

【0007】この発明に係わる請求項2の電動機は、フ
レームの一端から導入した冷却風を固定子と回転子との
間を通過させてフレームの他端から排出する第1の流
路、固定子の鉄心に第1の流路とほぼ平行に貫通して設
けられた複数個の穴と、この穴の両端部に設けられ穴の
径より大きい径の開口から漸次縮小して穴と接続された
流入口と、穴から径が漸次拡大した排出口とで形成され
る第2の流路を備えたものである。
According to a second aspect of the present invention, in the electric motor of the first aspect, the cooling air introduced from one end of the frame is passed between the stator and the rotor and discharged from the other end of the frame, the stator. A plurality of holes provided through the iron core in a manner substantially parallel to the first flow path, and openings that are provided at both ends of the hole and have a diameter larger than the diameter of the holes are gradually reduced and connected to the holes. The second flow path is formed by an inflow port and a discharge port whose diameter gradually increases from the hole.

【0008】この発明に係わる請求項3の電動機は,フ
レームの一端から導入した冷却風を固定子と回転子との
間を通過させてフレームの他端から排出する第1の流
路、回転子の鉄心に設けられ第1の流路とほぼ平行に所
定の径で貫通した複数個の穴と、この穴の両端部に設け
られ穴の径より大きい径の開口から漸次縮小して穴と接
続された流入口と、穴から径が漸次拡大した排出口とで
形成される第2の流路、固定子の鉄心に設けられ第1の
流路とほぼ平行に所定の径で貫通した複数個の穴と、こ
の穴の両端部に設けられ穴の径より大きい径の開口から
漸次縮小して穴と接続された流入口と、穴から径が漸次
拡大した排出口とで形成される第3の流路とを備えたも
のである。
According to a third aspect of the present invention, in the electric motor of the third aspect, the cooling air introduced from one end of the frame is passed through between the stator and the rotor and discharged from the other end of the frame, the rotor. A plurality of holes provided in the iron core and penetrating substantially parallel to the first flow path with a predetermined diameter, and connecting to the holes by gradually reducing from openings having a diameter larger than the diameter of the holes provided at both ends of the hole. Second flow path formed by the opened flow inlet and the discharge opening whose diameter is gradually enlarged from the hole, and a plurality of holes provided in the iron core of the stator and penetrating with a predetermined diameter substantially in parallel with the first flow path. No. 3, a third opening formed at both ends of the hole and connected to the hole by being gradually reduced from an opening having a diameter larger than the diameter of the hole, and a discharge opening having a diameter gradually increasing from the hole. And the flow path of.

【0009】[0009]

【作用】この発明における電動機の第2の流路の流入口
と排出口は、流路抵抗を減少し、第2の流路内を流れる
冷却風の風量・流速を増大させる。
The inlet and the outlet of the second flow passage of the electric motor according to the present invention reduce the flow passage resistance and increase the flow rate and flow velocity of the cooling air flowing in the second flow passage.

【0010】[0010]

【実施例】実施例1.以下,この発明の実施例1を図に
ついて説明する。図1はこの発明の実施例1による電動
機を示す部分側面断面図である。図において、1〜14、
16、17は従来のものと同様のため説明を省略する。19は
回転子鉄心11を軸10とほぼ平行に貫通して周方向に複数
個設けられた穴、20は穴19の一端に設けられた冷却風の
流入口で、端部の径が穴19の径より大きい径に構成さ
れ、穴19に向かって漸次縮小して穴19と接続されてい
る。21は穴19の他端側に設けられた冷却風の排出口で、
端部の径が穴19の径より大きい径に穴19から漸次拡大さ
れている。上記19〜21で両端に穴19より大きい流入口と
排出口とを備えた第2の流路22が形成され、上記10〜1
3,22で回転子23が構成される。
EXAMPLES Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is a partial side sectional view showing an electric motor according to Embodiment 1 of the present invention. In the figure, 1-14,
Since 16 and 17 are the same as the conventional ones, their description is omitted. A plurality of holes 19 are provided in the circumferential direction so as to penetrate the rotor core 11 substantially in parallel with the shaft 10 and a cooling air inlet 20 is provided at one end of the hole 19 and has a diameter of the end 19 The diameter is larger than the diameter of the hole, and the hole 19 is gradually reduced toward the hole 19 to be connected to the hole 19. 21 is an outlet for cooling air provided on the other end of the hole 19,
The diameter of the end portion is gradually enlarged from the hole 19 to a diameter larger than the diameter of the hole 19. A second flow path 22 having an inlet and a discharge port larger than the hole 19 is formed at both ends in the above 19 to 21, and the above 10 to 1 are formed.
The rotor 23 is composed of 3, 22.

【0011】次に動作について説明する。電動機の冷却
風の風量は、冷却風の圧力損失に依存する。この圧力損
失は、冷却風の流路に発生する渦などによって生じ、圧
力エネルギーを運動エネルギーに変換するのを妨げる。
この圧力損失を低減すれば、冷却風量を増大することが
可能である。圧力損失を比較する目安として水頭で表す
方法が挙げられ、以下の式で示される。 h=ζ・V2 2/2g・・・・・(1) ただし ζ:損失係数 V2:冷却風風穴における冷却風速度 g:重力加速度 式(1)において、損失係数ζに注目すると、図2
(a)に示す従来の電動機では、フレーム内部で急激に
縮小される穴15の場合、断面積が急激に変化するため圧
力降下が極めて大きく、穴15の入口付近で渦が発生する
ことにより損失が大きくなる。冷却風の穴15の入口前の
断面積が、穴15の断面積に比べて極めて大きいと考えた
場合、上記の損失係数は約0.5となる。一方、穴19
(第2の流路)の入口に、この発明の流路を示す図2
(b)のように、穴19の径より大きい径から漸次縮小し
て穴19と接続された流入口20を設けると、冷却風を通す
第2の流路22では断面積が徐々に変化するため、断面積
変化による圧力降下が小さくなり、渦の発生による損失
も大幅に減少する。第2の流路22の入口前の断面積が、
第2の流路22の断面積に比べて極めて大きい場合、冷却
風流入口20の損失係数ζは約0.18以下となる。上記
のように、損失が減少することにより、圧力エネルギー
が速度エネルギーに速やかに変換され、第2の流路22の
流入口20における圧力損失は、従来と比較して40%以
下に低減される。
Next, the operation will be described. The amount of cooling air of the electric motor depends on the pressure loss of the cooling air. This pressure loss is caused by a vortex or the like generated in the flow path of the cooling air and prevents the pressure energy from being converted into kinetic energy.
If this pressure loss is reduced, it is possible to increase the cooling air volume. As a standard for comparing the pressure loss, a method of expressing by the head of water is mentioned, and is shown by the following formula. h = ζ · V 2 2 / 2g (1) where ζ: loss coefficient V 2 : cooling air velocity in the cooling air wind hole g: gravitational acceleration When attention is paid to the loss coefficient ζ in equation (1), Two
In the conventional electric motor shown in (a), in the case of the hole 15 that is abruptly reduced inside the frame, the pressure drop is extremely large because the cross-sectional area changes abruptly, and eddy is generated near the entrance of the hole 15 to cause loss. Will grow. If it is considered that the cross-sectional area of the cooling air before the inlet of the hole 15 is extremely large as compared with the cross-sectional area of the hole 15, the above loss coefficient is about 0.5. Meanwhile, hole 19
FIG. 2 showing the flow channel of the present invention at the inlet of the (second flow channel).
As shown in (b), when the inlet 20 connected to the hole 19 is gradually reduced from a diameter larger than the diameter of the hole 19, the cross-sectional area of the second flow passage 22 through which the cooling air flows gradually changes. Therefore, the pressure drop due to the change in cross-sectional area is reduced, and the loss due to the generation of vortices is also significantly reduced. The cross-sectional area before the inlet of the second flow path 22 is
When the cross-sectional area of the second flow path 22 is extremely large, the loss coefficient ζ of the cooling air inlet 20 is about 0.18 or less. As described above, since the loss is reduced, the pressure energy is rapidly converted into velocity energy, and the pressure loss at the inflow port 20 of the second flow path 22 is reduced to 40% or less as compared with the conventional case. ..

【0012】また、従来の第2の流路(風穴15)の出口
側の圧力損失は以下のようになる。図3(a)に示す回
転子環16の内径d1が200mm,回転子軸10の径d2が8
0mm,風穴15の径d3が22mmの従来の回転子18の場
合、風穴15を通過する冷却風の速度をV1とすると、摩
擦損失も考慮した上での損失水頭を計算すると、以下の
ようになる。 h=0.68・V1 2/g (ただし、g:重力加速度) これに対し、この発明の流路を示す図3(b)のよう
に、風穴19の径d3が22mm,風穴19の径d3から排出口
21の径d4=25mmに漸次拡大した排出口21を設けた第
2に流路22とすると、損失水頭は、 h=0.35・V1 2/g となる。この図3(b)のものは、従来の穴15の出口と
比較して、圧力損失は約51%と大幅に減少する。以上
のように、風穴19の両端に漸次縮小した流入口20と穴19
から漸次拡大した排出口21とを設けた第2の流路22にす
ると、圧力損失を大幅に減少させるので、図4に示すよ
うに、電動機の回転数Nの曲線と、電動機風量と圧力損
失との関係を示す曲線Aとの交点Q(回転数Nのときの
風量・静圧動作点)が、風量増大側に移動することによ
り、第2の流路に流れる冷却風が増加する。なお、図4
中、A1は従来の風量・圧力損失曲線 A2はこの発明の実
施例による風量・圧力損失曲線、Q4は従来の回転数Nの
ときの風量・静圧動作点、Q5はこの発明の実施例による
回転数Nのときの風量・静圧動作点で、Q5>Q4の関係を
形成している。
The pressure loss on the outlet side of the conventional second flow path (air hole 15) is as follows. The inner diameter d 1 of the rotor ring 16 shown in FIG. 3A is 200 mm, and the diameter d 2 of the rotor shaft 10 is 8 mm.
In the case of a conventional rotor 18 having a diameter 0 of 0 mm and a diameter d 3 of the air hole 15 of 22 mm, if the velocity of the cooling air passing through the air hole 15 is V 1 , the loss head in consideration of friction loss is calculated as follows. Like h = 0.68 · V 1 2 / g ( although, g: gravitational acceleration) In contrast, as shown in FIG. 3 showing the flow path of the present invention (b), 22 mm is the diameter d 3 of the air holes 19, air holes 19 Outlet from diameter d 3
Assuming that the second flow path 22 is provided with the discharge port 21 that is gradually expanded to a diameter d 4 = 25 mm of 21, the head loss is h = 0.35 · V 1 2 / g. In the case of FIG. 3B, the pressure loss is significantly reduced to about 51% as compared with the conventional outlet of the hole 15. As described above, the inlet 20 and the hole 19 that are gradually reduced at both ends of the air hole 19
When the second flow path 22 is provided with the discharge port 21 that is gradually expanded from, the pressure loss is significantly reduced. Therefore, as shown in FIG. 4, the curve of the rotation speed N of the electric motor, the air flow rate of the electric motor, and the pressure loss. The intersection Q with the curve A indicating the relationship with (the air volume / static pressure operating point at the rotation speed N) moves to the air volume increasing side, so that the cooling air flowing in the second flow path increases. Note that FIG.
In the figure, A 1 is the conventional air volume / pressure loss curve, A 2 is the air volume / pressure loss curve according to the embodiment of the present invention, Q 4 is the air volume / static pressure operating point at the conventional rotational speed N, and Q 5 is the present invention. The relationship of Q 5 > Q 4 is formed at the air volume / static pressure operating point at the rotation speed N according to the embodiment of FIG.

【0013】実施例2.図5は、この発明の実施例2に
よる電動機を示す側面断面図である。図において、1〜
8,10,14,16,17は従来のものを示す図7のものとほ
ぼ同様のため、説明を省略する。24は回転子軸10に取付
けられた回転子鉄心で、固定子鉄心6と所定の間隙を介
して第1の流路14を形成している。25は回転子鉄心24に
設けられた鉄心押え、26は回転子鉄心24の他端に設けら
れた鉄心押えである。上記10,16,24〜26で回転子27が
構成される。28は固定子鉄心6に設けられ、第1の流路
14とほぼ平行に貫通した穴、29は一端の固定鉄心押え7
に設けられた流入口で、穴28に向かって漸次縮小して穴
28と接続されている。30は他端の固定鉄心押え7に設け
られた排出口で、穴28から径が漸次拡大されている。上
記28〜30で第2の流路31が形成され、上記6〜8,31で
固定子32が形成される。実施例2の電動機は、第2の流
路の流路抵抗が小さくなるので、第2の流路を流れる冷
却風の流量が増加し、第1の流路を流れる冷却風ととも
に、固定子32を効率よく冷却する。
Embodiment 2. FIG. 5 is a side sectional view showing an electric motor according to Embodiment 2 of the present invention. In the figure,
Since 8, 10, 14, 16, and 17 are almost the same as those of the conventional one shown in FIG. 7, description thereof will be omitted. Reference numeral 24 is a rotor core attached to the rotor shaft 10, and forms a first flow path 14 with a predetermined gap with the stator core 6. Reference numeral 25 is an iron core retainer provided on the rotor iron core 24, and 26 is an iron core retainer provided on the other end of the rotor iron core 24. The rotor 27 is composed of the above 10, 16, 24 to 26. 28 is provided in the stator core 6 and is the first flow path.
Hole that penetrates almost parallel to 14, 29 is a fixed iron core retainer 7 at one end
At the inlet provided in the hole, the hole gradually shrinks toward the hole 28.
Connected with 28. Reference numeral 30 denotes a discharge port provided in the fixed iron core retainer 7 at the other end, the diameter of which gradually increases from the hole 28. The above 28 to 30 form the second flow path 31, and the above 6 to 8 and 31 form the stator 32. In the electric motor of the second embodiment, since the flow passage resistance of the second flow passage becomes small, the flow rate of the cooling air flowing through the second flow passage increases, and together with the cooling air flowing through the first flow passage, the stator 32 To cool efficiently.

【0014】実施例3.図6は、この発明の実施例3に
よる電動機を示す側面断面図である。図において、1〜
8,10〜14,16,17,19〜23,は実施例1を示す図1の
ものと同様で、28〜32は実施例2を示す図5のものと同
様のため、説明を省略する。実施例3による電動機は、
回転子21と固定子32との間に形成された第1の流路14
と、流路抵抗が小さくなった回転子21に形成された第2
の流路20、及び固定子32に形成された第3の流路31とを
備え、効率よく回転子21、固定子32ともに冷却する。
Example 3. FIG. 6 is a side sectional view showing an electric motor according to Embodiment 3 of the present invention. In the figure,
8, 10 to 14, 16, 17, 19 to 23 are the same as those in FIG. 1 showing the first embodiment, and 28 to 32 are the same as those in FIG. .. The electric motor according to the third embodiment is
The first flow path 14 formed between the rotor 21 and the stator 32
And the second formed on the rotor 21 with reduced flow resistance.
And the third flow path 31 formed in the stator 32 to efficiently cool both the rotor 21 and the stator 32.

【0015】実施例4.実施例1〜3においては、冷却
ファン17を備えた電動機の場合について説明したが、送
風機で発生させた冷却風を、吸気口2aからフレーム1
内に送る電動機に適用しても同様の効果を発揮する。
Example 4. In the first to third embodiments, the case of the electric motor provided with the cooling fan 17 has been described, but the cooling air generated by the blower is supplied from the intake port 2a to the frame 1
The same effect can be obtained even when applied to an electric motor that is sent inside.

【0016】[0016]

【発明の効果】以上のようにこの発明によれば,回転子
または固定子に第1の流路とほぼ平行に設けられた複数
個の穴と、この穴の両端部に設けられ穴の径より大きい
径の開口から漸次縮小して穴と接続された流入口と、穴
から径が漸次拡大した排出口とで形成される第2の流路
を備えた構成としたので、冷却風の圧力損失を軽減し冷
却風の流速を増大することにより、冷却効率を向上する
ことが可能な電動機を得ることができる。
As described above, according to the present invention, a plurality of holes are provided in the rotor or the stator substantially parallel to the first flow path, and the diameter of the holes provided at both ends of the holes. Since the second flow path is formed by the inlet that is gradually reduced from the opening having the larger diameter and is connected to the hole, and the outlet that is gradually enlarged from the hole in the diameter, the pressure of the cooling air is reduced. By reducing the loss and increasing the flow velocity of the cooling air, it is possible to obtain the electric motor capable of improving the cooling efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による電動機を示す側面断
面図である。
FIG. 1 is a side sectional view showing an electric motor according to a first embodiment of the present invention.

【図2】この発明の実施例1による電動機の第2の流路
の冷却風流入口の冷却風の流入状態を従来と比較して示
した図である。
FIG. 2 is a diagram showing an inflow state of cooling air at a cooling air inlet of a second flow path of the electric motor according to the first embodiment of the present invention in comparison with a conventional one.

【図3】この発明の実施例1による電動機の第2の流路
の冷却風排出口の冷却風の排出状態を従来と比較して示
した図である。
FIG. 3 is a diagram showing a state in which cooling air is discharged from a cooling air discharge port of a second passage of the electric motor according to the first embodiment of the present invention in comparison with a conventional one.

【図4】この発明の実施例1による電動機の冷却風の風
量を従来と比較して示した特性図である。
FIG. 4 is a characteristic diagram showing a flow rate of cooling air of the electric motor according to the first embodiment of the present invention in comparison with a conventional one.

【図5】この発明の実施例2による電動機を示す側面断
面図である。
FIG. 5 is a side sectional view showing an electric motor according to Embodiment 2 of the present invention.

【図6】この発明の実施例3による電動機を示す側面断
面図である。
FIG. 6 is a side sectional view showing an electric motor according to Embodiment 3 of the present invention.

【図7】従来の電動機を示す側面断面図である。FIG. 7 is a side sectional view showing a conventional electric motor.

【図8】従来の電動機の冷却ファンの送風特性図であ
る。
FIG. 8 is a blower characteristic diagram of a cooling fan of a conventional electric motor.

【符号の説明】[Explanation of symbols]

1 フレーム 6 固定子鉄心 9 固定子 11 回転子鉄心 14 第1の流路(間隙) 19 穴 20 流入口 21 排出口 22 第2の流路 23 回転子 1 Frame 6 Stator Core 9 Stator 11 Rotor Core 14 First Flow Path (Gap) 19 Hole 20 Inlet 21 Discharge Port 22 Second Flow Path 23 Rotor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フレームの一端から導入した冷却風を固
定子と回転子との間を通過させて上記フレームの他端か
ら排出する第1の流路、上記回転子の鉄心に設けられ上
記第1の流路とほぼ平行に所定の径で貫通した複数個の
穴と、上記穴の一端に設けられ上記穴の径より大きい径
から漸次縮小して上記穴と接続された流入口と、上記穴
の他端に設けられ上記穴から上記穴の径より大きい径に
漸次拡大した排出口とで形成された第2の流路を備えた
電動機。
1. A first flow path for passing cooling air introduced from one end of a frame between a stator and a rotor and discharging it from the other end of the frame, which is provided in the iron core of the rotor. A plurality of holes penetrating with a predetermined diameter substantially parallel to the first flow path, an inlet provided at one end of the hole and connected to the hole by gradually reducing from a diameter larger than the diameter of the hole, An electric motor having a second flow path, which is provided at the other end of the hole and is formed with a discharge port that gradually expands from the hole to a diameter larger than the diameter of the hole.
【請求項2】 フレームの一端から導入した冷却風を固
定子と回転子との間を通過させて上記フレームの他端か
ら排出する第1の流路、上記固定子の鉄心に設けられ上
記第1の流路とほぼ平行に所定の径で貫通した複数個の
穴と、上記穴の一端に設けられ上記穴の径より大きい径
から漸次縮小して上記穴と接続された流入口と、上記穴
の他端に設けられ上記穴から上記穴の径より大きい径に
漸次拡大した排出口とで形成された第2の流路を備えた
電動機。
2. A first flow path for allowing cooling air introduced from one end of the frame to pass between the stator and the rotor and to be discharged from the other end of the frame, which is provided in the iron core of the stator. A plurality of holes penetrating with a predetermined diameter substantially parallel to the first flow path, an inlet provided at one end of the hole and connected to the hole by gradually reducing from a diameter larger than the diameter of the hole, An electric motor having a second flow path, which is provided at the other end of the hole and is formed with a discharge port that gradually expands from the hole to a diameter larger than the diameter of the hole.
【請求項3】 フレームの一端から導入した冷却風を固
定子と回転子との間を通過させて上記フレームの他端か
ら排出する第1の流路、上記回転子の鉄心に設けられ上
記第1の流路とほぼ平行に所定の径で貫通した複数個の
穴と、上記穴の一端に設けられ上記穴の径より大きい径
から漸次縮小して上記穴と接続された流入口と、上記穴
の他端に設けられ上記穴から上記穴の径より大きい径に
漸次拡大した排出口とで形成された第2の流路、上記固
定子の鉄心に設けられ上記第1の流路とほぼ平行に所定
の径で貫通した複数個の穴と、上記穴の一端に設けられ
上記穴の径より大きい径から漸次縮小して上記穴と接続
された流入口と、上記穴の他端に設けられ上記穴から上
記穴の径より大きい径に漸次拡大した排出口とで形成さ
れた第3の流路とを備えた電動機。
3. A first flow path for passing cooling air introduced from one end of the frame between the stator and the rotor and discharging it from the other end of the frame, which is provided in the iron core of the rotor. A plurality of holes penetrating with a predetermined diameter substantially parallel to the first flow path, an inlet provided at one end of the hole and connected to the hole by gradually reducing from a diameter larger than the diameter of the hole, A second flow path formed at the other end of the hole and formed with a discharge opening that gradually expands from the hole to a diameter larger than the diameter of the hole, and substantially the same as the first flow path provided in the iron core of the stator. A plurality of holes penetrating with a predetermined diameter in parallel, an inlet provided at one end of the hole and connected to the hole by gradually reducing from a diameter larger than the diameter of the hole, and provided at the other end of the hole And a third flow path formed by a discharge opening that is gradually expanded from the hole to a diameter larger than the diameter of the hole. Equipped electric motor.
JP11734092A 1992-05-11 1992-05-11 Motor Pending JPH05316674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11734092A JPH05316674A (en) 1992-05-11 1992-05-11 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11734092A JPH05316674A (en) 1992-05-11 1992-05-11 Motor

Publications (1)

Publication Number Publication Date
JPH05316674A true JPH05316674A (en) 1993-11-26

Family

ID=14709289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11734092A Pending JPH05316674A (en) 1992-05-11 1992-05-11 Motor

Country Status (1)

Country Link
JP (1) JPH05316674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110210561A1 (en) * 2008-09-17 2011-09-01 Xabier Calvo Madariaga Rotor of an electrical generator for aeolian application with cooling flows in at least one of the coil heads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110210561A1 (en) * 2008-09-17 2011-09-01 Xabier Calvo Madariaga Rotor of an electrical generator for aeolian application with cooling flows in at least one of the coil heads

Similar Documents

Publication Publication Date Title
JP3419080B2 (en) Rotating electric machine
CN106663973A (en) Direct drive-type turbo blower cooling structure
JPH11351190A (en) Vacuum pump
WO2023097845A1 (en) Totally-enclosed self-ventilated motor cooling structure
JPH05316674A (en) Motor
JPS63245239A (en) Rotor for induction motor
JP3095325B2 (en) Centrifugal blower
JP2000236639A (en) Rotor and brushless motor as well as motor-driven blower
JP2003056485A (en) Vortex flow fan
JP3521262B2 (en) Rotating electric machine
JP2675741B2 (en) Open type rotating electric machine
JP2006063811A (en) Multistage turbo fan
JPH0993868A (en) Main motor for vehicle
JPH07222402A (en) Totally-enclosed fan-cooled rotary electric machine
JP3149499B2 (en) Electric blower
JP7075836B2 (en) Motor with internal fan fan
JPH083168Y2 (en) Rotating electric machine cooling system
JPS598136B2 (en) electric motor cooling system
JPH07170693A (en) Rotor of rotating electric machine
KR20010011628A (en) Structure for cooling motor in turbo compressor
JPH08111964A (en) Rotary electric machine
JPS59170496A (en) Motor fan
JP3117336B2 (en) Fully enclosed fan-type rotating electric machine
JPH02269432A (en) Brushless blower motor
KR100253251B1 (en) Drive motor of turbocompressor