JPH053137A - Solid electrode composition - Google Patents

Solid electrode composition

Info

Publication number
JPH053137A
JPH053137A JP3154428A JP15442891A JPH053137A JP H053137 A JPH053137 A JP H053137A JP 3154428 A JP3154428 A JP 3154428A JP 15442891 A JP15442891 A JP 15442891A JP H053137 A JPH053137 A JP H053137A
Authority
JP
Japan
Prior art keywords
active carbon
copolymer
pores
solid electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3154428A
Other languages
Japanese (ja)
Other versions
JP3424235B2 (en
Inventor
Tadashi Tonomura
正 外邨
Yuichiro Tsubaki
雄一郎 椿
Yoshiko Sato
佳子 佐藤
Yasushi Uemachi
裕史 上町
Teruhisa Kanbara
輝壽 神原
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15442891A priority Critical patent/JP3424235B2/en
Publication of JPH053137A publication Critical patent/JPH053137A/en
Application granted granted Critical
Publication of JP3424235B2 publication Critical patent/JP3424235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the electric capacity of the title electrode composition making an application of an electrical dual layer comprising an active carbon and a polymer solid electrolyte for the improvement of the workability making the composition flexible. CONSTITUTION:The title solid electrode is composed by compounding of an active carbon and a solid electrolyte comprising a non-protonic organic solvent melting down alkalic metal salt or ammonium salt gelated using a copolymer of acrylonitrile, acrylic methyl or methaacrylic methyl. At this time, the copolymer is affected by the hydroxyl group on the active carbon surface and a carbonic acid group so as to accelerate the gelation of the solid electrolyte for wetting the surfaces inside the pores of the active carbon with the organic solvent melting down the salt inside the pores of the active carbon so that an electric dual layer may be effectively formed along the surfaces inside the pores of the active carbon in large area thereby enabling the large electric dual layer capacity to be obtained. Furthermore, the gelated copolymer can firmly bond the active carbon particles together so that the title electrode composition having the characteristics such as high mechanical strength, excellent workability and flexibility may be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体あるいは固形状の、
電気二重層キャパシタあるいは二次電池などの電気化学
素子に用いられる、活性炭と有機高分子電解質からなる
電極組成物に関する。
The present invention relates to a solid or solid form,
The present invention relates to an electrode composition comprising activated carbon and an organic polymer electrolyte, which is used in an electrochemical device such as an electric double layer capacitor or a secondary battery.

【0002】[0002]

【従来の技術】活性炭電極は、軽量で高エネルギー密度
のキャパシタや、エレクトロクロミック素子、微小電極
を用いた生物化学センサーなどの電気化学素子が期待で
きることから、近年、研究開発が盛んに検討されてい
る。
2. Description of the Related Art Activated carbon electrodes are expected to be lightweight and high energy density capacitors, electrochromic devices, and electrochemical devices such as biochemical sensors using microelectrodes. Therefore, research and development have been actively studied in recent years. There is.

【0003】従来、その電解質としては専ら液体状の電
解質が用いられており、代表的なものとしては硫酸や塩
を溶解したプロピレンカーボネートなどの有機溶媒溶液
がある。また、銅イオン伝導性固体電解質あるいは銀イ
オン伝導性固体電解質などの常温で固体状の電解質を用
いることも提案されている。固体状の電解質を用いると
素子全体を固体化することができ、電解液漏れのない信
頼性の高い素子を構成することができる。特に、固体状
の電解質の中でも可撓性のある、ポリエチレンオキサイ
ドで代表される高分子電解質を用いると、可撓性のある
シート状の活性炭電極を得ることができる。この電極を
用いると大面積の柔軟性に優れた固体の電気二重層キャ
パシタを構成することができる。
Conventionally, a liquid electrolyte has been exclusively used as the electrolyte, and a representative one is an organic solvent solution such as propylene carbonate in which sulfuric acid or a salt is dissolved. It has also been proposed to use a solid electrolyte at room temperature, such as a copper ion conductive solid electrolyte or a silver ion conductive solid electrolyte. If a solid electrolyte is used, the entire element can be solidified, and a highly reliable element without electrolyte leakage can be configured. In particular, a flexible sheet-like activated carbon electrode can be obtained by using a flexible polymer electrolyte represented by polyethylene oxide among solid electrolytes. By using this electrode, a solid electric double layer capacitor having a large area and excellent flexibility can be formed.

【0004】[0004]

【発明が解決しょうとする課題】しかしながら、活性炭
と混合して用いる高分子電解質としては、どのような高
分子電解質でもよいわけではなく、活性炭の細孔内まで
十分に入り込み、活性炭表面を十分に覆うものが必要と
なる。従来から知られていたポリエチレンオキサイド、
ポリエチレンイミン、ポリエーテルあるいはポリフォス
ファゼンに塩を溶解した高分子電解質では、粘性が高く
活性炭の細孔にまで十分に入り込まず、大容量が得られ
難いという問題がある。さらに、これらの高分子電解質
への塩の溶解度は0.05mol/l程度と低く、電気二重
層を形成するためには電極中に大量の高分子電解質の混
合が必要となり、単位体積あるいは単位重量当りの電極
の容量が、液体電解質を用いたものに較べ10分の1あ
るいはそれ以下になるという欠点を有しており、可撓性
の固体状の高分子電解質を用いる利点が必ずしも生かさ
れていないという課題があった。
However, the polymer electrolyte used as a mixture with the activated carbon is not limited to any polymer electrolyte, and can sufficiently penetrate into the pores of the activated carbon so that the surface of the activated carbon is sufficiently filled. You need something to cover. Polyethylene oxide, which has been known from the past,
A polymer electrolyte in which a salt is dissolved in polyethyleneimine, polyether or polyphosphazene has a problem that it has a high viscosity and does not sufficiently penetrate into the pores of the activated carbon, making it difficult to obtain a large capacity. Furthermore, the solubility of salts in these polyelectrolytes is as low as about 0.05 mol / l, and in order to form an electric double layer, a large amount of polyelectrolytes must be mixed in the electrode, and the unit volume or unit weight It has a drawback that the capacity of each electrode is one tenth or less as compared with the one using a liquid electrolyte, and the advantage of using a flexible solid polymer electrolyte is not necessarily utilized. There was a problem that there was not.

【0005】本発明はこのような課題を解決するもの
で、活性炭電極の細孔にまで十分に入り込むことができ
る固体電解質を用い、液体電解質に近い電極容量の電気
化学素子を実現できる固形電極組成物を提供することを
目的とするものである。
The present invention solves such a problem, and uses a solid electrolyte capable of sufficiently penetrating into the pores of an activated carbon electrode, and a solid electrode composition capable of realizing an electrochemical device having an electrode capacity close to that of a liquid electrolyte. It is intended to provide goods.

【0006】[0006]

【課題を解決するための手段】本発明はこのような課題
を解決するもので、高分子電解質の可撓性で固体状であ
るという特徴を生かし、しかも液体電解質を用いるキャ
パシターに匹敵する容量を有する電気二重層キャパシタ
に用いられる電極組成物を提供するものである。本発明
の電極組成物は、アルカリ金属塩あるいはアンモニウム
塩を溶解した非プロトン性の有機溶媒をアクリロニトリ
ルとアクリル酸メチルあるいはメタアクリル酸メチルと
の共重合体を用いてゲル状にした固形電解質と活性炭と
を複合化したものである。
SUMMARY OF THE INVENTION The present invention is intended to solve such a problem, and takes advantage of the characteristics of a polymer electrolyte, which is flexible and solid, and has a capacitance comparable to that of a capacitor using a liquid electrolyte. The present invention provides an electrode composition used in an electric double layer capacitor having the same. The electrode composition of the present invention is a solid electrolyte and activated carbon obtained by gelling an aprotic organic solvent in which an alkali metal salt or an ammonium salt is dissolved using a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate. It is a composite of and.

【0007】[0007]

【作用】この構成の固形電極組成物では、活性炭表面の
水酸基やカルボン酸基が高分子電解質に作用して高分子
電解質のゲル化を促進する。その結果、活性炭の細孔内
部では塩を溶解した有機溶媒が細孔内部に有効に保持さ
れ、細孔内表面を有機溶媒で十分に濡らすことができ、
細孔内表面に沿って電気二重層が有効に形成される。活
性炭外表面では、活性炭粒子表面の水酸基あるいはカル
ボン酸基と高分子電解質とのゲル化反応により、共重合
高分子が活性炭粒子同志を強固に結着し、機械強度、加
工性に優れ、可撓性の良い電極組成物を形成することと
なる。
In the solid electrode composition having this structure, the hydroxyl groups and carboxylic acid groups on the surface of activated carbon act on the polymer electrolyte to promote gelation of the polymer electrolyte. As a result, inside the pores of the activated carbon, the organic solvent in which the salt is dissolved is effectively retained inside the pores, and the inner surface of the pores can be sufficiently wetted with the organic solvent.
An electric double layer is effectively formed along the inner surface of the pores. On the outer surface of activated carbon, the copolymerization polymer firmly bonds the activated carbon particles to each other by the gelling reaction between the hydroxyl group or carboxylic acid group on the activated carbon particle surface and the polymer electrolyte, and has excellent mechanical strength and processability, and flexibility. An electrode composition having good properties will be formed.

【0008】[0008]

【実施例】以下に本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.

【0009】本実施例に用いる活性炭としては、平均粒
径が5μm以下、比表面積が1000m2/g、細孔容積が
0.5ml/g程度の粉末状のもの、あるいは繊維状のもの
が望ましい。天然の椰子ガラを賦活したもの、あるいは
フェーノール樹脂などの合成樹脂を賦活したものなど、
何れでも用いることができる。
The activated carbon used in this embodiment is preferably powdered or fibrous having an average particle size of 5 μm or less, a specific surface area of 1000 m 2 / g and a pore volume of about 0.5 ml / g. .. Natural palm oil activated, synthetic resin such as phenolic resin activated,
Either can be used.

【0010】アクリロニトリルとアクリル酸メチルある
いはメタアクリル酸メチルとの共重合体は、通常の重合
法でアクリロニトリルモノマーとアクリル酸メチルある
いはメタアクリル酸メチルとを重合することにより得ら
れる。共重合体は分子量が30、000〜100、00
0のものが望ましい。アクリロニトリル(AN)とアク
リル酸メチルあるいはメタアクリル酸メチル(MA)と
の共重合比(AN/MA)は50:1〜2:1(モル
比)程度が望ましい。
The copolymer of acrylonitrile and methyl acrylate or methyl methacrylate can be obtained by polymerizing an acrylonitrile monomer and methyl acrylate or methyl methacrylate by a conventional polymerization method. The copolymer has a molecular weight of 30,000 to 100,00.
0 is desirable. The copolymerization ratio (AN / MA) of acrylonitrile (AN) and methyl acrylate or methyl methacrylate (MA) is preferably about 50: 1 to 2: 1 (molar ratio).

【0011】非プロトン性の有機溶媒としては、エチレ
ンカーボネート(EC)、プロピレンカーボネート(P
C)、ブチレンカーボネート(BC)、ジエチレンカー
ボネート(DEC)、スルホラン(SL)、メチルスル
ホラン(MSL)、テトラハイドロフラン(THF)、
ジオキサン(DOX)、ジオキソラン(DOS)などが
単独で、あるいは混合して用いられる。特に、ECとS
LあるいはECとPCとの混合溶媒を用いた場合が伝導
度が比較的高く、かつ酸化安定性が良いので好ましい。
As the aprotic organic solvent, ethylene carbonate (EC), propylene carbonate (P
C), butylene carbonate (BC), diethylene carbonate (DEC), sulfolane (SL), methyl sulfolane (MSL), tetrahydrofuran (THF),
Dioxane (DOX), dioxolane (DOS), etc. may be used alone or in combination. Especially EC and S
It is preferable to use a mixed solvent of L or EC and PC because the conductivity is relatively high and the oxidation stability is good.

【0012】非プロトン性有機溶媒に溶解する塩MXと
しては、沃化リチウム(LiI)、過塩素酸リチウム
(LiClO4)、トリフルオロメタンスルホン酸リチ
ウム(LiCF3SO3)、ホウフッ化リチウム(LiB
4)などのMがアルカリ金属のLiであるリチウム塩
や、Mがテトラアルキルアンモニウムである、過塩素酸
テトラエチルアンモニウム[(C254NClO4]、
過塩素酸テトラブチルアンモニウム[(n−C494
NClO4]、あるいはホウフッ化テトラエチルアンモ
ニウム[(C254NBF4]などから選ばれる。
Salts MX which are soluble in aprotic organic solvents include lithium iodide (LiI), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium borofluoride (LiB).
F 4 ), such as a lithium salt in which M is an alkali metal Li, tetraethylammonium perchlorate [(C 2 H 5 ) 4 NClO 4 ] in which M is tetraalkylammonium,
Tetrabutylammonium perchlorate [(n-C 4 H 9 ) 4
NClO 4 ] or tetraethylammonium borofluoride [(C 2 H 5 ) 4 NBF 4 ] and the like.

【0013】本発明の固形電解質組成物は例えばつぎの
ようにして製造される。まず、ECおよびPCよりなる
非プロトン性の混合溶媒に、塩としてトリフルオロメタ
ンスルホン酸リチウムを加熱溶解して塩の有機溶媒溶液
を得る。つぎにこの溶液にアクリロニトリルとアクリル
酸メチルあるいはメタアクリル酸メチルとの共重合体の
粉末を添加し、150℃〜180℃で加熱して粉末を溶
解し、均一で透明な溶液を得る。この溶液をアセトニト
リルにより重量で2〜3倍になるよう希釈する。希釈溶
液と予め加熱乾燥した活性炭粉末とを乳鉢でスラリー状
に混合する。得られたスラリーをガラス板上に流延す
る。室温で乾燥後、60℃〜80℃で1Torrの減圧下で
真空加熱乾燥することによりリチウムイオン伝導性の固
形電解質組成物が得られる。
The solid electrolyte composition of the present invention is manufactured, for example, as follows. First, lithium trifluoromethanesulfonate as a salt is heated and dissolved in an aprotic mixed solvent composed of EC and PC to obtain an organic solvent solution of the salt. Next, a powder of a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate is added to this solution and heated at 150 ° C to 180 ° C to dissolve the powder to obtain a uniform and transparent solution. This solution is diluted with acetonitrile to 2-3 times by weight. The diluted solution and the powder of activated carbon which has been heated and dried in advance are mixed in a slurry in a mortar. The obtained slurry is cast on a glass plate. After drying at room temperature, the solid electrolyte composition having lithium ion conductivity is obtained by vacuum drying under vacuum of 1 Torr at 60 ° C to 80 ° C.

【0014】(実施例1)以下に本発明の一実施例を具
体的に説明する。トリフルオロスルホン酸リチウム3.
58g、プロピレンカーボネート10.47g、エチレン
カーボネート7.86g を混合し、120℃に加熱して
均一溶液を得た。 この溶液に、分子量6万のポリアク
リロニトリルとアクリル酸メチルの共重合体(AN/M
A=10/1、モル比)粉末3g を混合し、密封した1
00mlの三角フラスコ中で150℃に加熱して、共重合
体粉末を完全に溶解し粘ちょうな透明の液体を得た。こ
の液体にアセトニトリルを30g 添加し希釈溶液を得
た。
(Embodiment 1) An embodiment of the present invention will be specifically described below. Lithium trifluorosulfonate 3.
58 g, 10.47 g of propylene carbonate and 7.86 g of ethylene carbonate were mixed and heated to 120 ° C. to obtain a uniform solution. Into this solution, a copolymer of polyacrylonitrile having a molecular weight of 60,000 and methyl acrylate (AN / M
(A = 10/1, molar ratio) 3 g of powder were mixed and sealed 1
The copolymer powder was completely dissolved by heating to 150 ° C. in a 00 ml Erlenmeyer flask to obtain a viscous transparent liquid. 30 g of acetonitrile was added to this liquid to obtain a diluted solution.

【0015】別に、フェノール樹脂を賦活して得たBE
T比表面積が2500m2/g、細孔容積が0.86ml/g、
平均粒径が3.0μmの活性炭粉末1.25g と希釈溶
液10g とを乳鉢で混合して電極スラリーを得た。電極
スラリー約3g を直径が90mmのガラスシャーレに流延
し、40℃の乾燥アルゴン気流中で1時間乾燥しさらに
80℃で5時間真空乾燥することにより、厚さ約200
μmの可撓性のあるシート状の固形電極組成物Aを得
た。 このようにして得られた電極組成物は、見かけは
乾いた状態であり液のしみ出しは一切なく、半径10mm
の繰り返し曲げ試験100回後においても破損すること
なく良好な可撓性と機械強度を示した。なお、電極特性
測定用の電気二重層キャパシタAを構成するための電解
質として、希釈溶液10g のみを直径90mmのガラスシ
ャーレに流延し、40℃の乾燥アルゴン気流中で1時間
乾燥し、さらに80℃で5時間真空乾燥することで、厚
さ約300μm のシート状の固形電解質を得た。
Separately, BE obtained by activating a phenol resin
T specific surface area is 2500 m 2 / g, pore volume is 0.86 ml / g,
1.25 g of activated carbon powder having an average particle diameter of 3.0 μm and 10 g of the diluted solution were mixed in a mortar to obtain an electrode slurry. About 3 g of the electrode slurry was cast on a glass petri dish having a diameter of 90 mm, dried in an atmosphere of dry argon at 40 ° C. for 1 hour, and further vacuum dried at 80 ° C. for 5 hours to give a thickness of about 200.
A flexible sheet-like solid electrode composition A having a thickness of μm was obtained. The electrode composition thus obtained was in an apparently dry state with no exudation of liquid, and a radius of 10 mm.
It showed good flexibility and mechanical strength without being damaged even after 100 times of repeated bending test. As an electrolyte for forming the electric double layer capacitor A for measuring electrode characteristics, only 10 g of the diluted solution was cast on a glass dish having a diameter of 90 mm, dried in a dry argon gas stream at 40 ° C. for 1 hour, and further 80 By vacuum-drying at 5 ° C. for 5 hours, a sheet-like solid electrolyte having a thickness of about 300 μm was obtained.

【0016】(比較例1)アクリロニトリルとアクリル
酸メチル共重合体に代えて、分子量が55、000のポ
リアクリロニトリルを用いた以外は実施例1と同様にし
て厚さ約200μm の固形電極組成物Bを得た。 この
ようにして得られた電極組成物は、見かけは乾いた状態
であり、液のしみ出しは一切ない。また、実施例1と同
様の曲げ試験を行うと、半径20mm以下では破損した。
なお、実施例1と同様に、電極特性測定用の電気二重層
キャパシタBを構成するための電解質として、希釈溶液
10g のみを直径90mmのガラスシャーレに流延し、4
0℃の乾燥アルゴン気流中で1時間乾燥し、さらに80
℃で5時間真空乾燥することにより、厚さ約300μm
のシート状の固形電解質を得た。
Comparative Example 1 A solid electrode composition B having a thickness of about 200 μm was prepared in the same manner as in Example 1 except that polyacrylonitrile having a molecular weight of 55,000 was used in place of acrylonitrile and methyl acrylate copolymer. Got The electrode composition thus obtained is apparently in a dry state and does not exude any liquid. Further, when the same bending test as in Example 1 was carried out, it was broken at a radius of 20 mm or less.
In the same manner as in Example 1, as an electrolyte for forming the electric double layer capacitor B for measuring the electrode characteristics, only 10 g of the diluted solution was cast on a glass petri dish having a diameter of 90 mm and 4
Dry for 1 hour in a dry argon stream at 0 ° C, then add 80
Vacuum drying at ℃ for 5 hours, thickness of about 300μm
A sheet-shaped solid electrolyte of was obtained.

【0017】(比較例2)分子量が約3,000のポリ
エチレンオキサイドを6.6g 、トリレンジイソシアネ
ートを0.5ml、トリフルオロメタンスルホン酸リチウ
ムを0.3g とを10mlのメチルエチルケトンに溶解し
て得た溶液10g を、実施例1の希釈溶液に代えて用い
た以外は実施例1と同様にしてリチウム塩を溶解した架
橋ポリエチレンオキサイド高分子固体電解質と活性炭よ
りなる厚さ約180μm の固形電極組成物Cを得た。ま
た、実施例1と同様の曲げ試験を行うと、半径25mm以
下では破損した。なお、実施例1と同様に、電極特性測
定用の電気二重層キャパシタCを構成するための電解質
として、溶液10gのみを直径90mmのガラスシャーレ
に流延し、40℃の乾燥アルゴン気流中で1時間乾燥し
さらに80℃で5時間真空乾燥することにより、厚さ約
250μm のシート状の固形電解質を得た。
Comparative Example 2 Polyethylene oxide having a molecular weight of about 3,000 was dissolved in 6.6 g, tolylene diisocyanate 0.5 ml and lithium trifluoromethanesulfonate 0.3 g and dissolved in 10 ml methyl ethyl ketone. A solid electrode composition C having a thickness of about 180 μm and comprising a crosslinked polyethylene oxide polymer solid electrolyte in which a lithium salt was dissolved and activated carbon was prepared in the same manner as in Example 1 except that 10 g of the solution was used instead of the diluted solution of Example 1. Got Further, when the bending test similar to that of Example 1 was performed, it was broken at a radius of 25 mm or less. As in Example 1, as an electrolyte for constructing the electric double layer capacitor C for measuring electrode characteristics, only 10 g of the solution was cast on a glass dish having a diameter of 90 mm and dried in a stream of dry argon at 40 ° C. After drying for an hour and further vacuum drying at 80 ° C. for 5 hours, a sheet-like solid electrolyte having a thickness of about 250 μm was obtained.

【0018】(電極特性評価)実施例1および比較例
1、2で得られた電極組成物および固形電解質を、直径
13mmの円板状に打ち抜いた。2枚の電極組成物円板で
固形電解質円板を挟み込み、さらに全体を2枚の白金円
板で挟み、内径が13mmのテフロンでできた円筒内に配
置し、電気二重層キャパシタを構成した。 素子全体を
上下から電極端子用の直径が13mmのステレス棒により
バネを介して押えた状態で電極特性を評価した。 この
ようにして組み立てた電気二重層キャパシタについて、
0.27mAの定電流で、0〜3.5V の間で充放電を繰
り返し行った。 電極1枚当りの活性炭重量と、電圧が
1.5V から2.5V の直線部分より算出した容量を
(表1)に示す。なお、評価はすべて20℃で行った。
(Evaluation of Electrode Characteristics) The electrode compositions and the solid electrolytes obtained in Example 1 and Comparative Examples 1 and 2 were punched into a disk having a diameter of 13 mm. A solid electrolyte disc was sandwiched between two electrode composition discs, the whole was further sandwiched between two platinum discs, and the discs were placed in a cylinder made of Teflon having an inner diameter of 13 mm to form an electric double layer capacitor. The electrode characteristics were evaluated while the entire device was pressed from above and below via a spring by a stainless steel rod having a diameter of 13 mm for an electrode terminal. Regarding the electric double layer capacitor assembled in this way,
Charging and discharging were repeated between 0 and 3.5 V at a constant current of 0.27 mA. Table 1 shows the weight of activated carbon per electrode and the capacity calculated from the linear portion of the voltage of 1.5V to 2.5V. All evaluations were performed at 20 ° C.

【0019】[0019]

【表1】 [Table 1]

【0020】(表1)に示すように、実施例の電気二重
層キャパシタAでは比較例のキャパシタB、Cに較べ極
めて大きな容量を与える。
As shown in (Table 1), the electric double layer capacitor A of the embodiment gives an extremely large capacitance as compared with the capacitors B and C of the comparative example.

【0021】なお、本実施例では電気二重層キャパシタ
への応用について説明したが、本発明の固形電極組成物
を対極に用いることで、電気二重層キャパシタの他に、
充放電サイクル特性の優れた二次電池、発色・退色速度
の速いエレクトロクロミック素子、応答速度の速いグル
コースセンサーなどの生物化学センサーなどを得ること
ができる。また、書き込み・読み出し速度の速い電気化
学アナログメモリーを構成することもできる。
In this example, the application to the electric double layer capacitor was explained, but by using the solid electrode composition of the present invention as the counter electrode, in addition to the electric double layer capacitor,
It is possible to obtain a secondary battery having excellent charge / discharge cycle characteristics, an electrochromic element having a fast coloring / fading speed, a biochemical sensor such as a glucose sensor having a fast response speed, and the like. Further, it is also possible to construct an electrochemical analog memory having a high writing / reading speed.

【0022】[0022]

【発明の効果】以上の実施例からも明らかなように本発
明によれば、活性炭と、アルカリ金属塩あるいはアンモ
ニウム塩と、アクリロニトリルとアクリル酸メチルある
いはメタアクリル酸メチルとの共重合体と、非プロトン
性の有機溶媒とを複合化した固形電極組成物において、
従来の高分子固体電解質を用いた電極に較べ、きわめて
大きな電気容量が得られるとともに、機械強度、加工性
も優れている。 この、固形電極組成物を用いることで
固体状の液漏れのない大容量の電気二重層キャパシタを
構成することができる。また、電気二重層キャパシタの
他に、充放電サイクル特性の優れた二次電池、発色・退
色速度の速いエレクトロクロミック素子、応答速度の速
いグルコースセンサーなどの生物化学センサーなどを得
ることができる。また、書き込み・読み出し速度の速い
電気化学アナログメモリーを構成することもできる。
As is apparent from the above examples, according to the present invention, activated carbon, an alkali metal salt or an ammonium salt, a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate, In a solid electrode composition that is complexed with a protic organic solvent,
Compared with conventional electrodes using polymer solid electrolytes, they have an extremely large electric capacity and are excellent in mechanical strength and workability. By using this solid electrode composition, it is possible to construct a large-capacity electric double layer capacitor that does not leak in a solid state. In addition to the electric double layer capacitor, it is possible to obtain a secondary battery having excellent charge / discharge cycle characteristics, an electrochromic element having a fast coloring / fading speed, a biochemical sensor such as a glucose sensor having a fast response speed, and the like. Further, it is also possible to construct an electrochemical analog memory having a high writing / reading speed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上町 裕史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hiroshi Uemachi Hiroshi Uemachi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Kenichi Takeyama, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】活性炭と、MX(Mはアルカリ金属イオン
あるいはアンモニウムイオン、Xはその対アニオン)で
表される塩と、アクリロニトリルとアクリル酸メチルあ
るいはメタアクリル酸メチルとの共重合体、および非プ
ロトン性の有機溶媒を主体としてなる固形電極組成物。
Claim: What is claimed is: 1. An activated carbon, a salt represented by MX (M is an alkali metal ion or ammonium ion, and X is a counter anion thereof), acrylonitrile and methyl acrylate or methyl methacrylate. A solid electrode composition mainly composed of a copolymer and an aprotic organic solvent.
JP15442891A 1991-06-26 1991-06-26 Solid electrode composition Expired - Fee Related JP3424235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15442891A JP3424235B2 (en) 1991-06-26 1991-06-26 Solid electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15442891A JP3424235B2 (en) 1991-06-26 1991-06-26 Solid electrode composition

Publications (2)

Publication Number Publication Date
JPH053137A true JPH053137A (en) 1993-01-08
JP3424235B2 JP3424235B2 (en) 2003-07-07

Family

ID=15583964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15442891A Expired - Fee Related JP3424235B2 (en) 1991-06-26 1991-06-26 Solid electrode composition

Country Status (1)

Country Link
JP (1) JP3424235B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121285A (en) * 1997-10-15 1999-04-30 Mitsubishi Chemical Corp Electric double-layer capacitor
WO2001013447A1 (en) * 1999-08-12 2001-02-22 Nisshinbo Industries, Inc. Press-slide kneader, method for coating with ionic-conductive polymer, and powdery material
JP2001307716A (en) * 2000-02-16 2001-11-02 Nisshinbo Ind Inc Multilayer electrode structure, battery using the same, electrical double layer capacitor, and their manufacturing methods
WO2004084245A1 (en) * 2003-03-18 2004-09-30 Zeon Corporation Binder composition for electric double layer capacitor electrode
US7914704B2 (en) 2003-08-04 2011-03-29 Zeon Corporation Binder for electric double layer capacitor electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121285A (en) * 1997-10-15 1999-04-30 Mitsubishi Chemical Corp Electric double-layer capacitor
WO2001013447A1 (en) * 1999-08-12 2001-02-22 Nisshinbo Industries, Inc. Press-slide kneader, method for coating with ionic-conductive polymer, and powdery material
EP1130667A1 (en) * 1999-08-12 2001-09-05 Nisshinbo Industries, Inc. Press-slide kneader, method for coating with ionic-conductive polymer, and powdery material
EP1130667A4 (en) * 1999-08-12 2004-09-15 Nisshin Spinning Press-slide kneader, method for coating with ionic-conductive polymer, and powdery material
JP2001307716A (en) * 2000-02-16 2001-11-02 Nisshinbo Ind Inc Multilayer electrode structure, battery using the same, electrical double layer capacitor, and their manufacturing methods
WO2004084245A1 (en) * 2003-03-18 2004-09-30 Zeon Corporation Binder composition for electric double layer capacitor electrode
US7897281B2 (en) 2003-03-18 2011-03-01 Zeon Corporation Binder composition for electric double layer capacitor electrode
US7914704B2 (en) 2003-08-04 2011-03-29 Zeon Corporation Binder for electric double layer capacitor electrode

Also Published As

Publication number Publication date
JP3424235B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
US6252762B1 (en) Rechargeable hybrid battery/supercapacitor system
US7022264B2 (en) Polymerizable composition and use thereof
KR20030089721A (en) Composition for polymer gel electrolyte, polymer gel electrolyte, and secondary battery and electric double layer capacitor each employing the electrolyte
EP1095090B1 (en) Polymer gel electrode
JPH10510661A (en) Non-aqueous electrolyte system for use in batteries, capacitors or electrochromic devices and method for producing the same
JP3955108B2 (en) Polymer material and electrochemical device using the same
Taskin et al. Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries
JP3623050B2 (en) Polymer electrolytes and electrochemical devices
JP3424235B2 (en) Solid electrode composition
JP3084793B2 (en) Solid electrode composition
JP3129961B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JP2002025335A (en) Polymeric compound and use of the same
EP0811029B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
JPH1186627A (en) Polymer solid electrolyte and its use
JP3359389B2 (en) Polymer electrolyte
JP2940198B2 (en) Solid electrode composition
JP2002203533A (en) Gelatinizer carrying separator and its utilization and its manufacture
JP2000067643A (en) Polymerizable compound, high molecular solid electrolyte using the same and its application
JP3476168B2 (en) Electrode for lithium secondary battery and lithium secondary battery using the electrode
JPH07302586A (en) Battery electrode and its manufacture
JP7232500B2 (en) Hybrid material production method, hybrid material, electrode production method, electrode, and electrochemical device
JP3089707B2 (en) Solid electrode composition
JP2003109594A (en) Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JPH0466894B2 (en)
WO2001090249A1 (en) Gel-type composition, gel-type ionic conducting compositions containing the same as the base and baterries and electrochemical elements made by using the compositions

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees