JPH05313752A - Robot controller - Google Patents

Robot controller

Info

Publication number
JPH05313752A
JPH05313752A JP11457792A JP11457792A JPH05313752A JP H05313752 A JPH05313752 A JP H05313752A JP 11457792 A JP11457792 A JP 11457792A JP 11457792 A JP11457792 A JP 11457792A JP H05313752 A JPH05313752 A JP H05313752A
Authority
JP
Japan
Prior art keywords
servo
value
integral element
servo control
settling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11457792A
Other languages
Japanese (ja)
Other versions
JP3185348B2 (en
Inventor
Fujio Tajima
不二夫 田島
Toshio Ogiso
敏夫 小木曽
Masaru Yamazaki
勝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11457792A priority Critical patent/JP3185348B2/en
Publication of JPH05313752A publication Critical patent/JPH05313752A/en
Application granted granted Critical
Publication of JP3185348B2 publication Critical patent/JP3185348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To compensate the change of the settling action for control system switching to reduce the overshoot and the residual oscillation by setting the initial value of an integral element in a servo control means in accordance with the initial speed at the time when the servo control means is validated and setting the value of the integral element to 0 at the time of arrival of the position response at the peak. CONSTITUTION:n servo systems from a servo control system 101 to a servo control system 102 perform the servo control of respective joints independently of one another. An interference eliminating means 103 calculates a set of coefficients determined by the attitude of a robot; and when the controlled variable of each joint is outputted, this means 103 multiplies the controlled variable outputted from the servo system of this joint and that outputted from the servo system of another joint by calculated coefficients and adds the multiplication results. An integral value setting means 104 sets the initial value of the integral element in each servo system based on the initial speed for servo system switching at the time of position settling and sets the value of the integral element to 0 by the peak of the first position response during settling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロボット関節の位置整定
制御を行う制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling the position of robot joints.

【0002】[0002]

【従来の技術】従来、ロボット関節や磁気ディスク等の
特性改善の手段として、制御系の構造を可変にする方法
が知られている。たとえば、電子情報通信学会磁気記録
研究会報告MR90−66では、磁気ディスク装置ヘッ
ド位置決め系で、位置整定時に制御系を切り替えた際の
積分器の最適初期値設定に関して検討がなされている。
2. Description of the Related Art Conventionally, a method of changing the structure of a control system is known as a means for improving the characteristics of robot joints and magnetic disks. For example, in the MR 90-66 report of the Magnetic Recording Research Society of the Institute of Electronics, Information and Communication Engineers, the optimum initial value setting of the integrator when the control system is switched at the time of position setting in the magnetic disk device head positioning system is examined.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、整定
時の位置と速度の偏差の二乗積分を評価関数としてリア
プノフ方程式を解くことにより、制御系切り替え時の位
置偏差および速度から最適初期値を求めるための式の係
数を計算している。
The above-mentioned prior art solves the Lyapunov equation by using the square integral of the deviation between the position and the speed at the time of settling as an evaluation function to determine the optimum initial value from the position deviation and the speed at the time of switching the control system. The coefficient of the formula for obtaining is calculated.

【0004】しかし、上記従来技術における制御系の設
計法は非常に複雑であり、計算量も膨大である。また、
上記従来技術は多関節ロボットのような軸間干渉の生じ
る多軸機構の位置整定問題に関しては考慮していない。
However, the control system design method in the above-mentioned prior art is very complicated and the amount of calculation is enormous. Also,
The above-mentioned prior art does not consider the position settling problem of a multi-axis mechanism such as an articulated robot in which inter-axis interference occurs.

【0005】本発明の目的は、少ない計算量と単純なア
ルゴリズムによって、制御系切り替え時の初期速度に起
因する整定時挙動の悪化を防ぐロボットの制御装置を提
供することにある。
An object of the present invention is to provide a robot control device which prevents deterioration of settling behavior due to an initial speed at the time of switching control systems, with a small amount of calculation and a simple algorithm.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、ロボットの各関節を独立に制御するサー
ボ制御手段と、サーボ制御手段内の状態量を相互に他の
関節のサーボ制御手段に入力する干渉成分除去手段と、
サーボ制御手段内の積分要素の値を変化させる積分値設
定手段を設け、前記干渉成分除去手段は、前記各サーボ
制御手段の電流制御部に自関節に対する制御量と他関節
に対する制御量に対しそれぞれ各関節角の状態に応じて
求められる係数を乗じたものを加え合わせたものを出力
するとともに、前記積分値設定手段は、前記サーボ制御
手段が有効となった時点での初期速度に応じて、サーボ
制御手段内の積分要素の初期値を設定し、位置応答がピ
ークに達した時点で積分要素の値を零に設定するもので
ある。
In order to achieve the above object, the present invention provides a servo control means for independently controlling each joint of a robot and a servo control means for controlling servo state of other joints. Interference component removal means input to the control means,
Integral value setting means for changing the value of the integral element in the servo control means is provided, and the interference component removing means includes a current control unit of each servo control means for the control amount for the own joint and the control amount for the other joint, respectively. The product obtained by adding the products obtained by multiplying the coefficient obtained according to the state of each joint angle is output, and the integral value setting means, in accordance with the initial speed at the time when the servo control means becomes effective, The initial value of the integral element in the servo control means is set, and the value of the integral element is set to zero when the position response reaches a peak.

【0007】[0007]

【作用】本発明によれば、ロボットの制御系切り替え時
の初期速度による整定挙動の変化を補償し、オーバーシ
ュートや残留振動を大幅に低減することができる。
According to the present invention, the change in the settling behavior due to the initial velocity when the control system of the robot is switched can be compensated, and the overshoot and the residual vibration can be greatly reduced.

【0008】[0008]

【実施例】以下、本発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図2は本発明の一実施例である水平多関節
(SCARA)型ロボットの制御装置の主軸2軸の制御
系の構成を示す。この制御系は各関節角の指令値に対し
て独立にサーボ制御するサーボ制御系201および20
2と、自関節のサーボ系の出力する制御量と他関節のサ
ーボ系の出力する制御量の各々に、ロボットの姿勢によ
って決定される係数を乗じそれらを加え合わせる干渉除
去手段203と、位置整定の際サーボ系が切り替えられ
た時点での初期速度をもとにサーボ系内の積分要素の初
期値を設定するとともに整定中最初の位置応答のピーク
で積分要素の値を零に設定する積分値設定手段204お
よびロボットのアクチュエータと機構系205からな
る。
FIG. 2 shows a configuration of a control system for two main axes of a controller for a horizontal articulated (SCARA) type robot according to an embodiment of the present invention. This control system is a servo control system 201 and 20 that independently servo-controls the command value of each joint angle.
2, the interference removal means 203 for multiplying each of the control amount output by the servo system of the own joint and the control amount output by the servo system of the other joint by a coefficient determined by the posture of the robot and adding them, and position setting Integral value that sets the initial value of the integral element in the servo system based on the initial speed when the servo system is switched and sets the value of the integral element to zero at the peak of the first position response during settling. It comprises a setting means 204, a robot actuator, and a mechanical system 205.

【0010】次に本発明による干渉除去手段について説
明する。
Next, the interference removing means according to the present invention will be described.

【0011】図4に示すように関節角を定義するとSC
ARA型ロボットの主軸2軸に関する運動方程式は次の
ように表される。
When the joint angle is defined as shown in FIG. 4, SC
The equation of motion for the two main axes of the ARA robot is expressed as follows.

【0012】[0012]

【数1】 [Equation 1]

【0013】ここでmi,Ii,Li,aiはリンクi(i
=1,2)の質量、重心周りの慣性モーメント、軸から
重心までの距離、リンク長さである。J11〜J22は次式
で定義される。
Here, m i , I i , L i , and a i are links i (i
= 1, 2), the moment of inertia around the center of gravity, the distance from the axis to the center of gravity, and the link length. J 11 to J 22 are defined by the following equations.

【0014】[0014]

【数2】 [Equation 2]

【0015】ri はi軸モータの減速機の減速比、Iim
はモータロータの等価慣性モーメントである。位置整定
時には各軸の速度は小さいので、数1における速度項は
慣性項に比べて無視できると考えられる。従って数1は
次のように表せる。
R i is the reduction ratio of the reducer of the i-axis motor, I im
Is the equivalent moment of inertia of the motor rotor. Since the velocity of each axis is small at the time of position settling, the velocity term in Equation 1 is considered to be negligible as compared with the inertial term. Therefore, equation 1 can be expressed as follows.

【0016】[0016]

【数3】 [Equation 3]

【0017】トルクτi と各軸サーボ系の制御量ici
の関係は次式のように表せる。
The relationship between the torque τ i and the control amount i ci of each axis servo system can be expressed as follows.

【0018】[0018]

【数4】 [Equation 4]

【0019】ここでKTiはi軸アクチュエータのトルク
定数である。数3,数4から次式を導く。
Here, K Ti is the torque constant of the i-axis actuator. The following equation is derived from the equations 3 and 4.

【0020】[0020]

【数5】 [Equation 5]

【0021】このときic をic*と修正することにより
慣性項が非干渉化されるとすると、ic とic*との間に
は次のような関係が成り立つ。
[0021] When inertia term by modifying the time i c a i c * is decoupled, the relationship such as the following holds between the i c and i c *.

【0022】[0022]

【数6】 [Equation 6]

【0023】これをic*について解くと次のようにな
る。
When this is solved for i c * , it becomes as follows.

【0024】[0024]

【数7】 [Equation 7]

【0025】すなわち図2においてa11〜a22を次のよ
うに置けばよい。
That is, in FIG. 2, a 11 to a 22 may be arranged as follows.

【0026】[0026]

【数8】 [Equation 8]

【0027】以上述べたような干渉除去手段により、位
置整定時において各軸の動特性は非干渉一定慣性化さ
れ、図3に示すように独立にサーボ制御系を設計するこ
とが可能となる。
The interference removing means as described above makes the dynamic characteristics of each axis non-interference constant inertia at the time of position settling, and it becomes possible to independently design the servo control system as shown in FIG.

【0028】次に、位置整定時における積分要素の出力
値を設定する積分値設定手段について説明する。この手
段は各軸共通であるので、以下の説明では添字を省く。
Next, the integral value setting means for setting the output value of the integral element at the time of position settling will be described. Since this means is common to all axes, subscripts are omitted in the following description.

【0029】図3はPID制御系の一例である。これを
運動方程式で書き表すと次のようになる。
FIG. 3 shows an example of the PID control system. This can be written as the equation of motion as follows.

【0030】[0030]

【数9】 [Equation 9]

【0031】ここでKp ,Ki ,Kd はそれぞれ比例ゲ
イン,積分ゲイン,微分ゲインであり、この制御系の閉
ループ極配置が安定な一実根と一対の共役根となるよう
に設定されているものとする。ICは積分要素の初期値
である。θr は目標位置であり、サーボ系切り替え時の
時刻をt=0とし、初期位置θ(0)は0としている。
T はトルク定数、Jはモータの負荷慣性モーメントで
ある。加減速動作制御系から位置整定制御系への切り替
えは最終目標位置と現在位置との偏差がある一定値にな
った時に起こるものとする。ここでθの時間積分をΔと
おくと、数9は次式のように書き直せる。
Here, K p , K i , and K d are a proportional gain, an integral gain, and a differential gain, respectively, and the closed-loop pole arrangement of this control system is set so as to be a stable real root and a pair of conjugate roots. Be present. IC is the initial value of the integral element. θ r is the target position, the time when the servo system is switched is t = 0, and the initial position θ (0) is 0.
K T is the torque constant, and J is the load inertia moment of the motor. Switching from the acceleration / deceleration operation control system to the position settling control system shall occur when the deviation between the final target position and the current position becomes a certain value. Here, if the time integration of θ is Δ, then Equation 9 can be rewritten as the following equation.

【0032】[0032]

【数10】 [Equation 10]

【0033】Δの一般解は次のように表せる。A general solution of Δ can be expressed as follows.

【0034】[0034]

【数11】 [Equation 11]

【0035】C1〜C3は初期条件により定まる任意定数
である。λ1 は実根、λr ,λiは共役根の実部と虚部
の値である。三つの任意定数の値を決定するためには初
期条件も三通り必要である。そこで数11の時間に関す
る一階および二階微分は以下のようになる。
C 1 to C 3 are arbitrary constants determined by initial conditions. λ 1 is the real root, and λ r and λ i are the values of the real and imaginary parts of the conjugate root. To determine the values of three arbitrary constants, three initial conditions are necessary. Then, the first-order and second-order differentials with respect to time of equation 11 are as follows.

【0036】[0036]

【数12】 [Equation 12]

【0037】[0037]

【数13】 [Equation 13]

【0038】数11,数12,数13にt=0を代入
し、C1〜C3について整理すると次のようになる。
Substituting t = 0 into equations 11, 12 and 13 and arranging C 1 to C 3 results in the following.

【0039】[0039]

【数14】 [Equation 14]

【0040】ここでω0 はサーボ切り替え時の初期速度
の値である。よってC=[C123 ]は次式を計算
することにより求めることができる。
Here, ω 0 is the value of the initial speed when the servo is switched. Therefore, C = [C 1 C 2 C 3 ] can be obtained by calculating the following equation.

【0041】[0041]

【数15】 [Equation 15]

【0042】これより、θr が一定の場合にICおよび
ω0 を与えた時のθ(t)を計算できることがわかる。
From this, it can be seen that θ (t) can be calculated when IC and ω 0 are given when θ r is constant.

【0043】以上の結果を用いることにより、任意の初
期速度ω0 に対して位置整定挙動における最初のピーク
をちょうど目標位置に移動させる積分要素の初期値IC
を求めることができる。この計算は超越方程式を解くこ
とになるため、解析解を求めるのは困難である。しかし
これを数値的に解くことは非常に簡単である。また、数
値的に求められたω0 とICの関係をグラフに描いてみ
てもそれほど複雑なものにはなっていない。よって、解
をテーブルの形で蓄えておき、位置整定時には、補間を
交えて表引きするか、最小自乗法等を用いて係数を決定
した低次多項式を計算することによってICを求めれ
ば、十分実用に耐えると考えられる。あとは、位置整定
動作中最初に速度が零になった時刻(ここでθはθr
等しくなっているはずである)において積分要素の値を
零にしてやればよい。図5に減衰率ζ≒0.3 と比較的
振動的な挙動を示すように設定したPID制御系のステ
ップ応答を示す。次にある初期速度を与えた場合のステ
ップ応答を図6に示す。図6では図5と比べてオーバー
シュートが大きくなっているのがわかる。これに対して
前述の方法で計算された積分要素の初期値を与えた場合
の応答を図7に示す。応答のピークが目標値まで下がっ
ているのがわかる。さらに応答のピークにおいて積分要
素の出力値を零に設定した場合の応答を図8に示す。図
6と比べてオーバーシュートもなく、収束が速まってい
るのがわかる。この制御系におけるω0とICの関係を
数点において計算し、最小自乗法を用いて二次多項式で
補間した例を図9に示す。
By using the above results, the initial value IC of the integral element for moving the first peak in the position settling behavior to the target position for an arbitrary initial velocity ω 0 .
Can be asked. Since this calculation solves the transcendental equation, it is difficult to find an analytical solution. But solving this numerically is very easy. In addition, a graph showing the relationship between ω 0 and the IC obtained numerically is not so complicated. Therefore, it suffices to store the solutions in the form of a table and, at the time of position settling, calculate IC by calculating the low-order polynomial whose coefficient is determined by using the least square method or the like, or by performing a table lookup with interpolation. It is considered to be practical. After that, the value of the integral element may be set to zero at the time when the velocity first becomes zero during the position settling operation (here, θ should be equal to θ r ). FIG. 5 shows the step response of the PID control system set so as to exhibit a relatively oscillatory behavior with a damping ratio ζ≈0.3. Next, FIG. 6 shows a step response when a certain initial velocity is given. It can be seen that the overshoot is larger in FIG. 6 than in FIG. On the other hand, FIG. 7 shows the response when the initial value of the integral element calculated by the above method is given. It can be seen that the response peak has dropped to the target value. Further, FIG. 8 shows the response when the output value of the integration element is set to zero at the peak of the response. It can be seen that there is no overshoot and the convergence is faster than in FIG. FIG. 9 shows an example in which the relationship between ω 0 and IC in this control system is calculated at several points and interpolated by a quadratic polynomial using the least square method.

【0044】以上により、干渉除去手段によって非干渉
一定慣性化されたロボットの各軸に対し、サーボ系切り
替え時の初期速度に応じて積分要素の初期値を与え、位
置整定時の最初のピークにおいて積分要素の出力値を零
にすることにより、位置整定応答におけるオーバーシュ
ートや残留振動の発生を抑制し、目標値への収束を速め
ることができる。
As described above, the initial value of the integral element is given to each axis of the robot which has been made non-interference constant inertia by the interference removing means according to the initial speed at the time of switching the servo system, and at the first peak at the time of position settling. By setting the output value of the integral element to zero, it is possible to suppress the occurrence of overshoot and residual vibration in the position settling response and accelerate the convergence to the target value.

【0045】[0045]

【発明の効果】本発明によれば、少ない計算量と単純な
アルゴリズムによってロボットの制御系切り替え時の初
期速度に起因する整定挙動の変化を補償することがで
き、ロボットが複数の軸を有する場合には、その動特性
を非干渉一定慣性化できるため、位置整定時間の短縮,
整定時挙動の改善・一定化,制御パラメータのチューニ
ングの簡単化が図れる。
According to the present invention, it is possible to compensate for a change in the settling behavior caused by the initial velocity when switching the control system of the robot with a small amount of calculation and a simple algorithm, and when the robot has a plurality of axes. , Its dynamic characteristics can be made non-interfering constant inertia, shortening the position settling time,
The behavior during settling can be improved and stabilized, and control parameter tuning can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における制御系のブロック図。FIG. 1 is a block diagram of a control system according to the present invention.

【図2】本発明の水平多関節型ロボットにおける実施例
のブロック図。
FIG. 2 is a block diagram of an embodiment of a horizontal articulated robot of the present invention.

【図3】本発明の干渉除去手段を用いた場合の等価的な
ブロック図。
FIG. 3 is an equivalent block diagram in the case of using the interference removing means of the present invention.

【図4】SCARA型ロボットのモデルの説明図。FIG. 4 is an explanatory diagram of a model of a SCARA robot.

【図5】やや振動的に調整されている制御系のステップ
応答特性図。
FIG. 5 is a step response characteristic diagram of a control system that is adjusted slightly vibrationally.

【図6】図5と同一の系で初期速度を持つ場合の特性
図。
FIG. 6 is a characteristic diagram of the same system as in FIG. 5 with an initial velocity.

【図7】図6に対し最適な積分要素の初期値を設定した
場合の特性図。
FIG. 7 is a characteristic diagram when an optimum initial value of the integral element is set with respect to FIG.

【図8】さらに位置応答の最初のピークで積分要素の値
を零に設定した場合の特性図。
FIG. 8 is a characteristic diagram when the value of the integration element is set to zero at the first peak of the position response.

【図9】数通りのω0 に対してICを計算し、それらを
最小自乗法で補間した例の特性図。
FIG. 9 is a characteristic diagram of an example in which ICs are calculated for several kinds of ω 0 and they are interpolated by the least square method.

【符号の説明】[Explanation of symbols]

101…サーボ制御系、102…サーボ制御系、103
…干渉除去手段、104…積分値設定手段、105…多
関節型ロボットの動力学的特性。
101 ... Servo control system, 102 ... Servo control system, 103
... interference removing means, 104 ... integral value setting means, 105 ... dynamic characteristics of the articulated robot.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ロボットの制御装置であり、前記ロボット
の関節を制御するサーボ制御手段と、前記サーボ制御手
段が有効となった時点での初期速度に応じて、前記サー
ボ制御手段内の積分要素の初期値を設定し、位置応答が
ピークに達した時点で前記積分要素の値を零に設定する
手段をなす積分値設定手段を設けたことを特徴とするロ
ボットの制御装置。
1. A controller for a robot, comprising servo control means for controlling joints of the robot, and an integral element in the servo control means in accordance with an initial speed at the time when the servo control means becomes effective. The control device for the robot is provided with an integral value setting means for setting an initial value of, and setting the value of the integral element to zero when the position response reaches a peak.
JP11457792A 1992-05-07 1992-05-07 robot Expired - Fee Related JP3185348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11457792A JP3185348B2 (en) 1992-05-07 1992-05-07 robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11457792A JP3185348B2 (en) 1992-05-07 1992-05-07 robot

Publications (2)

Publication Number Publication Date
JPH05313752A true JPH05313752A (en) 1993-11-26
JP3185348B2 JP3185348B2 (en) 2001-07-09

Family

ID=14641325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11457792A Expired - Fee Related JP3185348B2 (en) 1992-05-07 1992-05-07 robot

Country Status (1)

Country Link
JP (1) JP3185348B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031303A1 (en) * 1996-02-20 1997-08-28 Kabushiki Kaisha Yaskawa Denki Controller of multi-axis robot
WO1998053962A1 (en) * 1997-05-28 1998-12-03 Kabushiki Kaisha Yaskawa Denki Robot control method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031303A1 (en) * 1996-02-20 1997-08-28 Kabushiki Kaisha Yaskawa Denki Controller of multi-axis robot
US6069463A (en) * 1996-02-20 2000-05-30 Kabushiki Kaisha Yaskawa Denki Controller of multi-axis robot
WO1998053962A1 (en) * 1997-05-28 1998-12-03 Kabushiki Kaisha Yaskawa Denki Robot control method and device

Also Published As

Publication number Publication date
JP3185348B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
EP0463934B1 (en) Time delay controlled processes
Feliu et al. Passivity-based control of single-link flexible manipulators using a linear strain feedback
Grotjahn et al. Model-based feedforward control in industrial robotics
US4914365A (en) Control device for servo motor
JP3506157B2 (en) Motor position control device
JPH0740204B2 (en) Controller for multi-degree-of-freedom nonlinear mechanical system
JPS63314606A (en) Controller for articulated robot
EP1023973B1 (en) Robot control method and device
JPH10309684A (en) Compliance control method of manipulator
JPS615302A (en) Controller of manipulator
US6341244B1 (en) Method and control structure for controlling moments in numerically controlled elastic (and therefore oscillation-capable) multiple mass systems
JP3081518B2 (en) Robot rigidity identification method and device
JPH10217173A (en) Non-interferential control device of robot
JP6496167B2 (en) Tandem position control device
JPH05313752A (en) Robot controller
JP3943061B2 (en) Servo control device
JPH07121239A (en) Control method for robot device
Ren et al. Joint torque control of a collaborative robot based on active disturbance rejection with the consideration of actuator delay
JP3229926B2 (en) Motor position control device
JP2838578B2 (en) Motor control device, disturbance load torque estimation device
JP4038659B2 (en) Servo control device
Feliu et al. A new control scheme of single-link flexible manipulators robust to payload changes
JP3200496B2 (en) Articulated robot controller
JP3582541B2 (en) Positioning control method by sliding mode control
Assanimoghaddam et al. Algebraic estimation and control of single-link flexible joint robots

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees