JPH05316401A - Automatic focus detector - Google Patents

Automatic focus detector

Info

Publication number
JPH05316401A
JPH05316401A JP4146876A JP14687692A JPH05316401A JP H05316401 A JPH05316401 A JP H05316401A JP 4146876 A JP4146876 A JP 4146876A JP 14687692 A JP14687692 A JP 14687692A JP H05316401 A JPH05316401 A JP H05316401A
Authority
JP
Japan
Prior art keywords
focus
signal
lens
maximum value
fluctuation component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4146876A
Other languages
Japanese (ja)
Other versions
JP3218408B2 (en
Inventor
Yuichi Ikeda
祐一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14687692A priority Critical patent/JP3218408B2/en
Publication of JPH05316401A publication Critical patent/JPH05316401A/en
Application granted granted Critical
Publication of JP3218408B2 publication Critical patent/JP3218408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the effect of a fluctuation component of a focus signal caused by noise or flicker onto the detection by implementing the discrimination of increase/decrease in a focal point signal and the discrimination of focusing through the comparison of a threshold level including the fluctuation component of focus signal with the mean data of focus signal. CONSTITUTION:An image pickup element (CCD) 14 receives a light 13 of an object made incident through a zoom lens 11 and a focus lens 12, a camera process circuit 15 processes the light as a video signal and the processed signal is generated and outputted as a luminance signal and a chrominance signal. An AF window circuit 16 extracts only a luminance signal in an area required for the focus automatic control and the result is inputted to a BPF 17 passing only a signal band required for the focus automatic control. A microcomputer 20 gives an integration clear signal CR to an integration device 19 at the start of one field and receives integration data FD at the end of one field. Furthermore, the microcomputer 20 outputs a lens drive signal AS for each field. A focal point signal (focal point voltage) is obtained through the repetition of the operation of the microcomputer 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ビデオカメラ、電子
スチルカメラなどの光学機器に利用するところの焦点自
動検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus automatic detection device for use in optical equipment such as video cameras and electronic still cameras.

【0002】[0002]

【従来の技術】ビデオカメラや電子スチルカメラでは、
撮像素子が出力する映像信号からコントラストに関する
高周波成分を焦点信号として検出し、この焦点信号が最
大となるようにフォ−カスレンズを移動して合焦させる
焦点整合手段を備えている。
2. Description of the Related Art In video cameras and electronic still cameras,
A focus matching means for detecting a high-frequency component relating to contrast as a focus signal from the video signal output from the image pickup device and moving the focus lens so as to maximize the focus signal is provided.

【0003】このような焦点整合手段は、図3に示した
ところの、焦点信号とフォ−カスレンズの位置との関係
を現わしたグラフ、いわゆる山登り曲線(焦点電圧曲
線)にしたがって動作する構成となっている。
Such a focus matching means operates according to a graph showing the relationship between the focus signal and the position of the focus lens shown in FIG. 3, that is, a so-called hill climbing curve (focal voltage curve). Is becoming

【0004】フォ−カスレンズを∞位置から至近に向か
って移動させたと仮定すれば、時刻tn−1では、レン
ズ位置CCn−1、焦点信号Sn−1、また、時刻tn
では、レンズ位置CCn、焦点信号Snとなるから、焦
点信号の差分デ−タ△Snは、 △Sn=Sn−Sn−1・・・・(1) となる。
Assuming that the focus lens is moved from the infinity position to the closest position, at time tn-1, the lens position CCn-1, focus signal Sn-1, and at time tn-1.
Then, since the lens position is CCn and the focus signal is Sn, the difference data ΔSn of the focus signal is ΔSn = Sn−Sn−1 (1).

【0005】そして、差分デ−タ△Snが、ある一定の
閾値Aより大きければ増加と判定し、一定の閾値−Bよ
り小さければ減少と判定する判定手段を備え、増加判定
を繰返した後に減少判定に移行したとき、焦点信号の最
大値を通過したと判定する。 増加判定 △Sn=Sn−Sn−1>A ・・・・・・・・(2) 減少判定 △Sn=Sn−Sn−1<−B ・・・・・・・(3)
If the difference data ΔSn is greater than a certain threshold value A, it is determined to be increased, and if it is less than a certain threshold value -B, it is determined to be decreased. When shifting to the determination, it is determined that the maximum value of the focus signal has been passed. Increase determination ΔSn = Sn-Sn-1> A (2) Decrease determination ΔSn = Sn-Sn-1 <-B (3)

【0006】この減少判定によって、焦点信号が最大と
なるレンズ位置Coにフォ−カスレンズを戻し移動させ
て合焦させる。
According to this decrease determination, the focus lens is moved back to the lens position Co at which the focus signal is maximized and focused.

【0007】また、差分デ−タ△Snは、現時点まで検
出した焦点信号Snの最大値Smaxと最小値Smin
を用いて増加減少の判定を行なうこともある。 △Sn=Sn−Smin >A ・・・・・・(4) △Sn=Sn−Smax <−B ・・・・・(5)
The difference data ΔSn is the maximum value Smax and the minimum value Smin of the focus signal Sn detected up to the present time.
The increase / decrease may be determined using. ΔSn = Sn−Smin> A (4) ΔSn = Sn−Smax <−B (5)

【0008】一方、図3に示す焦点電圧曲線は、焦点信
号の電圧レベルに応じて変化することから、上記した閾
値A、Bを焦点信号の電圧レベルに応じて変化させるよ
うにして精度をより高めるようにした増加減少の判定手
段が既に提案されている。
On the other hand, since the focus voltage curve shown in FIG. 3 changes according to the voltage level of the focus signal, the above thresholds A and B are changed according to the voltage level of the focus signal to improve the accuracy. An increase / decrease determination means for increasing the increase has already been proposed.

【0009】また、焦点信号からノイズや被写体のフリ
ッカ−成分の影響を除くために、焦点成分Snを平均化
したデ−タを使用して増加と減少とを判定する手段が開
発されている。
Further, in order to remove the influence of noise and flicker component of the subject from the focus signal, means for judging increase or decrease by using data obtained by averaging the focus component Sn has been developed.

【0010】[0010]

【発明が解決しようとする課題】上記した焦点整合手段
は、図3に示すような焦点電圧曲線が理想的な山を描く
場合には有効に動作するが、実際には、ノイズや被写体
のフリッカ−などの影響を受けるために、焦点整合の精
度を上げるために困難を伴う。
The above-mentioned focus matching means operates effectively when the focus voltage curve as shown in FIG. 3 draws an ideal mountain, but in reality, noise and flicker of an object are observed. -It is difficult to improve the accuracy of focus adjustment due to the influence of.

【0011】そのため、焦点信号の平均デ−タを得るよ
うにした焦点電圧曲線が利用されることが多い。(図4
参照) ただ、このように構成する場合には、閾値A、Bを大き
くして最大値を判定する必要がある。
For this reason, a focus voltage curve for obtaining the average data of the focus signal is often used. (Fig. 4
However, in the case of such a configuration, it is necessary to increase the threshold values A and B to determine the maximum value.

【0012】しかし、閾値A、Bを大きく設定すると、
増加減少判定の感度を鈍らせることになるため、焦点電
圧曲線が理想的なもの、また、これに近い曲線となるよ
うな場合に最大値の判定が遅れるという問題がある。
However, if the thresholds A and B are set to be large,
Since the sensitivity of the increase / decrease determination is made dull, there is a problem that the determination of the maximum value is delayed when the focus voltage curve is an ideal curve or a curve close to this.

【0013】また、被写体のコントラストが低い場合に
は焦点信号のレベルも小さくなるので、最大値の判定が
不可能となり、合焦感度が低下するという問題がある。
Further, when the contrast of the subject is low, the level of the focus signal also becomes small, so that it becomes impossible to judge the maximum value, and there is a problem that the focusing sensitivity is lowered.

【0014】[0014]

【課題を解決するための手段】上記した目的を達成する
ため、本発明では、撮影レンズの入射光を受光する撮像
手段から得られる映像信号の高周波成分を複数回検出し
て焦点信号の平均デ−タを順次検出し、この平均デ−タ
と所定の閾値とを比較し焦点信号の増加と減少とを判定
し撮影レンズに含まれたフォ−カスレンズを移動させ、
焦点信号が最大値を経過した直後の減少判定にもとづき
焦点信号が最大となるようにフォ−カスレンズを戻し移
動させて焦点を合焦させる焦点自動検出装置において、
焦点信号の検出初期で、この信号の最大値と最小値とか
ら信号変動成分を求める第1の手段と、この第1の手段
による信号変動成分を含む閾値と平均デ−タとを比較し
焦点信号の増加減少を判定する第2の手段と、焦点信号
が最大値を経過した時点で、焦点信号の最大値と最小値
とから信号変動成分を求める第3の手段と、減少判定に
もとづきフォ−カスレンズを戻し移動したときの焦点信
号の平均デ−タと、第2の手段によって求められた焦点
信号の最大値平均デ−タとを比較し、この比較値が第3
の手段による信号変動成分を含む閾値内であるときに合
焦判定する第4の手段とを備えたことを特徴とする焦点
自動検出装置を提案する。
In order to achieve the above object, according to the present invention, the high frequency component of the video signal obtained from the image pickup means for receiving the incident light of the photographing lens is detected a plurality of times to detect the average defocus of the focus signal. -Sequentially detecting the data, comparing the average data with a predetermined threshold value to determine whether the focus signal is increasing or decreasing, and moving the focus lens included in the photographing lens,
In the automatic focus detection device for focusing by moving the focus lens back so that the focus signal becomes maximum based on the decrease determination immediately after the focus signal has passed the maximum value,
At the initial stage of detecting the focus signal, the first means for obtaining the signal fluctuation component from the maximum value and the minimum value of this signal is compared with the threshold value including the signal fluctuation component by the first means and the average data, and the focus is compared. Second means for determining increase or decrease of the signal, third means for obtaining a signal fluctuation component from the maximum value and the minimum value of the focus signal when the focus signal has passed the maximum value, and -Comparing the average data of the focus signal when the cus lens is moved back and the maximum value average data of the focus signal obtained by the second means, and this comparison value is the third value.
According to another aspect of the present invention, there is provided a focus automatic detection device including a fourth means for determining focus when the focus is within a threshold including the signal fluctuation component.

【0015】[0015]

【作用】焦点信号の検出初期において、焦点信号に含ま
れるノイズ成分やフリッカ−成分が第1の手段によって
検出される。つまり、数回検出した焦点信号から、最大
値と最小値とを選び出し信号変動成分が求められる。こ
の信号変動成分は、その後に行なう増加減少判定の閾値
に一つの要素として利用される。
In the initial stage of detecting the focus signal, the noise and flicker components contained in the focus signal are detected by the first means. That is, the maximum value and the minimum value are selected from the focus signals detected several times, and the signal fluctuation component is obtained. This signal fluctuation component is used as one element in the threshold value for the subsequent increase / decrease determination.

【0016】第2の手段では、焦点信号の平均デ−タと
閾値とを比較し、焦点信号の増加、減少を判定する。す
なわち、第1の手段によって求められた信号変動成分を
含む閾値と焦点信号の平均デ−タとを比較し、増加判定
と減少判定を行なう。
In the second means, the average data of the focus signal is compared with the threshold value to judge whether the focus signal increases or decreases. That is, the threshold value including the signal fluctuation component obtained by the first means is compared with the average data of the focus signal, and the increase determination and the decrease determination are performed.

【0017】焦点信号の最大値が経過した直後にフォ−
カスレンズを停止すると共に、第3の手段によって、こ
の時点で検出した焦点信号から信号変動成分を求められ
る。この信号変動成分は第4の手段によって行なわれる
合焦判定に利用される。
Immediately after the maximum value of the focus signal has passed,
While the cas lens is stopped, the signal fluctuation component is obtained from the focus signal detected at this point by the third means. This signal fluctuation component is used for the focus determination performed by the fourth means.

【0018】焦点信号の最大値が経過した後の第2の手
段による減少判定によって、焦点信号が最大となるよう
にフォ−カスレンズが移動される。そして、第4の手段
では、フォ−カスレンズがこのように移動されたときの
焦点信号の平均デ−タと第2の手段によって求められた
焦点信号の最大値デ−タとを比較すると共に、この比較
値が第3の手段による信号変動成分を含む閾値内にある
とき合焦判定する。
The focus lens is moved so that the focus signal becomes maximum by the decrease determination by the second means after the maximum value of the focus signal has passed. The fourth means compares the average data of the focus signal when the focus lens is moved in this way with the maximum value data of the focus signal obtained by the second means, and When the comparison value is within the threshold including the signal fluctuation component by the third means, the focus determination is made.

【0019】[0019]

【実施例】次に、本発明の一実施例について図面に沿っ
て説明する。図1は、電子スチルカメラの焦点自動検出
装置として実施した回路例を示すブロック図である。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a circuit implemented as an automatic focus detection device for an electronic still camera.

【0020】この図において、11、12は撮影レンズ
に含まれたズ−ムレンズとフォ−カスレンズで、これら
レンズ11、12を通って入射した被写体光13を撮像
素子であるCCD14が受光して映像信号を出力する。
In the figure, reference numerals 11 and 12 denote zoom lenses and focus lenses included in the photographing lens, and a subject light 13 incident through these lenses 11 and 12 is received by a CCD 14, which is an image pickup device, to form an image. Output a signal.

【0021】CCD14が出力した映像信号は、カメラ
プロセス回路15によって処理され、輝度信号、色信号
に生成され出力される。なお、図1は焦点自動制御に必
要な輝度信号(Y)のみが示してある。
The video signal output from the CCD 14 is processed by the camera process circuit 15 to generate a luminance signal and a color signal, which are then output. Note that FIG. 1 shows only the luminance signal (Y) necessary for the focus automatic control.

【0022】この輝度信号(Y)はAFフウインド回路
16に入力され、焦点自動制御に必要なエリアの輝度信
号のみが抽出された後、焦点自動制御に必要な信号帯域
のみをパスさせるバンドパスフィルタ(B、P、F)1
7に入力される。
This luminance signal (Y) is input to the AF window circuit 16, and after extracting only the luminance signal in the area required for automatic focus control, a bandpass filter that passes only the signal band required for automatic focus control. (B, P, F) 1
Input to 7.

【0023】バンドパスフィルタ17より出力した輝度
信号(Y)は、絶対値回路18、積分器19を通してマ
イクロコンピュ−タ20の演算器(ALU)に入力され
る。
The luminance signal (Y) output from the band pass filter 17 is input to the arithmetic unit (ALU) of the microcomputer 20 through the absolute value circuit 18 and the integrator 19.

【0024】積分器19は、1フィ−ルド分の輝度信号
(Y)を積分した後、マイクロコンピュ−タ20から送
られる積分クリア信号CRによって積分デ−タをクリア
する。
The integrator 19 integrates the luminance signal (Y) for one field, and then clears the integrated data by the integration clear signal CR sent from the microcomputer 20.

【0025】マイクロコンピュ−タ20は、入力される
垂直同期信号(VD)、水平同期信号(HD)から1フ
ィ−ルドの開始を判断し、1フィ−ルドの開始時に積分
器19に対して積分クリア信号CRを送り、1フィ−ル
ドの終了時に演算器(ALU)に積分デ−タFDを取り
込む。
The microcomputer 20 judges the start of one field from the input vertical synchronizing signal (VD) and horizontal synchronizing signal (HD), and tells the integrator 19 at the start of one field. The integration clear signal CR is sent and the integration data FD is loaded into the arithmetic unit (ALU) at the end of one field.

【0026】マイクロコンピュ−タ20のこの動作の繰
返しによって焦点信号(焦点電圧)が得られる。そし
て、このマイクロコンピュ−タ20は、1フィ−ルド毎
にフォ−カスレンズ12を駆動するようにレンズ駆動信
号Asを出力する。なお、フォ−カスレンズ12の駆動
速度は、ズ−ムレンズ11の位置や被写体輝度に応じて
変えるようにしてある。
A focus signal (focus voltage) is obtained by repeating this operation of the microcomputer 20. Then, the microcomputer 20 outputs a lens drive signal As to drive the focus lens 12 for each field. The driving speed of the focus lens 12 is changed according to the position of the zoom lens 11 and the subject brightness.

【0027】上記した焦点自動検出装置の動作は、下記
の表1に示すPHASEにしたがって行なわれる。以
下、その動作を図2に示すフロ−チャ−トを参照しなが
ら説明する。
The operation of the above-described automatic focus detection device is performed according to PHASE shown in Table 1 below. The operation will be described below with reference to the flowchart shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】ビデオカメラのように動画を扱う場合に
は、PHASE「0」でのフォ−カスレンズの初期位置
は任意の位置であるが、電子スチルカメラのように静止
画を扱うものでは、このフォ−カスレンズ12を∞位
置、或いは至近位置に移動させる。
When a moving image is handled like a video camera, the initial position of the focus lens at PHASE "0" is an arbitrary position, but in a case where a still image is handled like an electronic still camera, this focus is set. -Move the waste lens 12 to the ∞ position or the closest position.

【0030】このPHASE「0」では、フォ−カスレ
ンズ12を停止させた状態で、焦点電圧をNo回検出
し、No回検出した焦点電圧の最大値と最小値から変動
幅δSoを求め、 δSo=Somax−Somin >Ao ・・・・・(6) の式よりフリッカ−の判定を行なう。そして、検出した
焦点電圧の平均化されたデ−タSoを求め、これを初期
デ−タとしてマイクロコンピュ−タ20のRAMに格納
する。(ステップST100)
In this PHASE "0", the focus voltage is detected No times with the focus lens 12 stopped, and the fluctuation range δSo is calculated from the maximum value and the minimum value of the focus voltage detected No times, and δSo = Somax-Somin> Ao (6) The flicker is determined from the equation. Then, the averaged data So of the detected focus voltage is obtained and stored as the initial data in the RAM of the microcomputer 20. (Step ST100)

【0031】上記した(6)式を満足する場合には、P
HASE「1」に進む。PHASE「1」以後の焦点電
圧は、Ni回(iは各PHASEを示す)の平均化され
たデ−タを用いる。なお、平均化はフォ−カスレンズ1
2の停止時のみでなく、フォ−カスレンズ12の駆動中
は移動平均を用い、下記の(7)式によって信号平均デ
−タを求める。 Sin=(Sn+Sn−1+・・・・+Sn−ni)/Ni ・・・(7) なお、Snは現時点の焦点電圧である。
When the above equation (6) is satisfied, P
Go to HASE “1”. For the focus voltage after PHASE “1”, averaged data of Ni times (i indicates each PHASE) is used. The averaging is performed by the focus lens 1
Not only when the focus lens 12 is stopped but also when the focus lens 12 is being driven, the moving average is used to obtain the signal average data by the following equation (7). Sin = (Sn + Sn-1 + ... + Sn-ni) / Ni (7) Note that Sn is the current focus voltage.

【0032】このPHASE「1」における前後判定に
おいては、通常の閾値A1、B1に変動幅δSoを加えた
値を増加減少の判定閾値とする。(ステップST10
0、ST200)なお、実際には、平均化デ−タを考慮
して、変動幅δSoに係数C1を掛けた値を加えること
により、焦点電圧の変動成分の影響を受けにくい増加・
減少の判定制御を行なうことができる。また、C1は平
均化回数を考慮し、C1=1/Nとすることが好まし
い。
In the front-back determination in PHASE "1", a value obtained by adding the fluctuation range δSo to the normal thresholds A 1 and B 1 is used as the determination threshold for increase / decrease. (Step ST10
(0, ST200) In practice, taking into account the averaging data, by adding a value obtained by multiplying the fluctuation range δSo by the coefficient C 1 , the increase in the influence of the fluctuation component of the focus voltage
Decrease determination control can be performed. Also, C 1 In view of the number of times of averaging, it is preferable to C 1 = 1 / N.

【0033】前後判定を数式をもって示せば下記のよう
になる。 差分デ−タ △S1n=S1n−S1,n−1 ・・・・・・・・(8) 増加判定 △S1n>A1+C1・δSo ・・・・・・・・・(9) 減少判定 △S1n<−(B1+C1・δSo) ・・・・・(10) なお、差分デ−タ△S1nを焦点電圧の最大値と最小値
とから求める場合は、 △S1n=S1n−So ・・・・・(11) とする。(ステップST400〜ST700)
If the front-back determination is expressed by a mathematical expression, it becomes as follows. Difference data ΔS 1 n = S 1 n−S 1 , n−1 (8) Increase determination ΔS 1 n> A 1 + C 1 · δSo ···· .. (9) Decrease judgment ΔS 1 n <− (B 1 + C 1 · δSo) (10) The difference data ΔS 1 n is calculated from the maximum value and the minimum value of the focus voltage. When obtaining, ΔS 1 n = S 1 n−So (11) (Steps ST400 to ST700)

【0034】上記した増加減少判定にしたがってPHA
SE「2」に移行する。この動作段階では、増加判定に
したがい焦点電圧を増加させる方向へフォ−カスレンズ
12を移動駆動する。
According to the above-mentioned increase / decrease judgment, PHA
Move to SE "2". In this operation stage, the focus lens 12 is driven to move in the direction of increasing the focus voltage according to the increase determination.

【0035】また、このPHASE「2」では、下記の
(12)式〜(14)式にしたがって増加、減少を行な
いながら、焦点電圧が減少に移行するまでフォ−カスレ
ンズ12を移動駆動し、焦点電圧の最大値S2maxと
焦点電圧が最大を示すフォ−カスレンズ12の移動位置
CCmaxとをマイクロコンピュ−タ20のメモリに記
載する。(ステップST400、ST500、ST80
0)
In this PHASE "2", the focus lens 12 is moved and driven until the focus voltage shifts to decrease while increasing and decreasing according to the following expressions (12) to (14). The maximum value S 2 max of the voltage and the moving position CCmax of the focus lens 12 at which the focus voltage shows the maximum are described in the memory of the microcomputer 20. (Steps ST400, ST500, ST80
0)

【0036】 差分デ−タ △S2n=S2n−S2,n−1 ・・・・・・・(12) 増加判定 △S2n>A2+C2・δSo ・・・・・・・・(13) 減少判定 △S2n<B2+C2・δSo ・・・・・・・・(14) なお、差分デ−タを焦点電圧の最大値S2maxと最小
値S2minとから求める場合は、 △S2n=S2n−S2min ・・・・・・(15) △S2n=S2n−S2max ・・・・・・(16)
Difference data ΔS 2 n = S 2 n−S 2 , n−1 (12) Increase determination ΔS 2 n> A 2 + C 2 · δSo (13) Decrease determination ΔS 2 n <B 2 + C 2 · δSo (14) In addition, the difference data is the maximum value S 2 max and the minimum value S 2 of the focus voltage. When it is calculated from min, ΔS 2 n = S 2 n−S 2 min (15) ΔS 2 n = S 2 n−S 2 max (16)

【0037】減少判定に移行したときは、PHASE
「3」に移る。この段階では、フォ−カスレンズ12を
停止させ、焦点電圧の変動幅を下記する(17)式によ
って求める。(ステップST900) δS3=S3max−S3min ・・・・・(17)
When the decrease determination is entered, PHASE
Move to “3”. At this stage, the focus lens 12 is stopped and the fluctuation range of the focus voltage is obtained by the following equation (17). (Step ST900) δS 3 = S 3 max-S 3 min (17)

【0038】次に、PHASE「4」に移り、フォ−カ
スレンズ12をPHASE「2」で求められたCCma
x位置に戻し移動する。(ステップST1000)
Next, the process moves to PHASE "4" and the focus lens 12 is moved to CCma obtained by PHASE "2".
Move back to the x position. (Step ST1000)

【0039】続いて、PHASE「5」に移り、下記す
る(18)、(19)式にしたがって合焦判定を行な
う。この動作段階では、PHASE「2」で求められた
焦点電圧の最大値S2maxと、現時点の焦点電圧とを
比較し、この差分デ−タS5nが焦点電圧の変動幅δS3
を含む閾値内であるとき合焦と判定する。(ステップS
T1100)
Subsequently, the flow shifts to PHASE "5" to make a focus determination according to the following equations (18) and (19). In this operation step, the maximum value S 2 max of the focus voltage obtained by PHASE “2” is compared with the current focus voltage, and this difference data S 5 n is the fluctuation range δS 3 of the focus voltage.
When it is within a threshold including (Step S
T1100)

【0040】 差分デ−タ △S5n=Sn−S2max ・・・・・・(18) 合焦判定 −(B5+C5・δS3)<△S5n<A5+C5・δS3 ・・(19) このように合焦判定段階においても、焦点電圧の変動幅
δS3を含めた閾値と比較するため、焦点電圧の変動成
分に影響されない合焦判定を行なうことができる。
Difference data ΔS 5 n = Sn−S 2 max (18) Focus determination − (B 5 + C 5 · δS 3 ) <ΔS 5 n <A 5 + C 5 · δS 3 ·· (19) in this way, focus determination step, for comparison with the threshold value, including the fluctuation range delta] S 3 focus voltage, it is possible to perform in-focus determination is not affected by variation component of focusing voltage.

【0041】[0041]

【発明の効果】上記した通り、本発明によれば、焦点信
号の増加減少判定と合焦判定とを焦点信号の変動成分を
含む閾値との比較において行なう構成としたので、ノイ
ズやフリッカ−によって生ずる焦点信号の変動の影響が
少なく、閾値A、Bを小値とすることができ、この結
果、増加減少判定、合焦判定の感度が低下せず、コント
ラストの低い被写体に対しても正確に合焦できる焦点自
動検出装置となる。
As described above, according to the present invention, the increase / decrease determination of the focus signal and the in-focus determination are made in comparison with the threshold value including the fluctuation component of the focus signal. The influence of the fluctuation of the focus signal that occurs is small, and the threshold values A and B can be set to a small value. As a result, the sensitivity of the increase / decrease determination and the focus determination does not decrease, and even a subject with low contrast can be accurately It becomes an automatic focus detection device that can focus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を電子スチルカメラの焦点自動検出装置
として実施した回路例を示すブロック図である。
FIG. 1 is a block diagram showing a circuit example in which the present invention is implemented as an automatic focus detection device for an electronic still camera.

【図2】上記した焦点自動検出装置の動作を説明するた
めのフロ−チャ−トである。
FIG. 2 is a flowchart for explaining the operation of the above focus automatic detection device.

【図3】焦点自動検出に従来から使用されている焦点電
圧曲線を示す図である。
FIG. 3 is a diagram showing a focus voltage curve conventionally used for automatic focus detection.

【図4】焦点信号を平均化した焦点電圧曲線を示す図で
ある。
FIG. 4 is a diagram showing a focus voltage curve obtained by averaging focus signals.

【符号の説明】[Explanation of symbols]

11 ズ−ムレンズ 12 フォ−カスレンズ 13 被写体光 14 CCD 15 カメラプロセス回路 16 AFウィンド回路 17 バンドパスフィルタ 18 絶対値回路 19 積分器 20 マイクロコンピュ−タ 11 zoom lens 12 focus lens 13 subject light 14 CCD 15 camera process circuit 16 AF window circuit 17 bandpass filter 18 absolute value circuit 19 integrator 20 micro computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 撮影レンズの入射光を受光する撮像手段
から得られる映像信号の高周波成分を複数回検出して焦
点信号の平均デ−タを順次検出し、この平均デ−タと所
定の閾値とを比較し焦点信号の増加と減少とを判定し撮
影レンズに含まれたフォ−カスレンズを移動させ、焦点
信号が最大値を経過した直後の減少判定にもとづき焦点
信号が最大となるようにフォ−カスレンズを戻し移動さ
せて焦点を合焦させる焦点自動検出装置において、焦点
信号の検出初期で、この信号の最大値と最小値とから信
号変動成分を求める第1の手段と、この第1の手段によ
る信号変動成分を含む閾値と平均デ−タとを比較し焦点
信号の増加減少を判定する第2の手段と、焦点信号が最
大値を経過した時点で、焦点信号の最大値と最小値とか
ら信号変動成分を求める第3の手段と、減少判定にもと
づきフォ−カスレンズを戻し移動したときの焦点信号の
平均デ−タと、第2の手段によって求められた焦点信号
の最大値平均デ−タとを比較し、この比較値が第3の手
段による信号変動成分を含む閾値内であるときに合焦判
定する第4の手段とを備えたことを特徴とする焦点自動
検出装置。
1. An average data of a focus signal is sequentially detected by detecting a high frequency component of a video signal obtained from an image pickup means for receiving incident light of a photographing lens a plurality of times, and the average data and a predetermined threshold value. The focus lens included in the photographing lens is moved to determine whether the focus signal becomes maximum based on the decrease determination immediately after the focus signal has reached the maximum value. -In a focus automatic detection device for returning a cus lens to move the focus to focus, first means for obtaining a signal fluctuation component from the maximum value and the minimum value of this signal at the initial stage of detection of the focus signal, and the first means Second means for comparing the threshold value including the signal fluctuation component by the means with the average data to judge increase / decrease of the focus signal, and the maximum value and the minimum value of the focus signal at the time when the maximum value of the focus signal has passed. Calculate the signal fluctuation component from The third means for adjusting the focus signal, the average data of the focus signal when the focus lens is moved back based on the decrease determination, and the maximum value average data of the focus signal obtained by the second means are compared. The focus automatic detection device further comprises: a fourth means for making a focus determination when the comparison value is within a threshold including the signal fluctuation component by the third means.
JP14687692A 1992-05-13 1992-05-13 Automatic focus detection device Expired - Fee Related JP3218408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14687692A JP3218408B2 (en) 1992-05-13 1992-05-13 Automatic focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14687692A JP3218408B2 (en) 1992-05-13 1992-05-13 Automatic focus detection device

Publications (2)

Publication Number Publication Date
JPH05316401A true JPH05316401A (en) 1993-11-26
JP3218408B2 JP3218408B2 (en) 2001-10-15

Family

ID=15417570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14687692A Expired - Fee Related JP3218408B2 (en) 1992-05-13 1992-05-13 Automatic focus detection device

Country Status (1)

Country Link
JP (1) JP3218408B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298119A (en) * 1994-04-25 1995-11-10 Canon Inc Automatic focusing device
JPH0829667A (en) * 1994-07-18 1996-02-02 Fuji Photo Optical Co Ltd Automatic focusing method
JPH08125913A (en) * 1994-10-21 1996-05-17 Ricoh Co Ltd Automatic focusing device
JPH1184228A (en) * 1997-09-08 1999-03-26 Olympus Optical Co Ltd Automaticfocusing device
JP2002014278A (en) * 2000-06-30 2002-01-18 Kyocera Corp Af system
JP2003248163A (en) * 2002-02-25 2003-09-05 Noritsu Koki Co Ltd Focus adjustment method
JP2009058720A (en) * 2007-08-31 2009-03-19 Nikon Corp Focus detector and camera
JP2010122515A (en) * 2008-11-20 2010-06-03 Ricoh Co Ltd Imaging apparatus, autofocus control method therefor, and control program
JP2018132748A (en) * 2017-02-18 2018-08-23 オリンパス株式会社 Imaging device and focus adjusting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298119A (en) * 1994-04-25 1995-11-10 Canon Inc Automatic focusing device
JPH0829667A (en) * 1994-07-18 1996-02-02 Fuji Photo Optical Co Ltd Automatic focusing method
JPH08125913A (en) * 1994-10-21 1996-05-17 Ricoh Co Ltd Automatic focusing device
JPH1184228A (en) * 1997-09-08 1999-03-26 Olympus Optical Co Ltd Automaticfocusing device
JP2002014278A (en) * 2000-06-30 2002-01-18 Kyocera Corp Af system
JP2003248163A (en) * 2002-02-25 2003-09-05 Noritsu Koki Co Ltd Focus adjustment method
JP2009058720A (en) * 2007-08-31 2009-03-19 Nikon Corp Focus detector and camera
JP2010122515A (en) * 2008-11-20 2010-06-03 Ricoh Co Ltd Imaging apparatus, autofocus control method therefor, and control program
JP2018132748A (en) * 2017-02-18 2018-08-23 オリンパス株式会社 Imaging device and focus adjusting method

Also Published As

Publication number Publication date
JP3218408B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US5715483A (en) Automatic focusing apparatus and method
JP5780756B2 (en) Focus adjustment apparatus and method
US8494354B2 (en) Focus adjusting apparatus and focus adjusting method
JPH05344406A (en) Camera
KR100423939B1 (en) Autofocus control apparatus and method
JP2851713B2 (en) Auto focus device
JPH05316401A (en) Automatic focus detector
JP3296687B2 (en) Auto focus video camera
JP2000147371A (en) Automatic focus detector
JPH05300421A (en) Automatic focusing device
JP2008185823A (en) Focus detector and camera
JPH0630322A (en) Automatic focusing device
JP2007256463A (en) Automatic focusing device and camera
US10911660B2 (en) Control apparatus, imaging apparatus, control method, and storage medium
JP3428663B2 (en) Automatic focusing device
JP2007279694A (en) Automatic focusing device and photographing device
JP2000201295A (en) Digital still video camera
JP2001013401A (en) Digital still video camera
JP4537791B2 (en) Apparatus and method for automatic focusing / exposure amount control of imaging system
JPH07159685A (en) Automatic focusing device
JP2742741B2 (en) Auto focus device
US11012609B2 (en) Image pickup apparatus and its control method, and storage medium
JP3227666B2 (en) Autofocus method and device
JP2002365522A (en) Focus controller
JPH05219431A (en) Exposure controller for video camera

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees