JPH05316051A - Dispersion compensation method for optical transmission system - Google Patents

Dispersion compensation method for optical transmission system

Info

Publication number
JPH05316051A
JPH05316051A JP4114876A JP11487692A JPH05316051A JP H05316051 A JPH05316051 A JP H05316051A JP 4114876 A JP4114876 A JP 4114876A JP 11487692 A JP11487692 A JP 11487692A JP H05316051 A JPH05316051 A JP H05316051A
Authority
JP
Japan
Prior art keywords
dispersion
optical fiber
optical
mode optical
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4114876A
Other languages
Japanese (ja)
Inventor
Koji Kikushima
浩二 菊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4114876A priority Critical patent/JPH05316051A/en
Publication of JPH05316051A publication Critical patent/JPH05316051A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the loss by providing a dispersion compensation single mode optical guide path at least between an optical transmitter and a transmission single mode optical fiber or between the transmission single mode optical fiber and an optical receiver. CONSTITUTION:A dispersion compensation single mode optical guide path 11 is provided between an optical transmitter 72 and a transmission single mode optical fiber 74. A single mode glass optical waveguide path at a low loss is formed on a silicon substrate in the guide path 11 and the length of the guide path depends on a core diameter and the length of the fiber 74 being a dispersion compensation object. Since a bent diameter of the glass optical guide path formed on the silicon substrate is set in advance accurately, it is possible to reduce the required length by reducing the core diameter to the utmost in a range where the bent loss is negligible. Since the bent radius is fixed for the glass optical guide path on the silicon substrate different from an optical fiber, a safety factor of an expected bent loss is suppressed lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば1.55μm帯の信
号光を零分散波長が 1.3μmの単一モード光ファイバで
伝送する光伝送システムにおいて、伝送用光ファイバに
おける波長分散を補償して信号光の波形歪みを軽減する
分散補償法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention compensates chromatic dispersion in a transmission optical fiber in an optical transmission system for transmitting a signal light in the 1.55 μm band by a single mode optical fiber having a zero dispersion wavelength of 1.3 μm. The present invention relates to a dispersion compensation method that reduces waveform distortion of signal light.

【0002】[0002]

【従来の技術】中心波長が1.55μm帯で所定の波長広が
りを有する信号光を零分散波長が 1.3μmの単一モード
光ファイバで伝送する光伝送システムでは、伝送用光フ
ァイバの波長分散特性によって信号光の長波長成分と短
波長成分とで伝搬時間に差が生じ、信号光の波形歪みを
生起させる。この波形歪みは、アナログ信号の場合には
歪みとなり、ディジタル信号の場合には伝送誤りをもた
らす。
2. Description of the Related Art In an optical transmission system for transmitting a signal light having a predetermined wavelength spread in the 1.55 μm band with a single-mode optical fiber having a zero-dispersion wavelength of 1.3 μm, it is possible to change the wavelength dispersion characteristic of the transmission optical fiber. There is a difference in propagation time between the long-wavelength component and the short-wavelength component of the signal light, causing waveform distortion of the signal light. This waveform distortion causes distortion in the case of an analog signal and causes a transmission error in the case of a digital signal.

【0003】そこで、零分散波長が1.55μmより長波長
側にある分散補償用単一モード光ファイバを用いて、零
分散波長が 1.3μmの伝送用単一モード光ファイバの波
長分散を補償する分散補償法が提案されている。この従
来の分散補償法について、図7に示す光伝送システムの
構成(例えば、特開昭62−65529号公報)を参照
して説明する。
Therefore, by using a dispersion-compensating single-mode optical fiber having a zero-dispersion wavelength longer than 1.55 μm, a dispersion for compensating the chromatic dispersion of a transmission single-mode optical fiber having a zero-dispersion wavelength of 1.3 μm is provided. A compensation method has been proposed. This conventional dispersion compensation method will be described with reference to the configuration of the optical transmission system shown in FIG. 7 (for example, Japanese Patent Laid-Open No. 62-65529).

【0004】図7に示す光伝送システムは、電気信号入
力端子71,光送信器72,分散補償用単一モード光フ
ァイバ73,伝送用単一モード光ファイバ74,光受信
器75および電気信号出力端子76が縦続に接続された
構成である。たとえば、光送信器72と光受信器75と
の間で伝送される信号光の中心波長が1.55μmであり、
伝送用単一モード光ファイバ74の零分散波長が 1.3μ
mであれば、零分散波長が1.55μmより長波長側にある
分散補償用単一モード光ファイバ73が光送信器72と
伝送用単一モード光ファイバ74との間に挿入される。
この分散補償用単一モード光ファイバ73における波長
分散特性は、図8に示すように伝送用単一モード光ファ
イバ74における分散量を相殺することができ、光伝送
路全体では信号光の中心波長である1.55μmを零分散波
長とすることができる。
The optical transmission system shown in FIG. 7 has an electric signal input terminal 71, an optical transmitter 72, a dispersion compensation single mode optical fiber 73, a transmission single mode optical fiber 74, an optical receiver 75 and an electric signal output. The terminals 76 are connected in cascade. For example, the center wavelength of the signal light transmitted between the optical transmitter 72 and the optical receiver 75 is 1.55 μm,
The zero-dispersion wavelength of the single-mode optical fiber 74 for transmission is 1.3μ.
If m, the dispersion-compensating single-mode optical fiber 73 whose zero-dispersion wavelength is longer than 1.55 μm is inserted between the optical transmitter 72 and the transmission single-mode optical fiber 74.
The chromatic dispersion characteristic of the dispersion-compensating single-mode optical fiber 73 can cancel the amount of dispersion in the transmission single-mode optical fiber 74 as shown in FIG. 8, and the central wavelength of the signal light in the entire optical transmission line. The value of 1.55 μm can be set as the zero dispersion wavelength.

【0005】すなわち、信号光を分散補償用単一モード
光ファイバ73と伝送用単一モード光ファイバ74の双
方を通過させることにより、中心波長が1.55μmの信号
光の長波長成分と短波長成分の伝搬時間差をなくするこ
とができ、光受信器75では波形歪みのない信号光を受
信することができる。なお、分散補償用単一モード光フ
ァイバ73を伝送用単一モード光ファイバ74と光受信
器75との間に挿入しても同様である。
That is, by passing the signal light through both the dispersion-compensating single-mode optical fiber 73 and the transmission single-mode optical fiber 74, the long-wavelength component and the short-wavelength component of the signal light with the center wavelength of 1.55 μm are obtained. It is possible to eliminate the propagation time difference between the two, and the optical receiver 75 can receive signal light without waveform distortion. The same applies when the dispersion-compensating single-mode optical fiber 73 is inserted between the transmission single-mode optical fiber 74 and the optical receiver 75.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の分散
補償法に用いる分散補償用単一モード光ファイバは、光
ファイバであるために曲がりやすく、曲げ半径が変わり
やすい。したがって、設計値よりも小さい曲げ半径とな
った場合に、曲げ損失が急激に大きくならないようにコ
ア径を大きくし、曲げ半径の変化に対する曲げ損失の増
加を緩和させる必要があった。しかし、コア径が大きく
なると、所望の分散補償特性を得るための分散補償用単
一モード光ファイバは長尺となり、分散補償用単一モー
ド光ファイバにおける光損失が大きくなっていた。な
お、曲げ半径に対する曲げ損失とコア径との関係、分散
補償用単一モード光ファイバのコア径と所要長との関係
については本発明の実施例で具体的に説明する。
The single mode optical fiber for dispersion compensation used in the conventional dispersion compensating method is an optical fiber, so that it is easily bent and its bend radius is easily changed. Therefore, when the bending radius becomes smaller than the design value, it is necessary to increase the core diameter so as to prevent the bending loss from rapidly increasing, and to alleviate the increase of the bending loss with respect to the change of the bending radius. However, when the core diameter becomes large, the dispersion compensating single mode optical fiber for obtaining the desired dispersion compensating characteristic becomes long, and the optical loss in the dispersion compensating single mode optical fiber becomes large. The relationship between the bending loss and the core diameter with respect to the bending radius, and the relationship between the core diameter and the required length of the dispersion compensating single-mode optical fiber will be specifically described in the embodiments of the present invention.

【0007】また、伝送用単一モード光ファイバの長さ
に応じて分散量が異なる場合には、分散補償用単一モー
ド光ファイバの分散量をそれに応じて設定するために、
分散補償用単一モード光ファイバの長さを変える必要が
あった。したがって、光伝送システムごとに長さの異な
る長尺の分散補償用単一モード光ファイバを用意しなけ
ればならなかった。
Further, when the dispersion amount varies depending on the length of the transmission single mode optical fiber, in order to set the dispersion amount of the dispersion compensation single mode optical fiber accordingly,
It was necessary to change the length of the single mode optical fiber for dispersion compensation. Therefore, it has been necessary to prepare long single mode optical fibers for dispersion compensation having different lengths for each optical transmission system.

【0008】また、伝送用単一モード光ファイバの分散
量が布設してある環境温度変化に伴って変化する場合に
も、分散補償用単一モード光ファイバの分散量をそれに
応じて設定するためには同様にその長さを変える必要が
ある。しかし、その都度、分散補償用単一モード光ファ
イバの交換を行うことは困難であり、時々刻々と変化す
る分散量に対応させることはできなかった。
Further, even when the dispersion amount of the transmission single-mode optical fiber changes with the installed environmental temperature, the dispersion amount of the dispersion-compensating single-mode optical fiber is set accordingly. You need to change its length as well. However, it is difficult to replace the single-mode optical fiber for dispersion compensation each time, and it is not possible to cope with the dispersion amount which changes from moment to moment.

【0009】本発明は、分散補償に伴う伝搬損失を小さ
くすることができるとともに、伝送用単一モード光ファ
イバの分散量の経時変化を補償することができる光伝送
システムにおける分散補償法を提供することを目的とす
る。
The present invention provides a dispersion compensating method in an optical transmission system capable of reducing the propagation loss associated with dispersion compensation and compensating for the change with time of the dispersion amount of a transmission single mode optical fiber. The purpose is to

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明に
よる光伝送システムの分散補償法は、光送信器と伝送用
単一モード光ファイバとの間、または伝送用単一モード
光ファイバと光受信器との間の少なくとも一方に、基板
上に作成した分散補償用単一モード光導波路を分散補償
手段として挿入する。
A dispersion compensating method for an optical transmission system according to a first aspect of the present invention is provided between an optical transmitter and a single mode optical fiber for transmission or a single mode optical fiber for transmission. A dispersion compensating single mode optical waveguide formed on a substrate is inserted as a dispersion compensating means in at least one of the optical receiver and the optical receiver.

【0011】請求項2に記載の発明による光伝送システ
ムの分散補償法は、光送信器と伝送用単一モード光ファ
イバとの間、または伝送用単一モード光ファイバと光受
信器との間の少なくとも一方に、基板上に作成した分散
補償用単一モード光導波路を分散補償手段として挿入
し、これに併設したヒータの加熱により分散値を制御す
る。
A dispersion compensating method for an optical transmission system according to a second aspect of the present invention is provided between an optical transmitter and a single mode optical fiber for transmission or between a single mode optical fiber for transmission and an optical receiver. A dispersion compensating single-mode optical waveguide formed on the substrate is inserted into at least one of the two as a dispersion compensating means, and the dispersion value is controlled by heating a heater attached to the dispersion compensating means.

【0012】[0012]

【作用】本発明の光伝送システムの分散補償法は、従来
の分散補償用単一モード光ファイバに代えて基板上に作
成した分散補償用単一モード光導波路を用いて、伝送用
単一モード光ファイバの波長分散を補償するものであ
る。その機能は従来と同様であるが、分散補償手段とし
て基板上に作成した光導波路を用いることにより、低損
失で分散補償を行うことができる。
The dispersion compensating method of the optical transmission system of the present invention uses a single mode optical waveguide for dispersion compensation formed on a substrate in place of the conventional single mode optical fiber for dispersion compensating, and uses a single mode for transmission. It is intended to compensate for the chromatic dispersion of the optical fiber. Although its function is the same as the conventional one, it is possible to perform dispersion compensation with low loss by using an optical waveguide formed on the substrate as the dispersion compensation means.

【0013】さらに、請求項2に記載の発明では、ヒー
タの加熱により分散補償用単一モード光導波路を熱膨張
させて光路長を変化させることができ、光導波路全体の
分散値を変化させることができる。すなわち、ヒータの
加熱制御により分散補償量を逐次変化させることが可能
となり、伝送用単一モード光ファイバの分散量の経時変
化にも柔軟に対応することができる。
Further, in the invention described in claim 2, the dispersion compensating single mode optical waveguide can be thermally expanded by heating the heater to change the optical path length, and the dispersion value of the entire optical waveguide can be changed. You can That is, the dispersion compensation amount can be sequentially changed by the heating control of the heater, and it is possible to flexibly cope with the temporal change of the dispersion amount of the transmission single-mode optical fiber.

【0014】[0014]

【実施例】図1は、本発明の分散補償法を実現する光伝
送システムの一実施例構成を示すブロック図である。
1 is a block diagram showing the configuration of an embodiment of an optical transmission system for realizing the dispersion compensation method of the present invention.

【0015】図において、本実施例の光伝送システム
は、電気信号入力端子71,光送信器72,分散補償用
単一モード光ファイバに代わる分散補償用単一モード光
導波路11,伝送用単一モード光ファイバ74,光受信
器75および電気信号出力端子76が縦続に接続された
構成である。なお、分散補償用単一モード光導波路11
を伝送用単一モード光ファイバ74と光受信器75との
間に挿入しても同様である。
In the figure, the optical transmission system of this embodiment includes an electric signal input terminal 71, an optical transmitter 72, a dispersion-compensating single-mode optical waveguide 11 instead of a dispersion-compensating single-mode optical fiber, and a transmission single-mode optical fiber. The mode optical fiber 74, the optical receiver 75, and the electric signal output terminal 76 are connected in cascade. The dispersion compensating single mode optical waveguide 11
It is also the same as when is inserted between the transmission single mode optical fiber 74 and the optical receiver 75.

【0016】図2は、請求項1に記載の発明の分散補償
法に用いられる分散補償用単一モード光導波路11aの
実施例構成を示す図である。図において、本実施例の分
散補償用単一モード光導波路11aは、シリコン基板2
1上に低損失の単一モードガラス光導波路22を形成し
て実現される。この単一モードガラス光導波路22の長
さは、そのコア径と、分散補償対象の伝送用単一モード
光ファイバ74の長さにより決定される。
FIG. 2 is a diagram showing an embodiment of the single mode optical waveguide 11a for dispersion compensation used in the dispersion compensation method of the invention described in claim 1. In FIG. In the figure, the single mode optical waveguide 11a for dispersion compensation of this embodiment is shown as a silicon substrate 2
It is realized by forming a low-loss single-mode glass optical waveguide 22 on the substrate 1. The length of the single mode glass optical waveguide 22 is determined by its core diameter and the length of the transmission single mode optical fiber 74 to be dispersion-compensated.

【0017】ここで、伝送用単一モード光ファイバ74
の長さを5kmとしたときに、分散補償に必要な単一モ
ードガラス光導波路22のコア径(μm)と所要長
(m)との関係を図3に示す。ここに示すように、単一
モードガラス光導波路22は、そのコア径を小さくすれ
ばするほど、短い長さで所望の分散値を達成することが
できる。ただし、コア径を小さくすると、図4に示すよ
うに単一モードガラス光導波路22の曲げ損失が曲げ半
径に対して敏感になる。
Here, the transmission single mode optical fiber 74
FIG. 3 shows the relationship between the core diameter (μm) and the required length (m) of the single-mode glass optical waveguide 22 required for dispersion compensation when the length is 5 km. As shown here, the smaller the core diameter of the single-mode glass optical waveguide 22, the shorter the length can achieve the desired dispersion value. However, when the core diameter is reduced, the bending loss of the single mode glass optical waveguide 22 becomes sensitive to the bending radius as shown in FIG.

【0018】ところで、シリコン基板21上に作成され
る低損失の単一モードガラス光導波路22は、その曲げ
半径をあらかじめ正確に設定することができるので、曲
げ損失が無視できる範囲で、できる限りコア径を小さく
して所要長を短くすることが可能となる。しかも、シリ
コン基板21上の単一モードガラス光導波路22は、光
ファイバと違ってその曲げ半径を固定することができる
ので、見込まれる曲げ損失の安全係数を低く抑えること
ができ、その分コア径を小さくして所要長を短くするこ
とができる。
By the way, since the bending radius of the low-loss single-mode glass optical waveguide 22 formed on the silicon substrate 21 can be set accurately in advance, the core loss should be as small as possible within a range in which the bending loss can be ignored. It is possible to reduce the required length by reducing the diameter. Moreover, unlike the optical fiber, the bending radius of the single-mode glass optical waveguide 22 on the silicon substrate 21 can be fixed, so that the safety factor of expected bending loss can be suppressed to a low level, and the core diameter can be reduced accordingly. Can be reduced to shorten the required length.

【0019】すなわち、シリコン基板21上の単一モー
ドガラス光導波路22により分散補償を行うことによ
り、従来の光ファイバで分散補償する場合に比べて、短
く長さで所望の分散補償を実現することができ、分散補
償用単一モード光導波路11aでの光損失を小さくする
ことができる。なお、分散補償後の波長分散特性は、図
8に示すものと同等である。
That is, by performing dispersion compensation by the single mode glass optical waveguide 22 on the silicon substrate 21, it is possible to realize desired dispersion compensation in a shorter length than in the case where dispersion compensation is performed by a conventional optical fiber. Therefore, the optical loss in the dispersion compensating single mode optical waveguide 11a can be reduced. The chromatic dispersion characteristics after dispersion compensation are the same as those shown in FIG.

【0020】図5は、請求項2に記載の発明の分散補償
法に用いられる分散補償用単一モード光導波路11bの
実施例構成を示す図である。図において、本実施例の分
散補償用単一モード光導波路11bは、シリコン基板2
1上に低損失の単一モードガラス光導波路22を形成し
て実現され、さらにその上にヒータ51を設置する構成
である。ヒータ51は、電源端子52に与えられる制御
電圧に応じて加熱され、単一モードガラス光導波路22
を熱膨張させてその光路長を変化させ、光導波路全体の
分散値を変化させる。
FIG. 5 is a diagram showing an embodiment configuration of a dispersion compensating single mode optical waveguide 11b used in the dispersion compensating method of the present invention. In the figure, the single mode optical waveguide 11b for dispersion compensation of the present embodiment is a silicon substrate 2
It is realized by forming a low-loss single-mode glass optical waveguide 22 on top of the above, and further has a heater 51 installed thereon. The heater 51 is heated according to the control voltage applied to the power supply terminal 52, and the single mode glass optical waveguide 22 is heated.
Is thermally expanded to change its optical path length and change the dispersion value of the entire optical waveguide.

【0021】このようなヒータ付きの分散補償用単一モ
ード光導波路11bを用いることにより、図6に示すよ
うに伝送用単一モード光ファイバ74の分散量が変化し
た場合にも、ヒータ51の加熱具合により分散補償用単
一モード光導波路11bにおける分散量を制御すること
ができ、分散補償後の零分散波長を信号光の中心波長で
ある1.55μmに設定することが可能となる。
By using the dispersion-compensating single-mode optical waveguide 11b with a heater as described above, even when the dispersion amount of the transmission single-mode optical fiber 74 changes as shown in FIG. The amount of dispersion in the dispersion-compensating single-mode optical waveguide 11b can be controlled by the heating condition, and the zero-dispersion wavelength after dispersion compensation can be set to 1.55 μm, which is the center wavelength of the signal light.

【0022】[0022]

【発明の効果】以上説明したように本発明は、光ファイ
バに比べて短い長さで分散補償に必要な分散値を得るこ
とができるので、分散補償に伴う光損失を小さくするこ
とができる。
As described above, according to the present invention, a dispersion value required for dispersion compensation can be obtained in a shorter length than that of an optical fiber, so that an optical loss caused by dispersion compensation can be reduced.

【0023】また、ヒータ加熱によって分散補償用単一
モード光導波路における分散値を可変させることができ
るので、伝送用単一モード光ファイバの波長分散特性が
経時変化する場合でも、分散補償を容易に追従させるこ
とができる。
Since the dispersion value in the dispersion-compensating single-mode optical waveguide can be varied by heating the heater, dispersion compensation can be easily performed even when the wavelength dispersion characteristic of the transmission single-mode optical fiber changes with time. Can be followed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分散補償法を実現する光伝送システム
の一実施例構成を示すブロック図。
FIG. 1 is a block diagram showing the configuration of an embodiment of an optical transmission system that realizes the dispersion compensation method of the present invention.

【図2】請求項1に記載の発明の分散補償法に用いられ
る分散補償用単一モード光導波路11aの実施例構成を
示す図。
FIG. 2 is a diagram showing an embodiment configuration of a dispersion compensation single mode optical waveguide 11a used in the dispersion compensation method of the invention described in claim 1;

【図3】伝送用単一モード光ファイバの長さを5kmと
したときに、分散補償に必要な単一モードガラス光導波
路のコア径(μm)と所要長(m)との関係を示す図。
FIG. 3 is a diagram showing a relationship between a core diameter (μm) and a required length (m) of a single-mode glass optical waveguide required for dispersion compensation when the length of a single-mode optical fiber for transmission is 5 km. ..

【図4】単一モードガラス光導波路の曲げ損失のコア径
依存度を示す図。
FIG. 4 is a diagram showing the core diameter dependence of bending loss of a single-mode glass optical waveguide.

【図5】請求項2に記載の発明の分散補償法に用いられ
る分散補償用単一モード光導波路11bの実施例構成を
示す図。
FIG. 5 is a diagram showing an embodiment configuration of a dispersion compensating single mode optical waveguide 11b used in the dispersion compensating method of the invention described in claim 2;

【図6】ヒータ付きの分散補償用単一モード光導波路1
1bを用いた場合の分散補償効果を示す波長分散特性
図。
FIG. 6 is a dispersion-compensating single-mode optical waveguide 1 with a heater.
The chromatic dispersion characteristic figure which shows the dispersion compensation effect when 1b is used.

【図7】従来の分散補償法を実現する光伝送システムの
構成を示すブロック図。
FIG. 7 is a block diagram showing the configuration of an optical transmission system that realizes a conventional dispersion compensation method.

【図8】従来の分散補償法による分散補償効果を示す波
長分散特性図。
FIG. 8 is a chromatic dispersion characteristic diagram showing a dispersion compensation effect by a conventional dispersion compensation method.

【符号の説明】[Explanation of symbols]

11,11a,11b 分散補償用単一モード光導波路 21 シリコン基板 22 単一モードガラス光導波路 51 ヒータ 52 電源端子 71 電気信号入力端子 72 光送信器 73 分散補償用単一モード光ファイバ 74 伝送用単一モード光ファイバ 75 光受信器 76 電気信号出力端子 11, 11a, 11b Dispersion compensation single mode optical waveguide 21 Silicon substrate 22 Single mode glass optical waveguide 51 Heater 52 Power supply terminal 71 Electric signal input terminal 72 Optical transmitter 73 Dispersion compensation single mode optical fiber 74 Transmission single One-mode optical fiber 75 Optical receiver 76 Electrical signal output terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光送信器と光受信器との間で信号光を伝
送する伝送用単一モード光ファイバに分散補償手段を接
続し、光伝送路全体で前記信号光の中心波長を零分散波
長とする分散補償を行う光伝送システムの分散補償法に
おいて、 前記光送信器と前記伝送用単一モード光ファイバとの
間、または前記伝送用単一モード光ファイバと前記光受
信器との間の少なくとも一方に、前記分散補償手段とし
て、基板上に作成した分散補償用単一モード光導波路を
挿入することを特徴とする光伝送システムの分散補償
法。
1. A dispersion compensating means is connected to a transmission single-mode optical fiber for transmitting signal light between an optical transmitter and an optical receiver, and the central wavelength of the signal light is zero-dispersed in the entire optical transmission line. In a dispersion compensation method for an optical transmission system that performs wavelength dispersion compensation, between the optical transmitter and the transmission single-mode optical fiber, or between the transmission single-mode optical fiber and the optical receiver. In at least one of the above, a dispersion compensating method for an optical transmission system, wherein a dispersion compensating single mode optical waveguide formed on a substrate is inserted as the dispersion compensating means.
【請求項2】 光送信器と光受信器との間で信号光を伝
送する伝送用単一モード光ファイバに分散補償手段を接
続し、光伝送路全体で前記信号光の中心波長を零分散波
長とする分散補償を行う光伝送システムの分散補償法に
おいて、 前記光送信器と前記伝送用単一モード光ファイバとの
間、または前記伝送用単一モード光ファイバと前記光受
信器との間の少なくとも一方に、前記分散補償手段とし
て、基板上に作成した分散補償用単一モード光導波路を
挿入し、これに併設したヒータの加熱により分散値を制
御することを特徴とする光伝送システムの分散補償法。
2. A dispersion compensating means is connected to a transmission single-mode optical fiber for transmitting signal light between an optical transmitter and an optical receiver, and the central wavelength of the signal light is zero-dispersed in the entire optical transmission line. In a dispersion compensation method for an optical transmission system that performs wavelength dispersion compensation, between the optical transmitter and the transmission single-mode optical fiber, or between the transmission single-mode optical fiber and the optical receiver. In at least one of the above, as the dispersion compensating means, a dispersion compensating single mode optical waveguide formed on a substrate is inserted, and the dispersion value is controlled by heating a heater provided in parallel with the dispersion compensating means. Dispersion compensation method.
JP4114876A 1992-05-07 1992-05-07 Dispersion compensation method for optical transmission system Pending JPH05316051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4114876A JPH05316051A (en) 1992-05-07 1992-05-07 Dispersion compensation method for optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4114876A JPH05316051A (en) 1992-05-07 1992-05-07 Dispersion compensation method for optical transmission system

Publications (1)

Publication Number Publication Date
JPH05316051A true JPH05316051A (en) 1993-11-26

Family

ID=14648899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4114876A Pending JPH05316051A (en) 1992-05-07 1992-05-07 Dispersion compensation method for optical transmission system

Country Status (1)

Country Link
JP (1) JPH05316051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970031070A (en) * 1995-11-17 1997-06-26 알프레드 엘. 미첼슨 Single mode optical waveguide fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970031070A (en) * 1995-11-17 1997-06-26 알프레드 엘. 미첼슨 Single mode optical waveguide fiber

Similar Documents

Publication Publication Date Title
JP4559171B2 (en) Adjustable dispersion compensator
US4889404A (en) Asymmetrical bidirectional telecommunication system
USRE38086E1 (en) Dispersion compensating fiber and optical transmission system including the same
US5877881A (en) Optical transmission system
US4261639A (en) Optical pulse equalization in single-mode fibers
US6320687B1 (en) Dispersion compensation apparatus including a fixed dispersion compensator for coarse compensation and a variable dispersion compensator for fine compensation
US6418256B1 (en) High order spatial mode optical fiber
EP0935146A2 (en) Dispersion compensating fibers and systems
US6941045B2 (en) Tunable dispersion compensator
CN101169501A (en) Adjustable optical dispersion compensator based on double-ring resonator
KR20040068216A (en) Dispersion and dispersion slope compensating fiber and optical transmission system utilizing same
JP3728401B2 (en) Fiber transmission element for producing chromatic dispersion
US6587627B2 (en) Dispersion-compensating fiber, and dispersion-compensating module and hybrid optical fiber link using the same
US20020006257A1 (en) Method and system for compensating for chromatic dispersion
US6768822B1 (en) Chromatic dispersion compensation
US6360045B1 (en) High order spatial mode transmission system
Knudsen Design and manufacture of dispersion compensating fibers and their performance in systems
JP2000174700A (en) Dispersion compensation module
JP3262312B2 (en) Optical dispersion equalizer
CN104345379A (en) Optical fiber and optical transmission system
Knudsen et al. Large effective area dispersion compensating fiber for cabled compensation of standard single mode fiber
Horst et al. Compact tunable FIR dispersion compensator in SiON technology
US6829409B2 (en) Method for higher-order dispersion compensation
JPH05316051A (en) Dispersion compensation method for optical transmission system
JP3442289B2 (en) Variable dispersion optical equalizer