JPH05313217A - Nonlinear optical element and its production - Google Patents

Nonlinear optical element and its production

Info

Publication number
JPH05313217A
JPH05313217A JP12087892A JP12087892A JPH05313217A JP H05313217 A JPH05313217 A JP H05313217A JP 12087892 A JP12087892 A JP 12087892A JP 12087892 A JP12087892 A JP 12087892A JP H05313217 A JPH05313217 A JP H05313217A
Authority
JP
Japan
Prior art keywords
layer
film
nonlinear optical
optical element
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12087892A
Other languages
Japanese (ja)
Inventor
Nobutoshi Asai
伸利 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12087892A priority Critical patent/JPH05313217A/en
Publication of JPH05313217A publication Critical patent/JPH05313217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the nonlinear optical element which has high wavelength conversion element and has multilayered films of inverted bipoles by widening the selectivity of materials and improving thermal and mechanical stability. CONSTITUTION:This nonlinear optical element has the multilayered structure formed with a first layer 1 and second layer 2 respectively consisting of nonlinear optical materials on a substrate 10 consisting of light transmissive glass, etc. Arrows d1 to d4 (or d11 to d14) respectively show the directions of the bipole moments of the respective layers and the respective layers are so laminated that these directions are counter-paralleled with each other with respect to the film thickness direction. Then, such trouble that the bipole moments of the respective layers adjacent to each other of the multilayered films are reversed during the formation of oriented films is averted and the nonlinear optical element having the inverted multilayered film constitution is stably obtd. The extremely higher conversion efficiency than the conversion efficiency of the nonlinear optical element of the single-layered film constitution is obtd. in the case, for example, a second harmonic wave generating element is obtd. by forming the element into the multilayered film structure in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非線形光学効果が大き
く、波長変換効率の高い薄膜光導波路型非線形光学素子
及びその作製方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film optical waveguide type non-linear optical element having a large non-linear optical effect and a high wavelength conversion efficiency, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来有機非線形光学材料として、π電子
共役系を有する有機化合物は分子として非線形光学性が
大きく注目されている。しかし、この材料を、特にその
2次の非線形性を主に利用した実用デバイスを作製する
ためには、これらの化合物から得られる結晶中、または
アロイ系のマトリクス中で双極子モーメントの方向を揃
えることが必要である。
2. Description of the Related Art Conventionally, as an organic nonlinear optical material, an organic compound having a π-electron conjugated system has attracted great attention as a molecule because of its nonlinear optical property. However, in order to fabricate a practical device mainly using this material, especially its second-order nonlinearity, the directions of dipole moments are aligned in crystals obtained from these compounds or in an alloy matrix. It is necessary.

【0003】一方、例えば第2高調波発生(SHG)
や、光混合などのデバイス作製については、位相整合の
とれた光学特性の膜とすることが重要な事項となる。薄
膜光導波路タイプでの位相整合法は従来いろいろな方法
が報告されている。それらの方法の中で、光導波路の膜
方向に非線形光学定数の符号(有機非線形分子の場合そ
の双極子の方向に対応している)を反転させた分布構造
を形成すると、変換効率が大きく向上するという計算結
果が報告されている(例えば柳川、早田、小柴による
「ドメイン反転構造によるチェレンコフ放射形波長変換
素子の高効率化」、電子情報通信学会論文誌 Vol.J74-C
-1,No.4,1991,p.119-125)。そのような反転構造の膜を
形成する方法として、LiNbO3 を基板に用いた場合
はイオン拡散によるドメイン反転法が例えば上記文献に
示唆されているが、実現していない。
On the other hand, for example, second harmonic generation (SHG)
In addition, when manufacturing a device such as light mixing, it is an important matter to use a film having optical characteristics with phase matching. Various methods have been reported for the phase matching method in the thin film optical waveguide type. In those methods, if the distribution structure in which the sign of the nonlinear optical constant (corresponding to the dipole direction in the case of an organic nonlinear molecule) is inverted in the film direction of the optical waveguide, the conversion efficiency is greatly improved. The calculation results have been reported (for example, Yanagawa, Hayata, and Koshiba “Improved Efficiency of Cherenkov Radiation-Type Wavelength Converter with Domain Inversion Structure”, IEICE Transactions Vol.J74-C.
-1, No. 4,1991, p. 119-125). As a method of forming a film having such an inversion structure, when LiNbO 3 is used as a substrate, a domain inversion method by ion diffusion is suggested, for example, in the above document, but it has not been realized.

【0004】[0004]

【発明が解決しようとする課題】また本出願人は、先に
特願平3−278615号出願において、LB(ラング
ミュア・ブロジェット)法によって、例えばDCANP
(2−ドコシルアミノ−5−ニトロピリジン)有機分子
を用いて基板を反転させる累積法でこのような反転構造
膜を得ることができた。
Further, the applicant of the present invention has previously proposed, for example, DCANP by the LB (Langmuir-Blodgett) method in Japanese Patent Application No. 3-278615.
(2-docosylamino-5-nitropyridine) It was possible to obtain such an inversion structure film by an accumulation method in which the substrate is inverted using an organic molecule.

【0005】LB法とは有機分子を配向して累積する方
法であり、例えば新実験化学講座第18巻「界面とコロ
イド」p.439−516(丸善株式会社1977年発
行)にあるように、水面上に立った状態で単分子層を累
積し、一般には分子が基板に垂直方向に配列したフィル
ムを得る方法である。しかしこのLB法では、目的の薄
膜を作製するためには、材料分子の構造が細長く、その
両端に親水性基及び疎水性基がうまくバランスをとるよ
うに設計された分子であることが要求される。更に単分
子層または累積膜を構成するためには、時間がかかるな
ど生産性、作業性が低く、また膜の機械的、熱的な安定
性に劣る等の問題がある。
The LB method is a method of orienting and accumulating organic molecules, for example, New Experimental Chemistry Course Vol. 18, "Interface and Colloid" p. 439-516 (published by Maruzen Co., Ltd. in 1977), it is a method of accumulating monomolecular layers in a state of standing on the water surface, and generally obtaining a film in which molecules are vertically aligned on a substrate. However, this LB method requires that the structure of the material molecule is elongated and the molecule is designed so that hydrophilic groups and hydrophobic groups are well balanced at both ends in order to produce the target thin film. It Further, in order to form a monomolecular layer or a cumulative film, there are problems that productivity and workability are low due to time-consuming, and the mechanical and thermal stability of the film is poor.

【0006】その他の配向膜作製法としては真空蒸着法
があり、例えば特開昭62−180427号公開公報に
は、一軸配向された高分子フィルムを用いて真空蒸着法
により非線形光学物質が一定の向きに配向した非線形光
学材料を得る方法が示されている。しかしこの方法では
装置自体が複雑高価になることに加えて、反転構造を形
成するにはかなり複雑なプロセスを必要とする。
Another method of forming an alignment film is a vacuum vapor deposition method. For example, in Japanese Patent Laid-Open No. 62-180427, a non-linear optical material having a constant non-linear optical material is formed by a vacuum vapor deposition method using a uniaxially oriented polymer film. A method of obtaining an oriented non-linear optical material is shown. However, in this method, the device itself is complicated and expensive, and a considerably complicated process is required to form the inversion structure.

【0007】また熱可塑性の高分子に有機非線形分子を
混合させ、電場をかけた状態で高分子のガラス転移温度
程度に加熱して配向させたまま冷却して配向膜を作製す
る方法が報告されている(Appl.Phys.Lett.,49(5),248
(1986))。
Further, a method of preparing an alignment film by mixing an organic nonlinear molecule with a thermoplastic polymer, heating the polymer to a glass transition temperature of the polymer under an electric field, and cooling while being aligned has been reported. (Appl.Phys.Lett., 49 (5), 248
(1986)).

【0008】これらの方法は例えば図15AまたはBに
示すように単層の配向膜を有する非線形光学素子の作製
方法には適しているものの、多層膜で隣り合う各層の双
極子モーメントが反転した構造を形成する際、新たに配
向膜を作製する最中に、その前に作製した配向膜の分子
配向を乱して双極子モーメントを逆転させてしまうとい
う問題があった。
Although these methods are suitable for manufacturing a nonlinear optical element having a single-layer alignment film as shown in FIG. 15A or B, for example, a structure in which the dipole moments of adjacent layers in a multilayer film are inverted. When forming a new alignment film, there was a problem that the molecular orientation of the alignment film prepared before was disturbed and the dipole moment was reversed during the formation of the new alignment film.

【0009】上述したように従来の技術で示した方法で
は、製造技術が複雑、長時間を要する、材料が限定され
る等の問題により実際上製造が困難であった双極子が反
転した多層膜を有する非線形光学素子及びその作製方法
を提供するもので、このような素子及びその作製に当た
って材料の選択性の拡大、熱的及び機械的安定性の向上
をはかり、従来構造に比してはるかに高い波長変換効率
を有する非線形光学素子を得ることを目的とする。
As described above, in the method shown in the prior art, the dipole-inverted multilayer film, which is actually difficult to manufacture due to the problems that the manufacturing technique is complicated, it takes a long time, the material is limited, etc. The present invention provides a non-linear optical element having the above and a method for manufacturing the same, and in such an element and its manufacturing, the selectivity of the material is expanded, the thermal and mechanical stability are improved, and the element is far superior to the conventional structure. An object is to obtain a non-linear optical element having high wavelength conversion efficiency.

【0010】[0010]

【課題を解決するための手段】本発明非線形光学素子
は、有機非線形光学化合物を含んでいる透明性高分子薄
膜中で、有機非線形光学化合物の分子双極子モーメント
の方向を、その一例の略線的拡大断面図を図1に示すよ
うに膜厚方向に配向するか、または他の例の略線的拡大
断面図を図2に示すように膜面内方向に配向して、膜厚
方向に分子双極子モーメントの方向が互いに反平行にな
っている層を積層して構成する。
A nonlinear optical element of the present invention is a transparent polymer thin film containing an organic nonlinear optical compound, in which the direction of the molecular dipole moment of the organic nonlinear optical compound is determined by an outline of an example. 1 is oriented in the film thickness direction as shown in FIG. 1, or is a schematic enlarged cross-sectional view of another example oriented in the film plane as shown in FIG. It is constructed by stacking layers whose molecular dipole moments are antiparallel to each other.

【0011】また本発明非線形光学素子の作製方法は、
紫外線および/または電子線の照射により架橋するモノ
マーおよび/またはオリゴマーと、有機非線形光学化合
物との混合物をフィルム状に成形した後、このフィルム
面に垂直な一方向の電場下で、紫外線および/または電
子線の照射によりモノマーおよび/またはオリゴマーを
架橋させて第1層を形成する工程と、その上に上述の混
合物と同材料、混合物を塗布形成し、第1層硬化時とは
逆の電場を印加しながら紫外線および/または電子線の
照射によりモノマーおよび/またはオリゴマーを架橋さ
せて第2層を形成する工程とを、逐次逆の電場を印加し
ながら行い、膜厚方向に分子双極子モーメントの方向が
互いに反平行になっている層を積層して形成する。
The method of manufacturing the nonlinear optical element of the present invention is
After molding a mixture of a monomer and / or oligomer that crosslinks by irradiation with ultraviolet rays and / or electron beams with an organic nonlinear optical compound into a film, the mixture is irradiated with ultraviolet rays and / or under an electric field in one direction perpendicular to the film surface. A step of forming a first layer by crosslinking a monomer and / or an oligomer by irradiation of an electron beam, and applying the same material and mixture as the above-mentioned mixture thereon to form an electric field opposite to that for curing the first layer. The step of cross-linking the monomer and / or oligomer by irradiation with ultraviolet rays and / or electron beams to form the second layer while applying is performed while sequentially applying an electric field opposite to that of the molecular dipole moment in the film thickness direction. It is formed by stacking layers whose directions are antiparallel to each other.

【0012】更にまた本発明による非線形光学素子の作
製方法は、紫外線および/または電子線の照射により架
橋するモノマーおよび/またはオリゴマーと、有機非線
形光学化合物との混合物をフィルム状に成形した後、フ
ィルム面に平行で、光の伝播方向に垂直な方向の電場下
で、紫外線および/または電子線の照射によりモノマー
および/またはオリゴマーを架橋させて第1層を形成す
る工程と、その上に上述の混合物と同材料の混合物を塗
布形成し、第1層硬化時とは逆の電場を印加しながら紫
外線および/または電子線の照射によりモノマーおよび
/またはオリゴマーを架橋させて第2層を形成する工程
とを、逐次逆の電場を印加しながら行い、膜面方向に分
子双極子モーメントの方向が互いに反平行になっている
層を積層して形成する。
Furthermore, the method for producing a non-linear optical element according to the present invention comprises the steps of molding a film of a mixture of an organic non-linear optical compound and a monomer and / or oligomer which are crosslinked by irradiation of ultraviolet rays and / or electron beams, and then forming a film. A step of cross-linking the monomer and / or oligomer by irradiation of ultraviolet rays and / or electron beams to form a first layer under an electric field parallel to the plane and perpendicular to the light propagation direction; A step of forming a second layer by coating and forming a mixture of the same material as the mixture and cross-linking the monomer and / or oligomer by irradiation of ultraviolet rays and / or electron beams while applying an electric field opposite to that at the time of curing the first layer. And are sequentially applied while applying opposite electric fields, and layers are formed by stacking layers whose molecular dipole moments are antiparallel to each other in the film plane direction. That.

【0013】[0013]

【作用】前述したような現状に鑑み、本発明者等は鋭意
検討を重ねた結果、本発明構成及びその作製方法を完成
するに至った。即ち本発明非線形光学素子は、有機非線
形光学化合物を含んで成る透明性高分子フィルム中で、
有機非線形光学化合物の分子双極子モーメントの方向
が、フィルムの厚み方向又は膜面方向に対して平行方向
で且つ一方向に揃っている層があり、隣り合う層でその
双極子モーメントが互いに反平行に配向している多層膜
構造とされたものである。
In view of the above-mentioned current situation, the inventors of the present invention have conducted extensive studies and as a result, have completed the constitution of the present invention and the method of manufacturing the same. That is, the non-linear optical element of the present invention, in a transparent polymer film comprising an organic non-linear optical compound,
There is a layer in which the direction of the molecular dipole moment of the organic nonlinear optical compound is parallel to the thickness direction of the film or the film surface direction and aligned in one direction, and the dipole moments of adjacent layers are antiparallel to each other. It has a multi-layered film structure oriented in the direction of.

【0014】そしてこのような多層膜構造の非線形光学
素子は、上述したように紫外線および/または電子線の
照射、即ち紫外線と電子線とを所定の順序で又は同時に
行うか、或いは紫外線か電子線かどちらか一方を照射す
ることによって架橋するモノマーおよび/またはオリゴ
マー、即ちモノマーおよびオリゴマー又はモノマーかオ
リゴマーかどちらか一方と有機非線形光学化合物との混
合物を用いてこれをフィルム状に成形した後、フィルム
面に垂直な方向の電場下か、或いはフィルム面に平行で
光の伝播方向に垂直な方向の電場下において、紫外線お
よび/または電子線の照射によりモノマーおよび/また
はオリゴマーを架橋させて第1層を形成することにより
この第1層を所定の方向の配向膜として構成し、更にそ
の上に上述の混合物と同材料の混合物を塗布形成し、第
1層硬化時とは逆の電場を印加しながら紫外線および/
または電子線の照射によりモノマーおよび/またはオリ
ゴマーを架橋させて第2層を形成して同様に第2層を所
定の方向の配向膜として構成することによって、簡単且
つ比較的短時間において分子双極子モーメントの方向が
互いに反平行になっている層を積層することができ、こ
のような層を逐次逆の電場を印加しながら積層形成する
ことによって多層膜構造の非線形光学素子を得ることが
できる。
In the non-linear optical element having such a multilayer film structure, as described above, irradiation of ultraviolet rays and / or electron beams, that is, ultraviolet rays and electron beams are performed in a predetermined order or simultaneously, or ultraviolet rays or electron beams are used. A monomer and / or oligomer that is crosslinked by irradiating either one of them, that is, a monomer and an oligomer, or a mixture of one of the monomer and the oligomer and an organic non-linear optical compound, is formed into a film, and then a film is formed. Under an electric field in a direction perpendicular to the surface or in a direction parallel to the film surface and perpendicular to the light propagation direction, the monomer and / or oligomer is cross-linked by irradiation of ultraviolet rays and / or electron beams to form the first layer. To form this first layer as an alignment film in a predetermined direction, and further to form the above-mentioned mixed film on it. And mixtures of the same material is formed by coating, and the time of first layer UV cured and while applying a reverse electric field /
Alternatively, the monomer and / or oligomer is cross-linked by irradiation with an electron beam to form a second layer, and the second layer is similarly configured as an alignment film in a predetermined direction, so that the molecular dipole can be easily and relatively short-timed. It is possible to stack layers in which the directions of moments are antiparallel to each other, and by sequentially stacking such layers while applying opposite electric fields, it is possible to obtain a nonlinear optical element having a multilayer film structure.

【0015】そしてこのように多層膜構造とすることに
よって、例えば第2高調波発生素子を得る場合に単層膜
構成の非線形光学素子に比して非常に大きな変換効率を
得ることができる。
With such a multi-layered film structure, a very large conversion efficiency can be obtained when, for example, a second harmonic generation element is obtained, as compared with a nonlinear optical element having a single-layered film structure.

【0016】[0016]

【実施例】以下本発明非線形光学素子を図面を参照して
その製造方法と共に詳細に説明するが、本発明はこれら
に限定されるものではない。この例においては、本発明
をSHG変換素子に適用した場合を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The non-linear optical element of the present invention will be described in detail below with reference to the drawings together with its manufacturing method, but the present invention is not limited to these. In this example, the case where the present invention is applied to an SHG conversion element is shown.

【0017】本発明で用いる有機非線形光学化合物と
は、分子内にπ電子共役系骨格を有し、電荷移動の程度
の大きい有機化合物である。このような有機化合物は例
えば「有機非線形光学材料」(加藤政雄、中西八郎監修
CMC編)等により既によく知られている。具体的に
は、下記化1に示す尿素誘導体、化2に示すニトロアニ
リン誘導体、化3に示すエノン誘導体、化4に示すスチ
ルベン誘導体及びメロシアニン誘導体、ニトロアゼン誘
導体、その他化5に示す複素環誘導体などを上げること
ができる。
The organic nonlinear optical compound used in the present invention is an organic compound having a π-electron conjugated skeleton in the molecule and having a large degree of charge transfer. Such organic compounds are already well known, for example, in “Organic nonlinear optical material” (edited by Masao Kato and Hachiro Nakanishi, CMC). Specifically, a urea derivative shown in the following chemical formula 1, a nitroaniline derivative shown in the chemical formula 2, an enone derivative shown in the chemical formula 3, a stilbene derivative and a merocyanine derivative shown in the chemical formula 4, a nitroazene derivative, and a heterocyclic derivative shown in the other chemical formula 5 Can be raised.

【0018】[0018]

【化1】 [Chemical 1]

【0019】[0019]

【化2】 [Chemical 2]

【0020】[0020]

【化3】 [Chemical 3]

【0021】[0021]

【化4】 [Chemical 4]

【0022】[0022]

【化5】 [Chemical 5]

【0023】有機非線形光学化合物を混合して、光又は
熱で硬化するタイプの材料としては、フィルム成形が可
能なものであれば特に制限はないが、自然光に対する透
過率が80%以上あるものが望ましい。そのような材料
の例として、紫外線および/または電子線の照射により
架橋するモノマー/またはオリゴマーを利用できる。例
えばポリエステルアクリレート系、ポリエポキシアクリ
レート系、ポリエステルアクリレート系化合物ポリオー
ルアクリレート系などを上げることができ、これらを2
種以上混合して用いても良い。具体例として、ポリエス
テルアクリレート系化合物の一例を下記の化6に示す。
There is no particular limitation on the type of material which is mixed with an organic nonlinear optical compound and is cured by light or heat, as long as it can be formed into a film, but a material having a transmittance of 80% or more for natural light is used. desirable. As an example of such a material, a monomer / or oligomer that crosslinks upon irradiation with ultraviolet rays and / or electron beams can be used. For example, polyester acrylate type, polyepoxy acrylate type, polyester acrylate type compound polyol acrylate type, etc. can be used.
You may use it in mixture of 2 or more types. As a specific example, an example of a polyester acrylate compound is shown in Chemical Formula 6 below.

【0024】[0024]

【化6】 [Chemical 6]

【0025】又、架橋の際、必要に応じて光開始剤を使
用しても良い。光開始剤としては、例えばアセトフェノ
ン類、ベンゾフェノン類、ミヒラーケトン類、ベンジル
類、ベンゾイン類、ベンゾインエーテル類、ベンジルメ
チルケタール類、チチオキサントン類などを上げること
ができる。
Further, at the time of crosslinking, a photoinitiator may be used if necessary. Examples of the photoinitiator include acetophenones, benzophenones, Michler's ketones, benzyls, benzoins, benzoin ethers, benzylmethyl ketals, and thithioxanthones.

【0026】具体的には、アセトフェノン、ベンゾフェ
ノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾ
インイソブチルエーテル、ベンジルメチルケタール、1
−ヒドロキシシクロヘキシルフェニルケトン、2−ヒド
ロキシ−2−ジメチル−1−フェニルプロパン−1−オ
ン、アゾビスイソブチルニトリル、ベンゾイルパーオキ
サイドなどである。
Specifically, acetophenone, benzophenone, Michler's ketone, benzyl, benzoin, benzoin isobutyl ether, benzyl methyl ketal, 1
-Hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-dimethyl-1-phenylpropan-1-one, azobisisobutylnitrile, benzoyl peroxide and the like.

【0027】架橋条件としては、通常行われている条件
を支障なく使用できるが、酸素を排除した雰囲気のほう
が硬化特性が良く望ましい。このような硬化性樹脂を用
いた非線形光学フィルムの作製法としては、例えば特開
昭2−281240〜281242号公開公報に示され
ている。
As the cross-linking conditions, the conditions which are usually used can be used without any problem, but an oxygen-free atmosphere is preferable because the curing property is better. A method for producing a non-linear optical film using such a curable resin is disclosed, for example, in JP-A-2-281240-281242.

【0028】本発明においては、有機非線形化合物の分
子双極子モーメントをフィルム厚み方向に平行で且つ一
方向に並んだ層と、それに隣合ってフィルム厚み方向に
平行で且つ反対の一方向に並んだ層をそれぞれ適切な厚
さで作製する方法としては、例えば以下の方法を上げる
ことができる。
In the present invention, the molecular dipole moments of the organic non-linear compound are arranged parallel to the film thickness direction and arranged in one direction, and adjacent to the layer arranged in parallel to the film thickness direction and opposite one direction. As a method for producing each layer with an appropriate thickness, for example, the following method can be used.

【0029】即ち、表面が平坦な透明基板上にスピンコ
ート法などで、紫外線及び/又は電子線の照射及び/又
は加熱により架橋するモノマー及び/又はオリゴマーと
有機非線形光学化合物との混合物を薄膜上に形成する。
その際に必要に応じて溶剤などを併用しても良いが、膜
形成後は良く溶剤を蒸発させる必要がある。
That is, a mixture of a monomer and / or oligomer and an organic nonlinear optical compound, which are crosslinked by irradiation of ultraviolet rays and / or electron beams and / or heating, is applied on a thin film by a spin coating method or the like on a transparent substrate having a flat surface. To form.
At that time, a solvent or the like may be used in combination if necessary, but it is necessary to evaporate the solvent well after the film formation.

【0030】その後例えばコロナ放電法により、又は例
えば予め基板上に形成した対向電極に高電圧を印加し
て、膜面に垂直方向或いは膜面方向に電場を加えた状態
で、紫外線及び/又は電子線の照射及び/又は加熱によ
り、膜内のモノマー及び/又はオリゴマーを架橋させ、
膜を硬化させる。これにより、膜内にある非線形光学化
合物もその双極子モーメントが膜面に垂直な一方向或い
は膜面に平行な一方向に配向して固定される。
Thereafter, for example, by a corona discharge method, or by applying a high voltage to a counter electrode formed on a substrate in advance and applying an electric field in the direction perpendicular to the film surface or in the film surface direction, ultraviolet rays and / or electrons are emitted. Irradiation with radiation and / or heating crosslinks the monomers and / or oligomers in the film,
Cure the film. As a result, the non-linear optical compound in the film is also fixed with its dipole moment oriented in one direction perpendicular to the film surface or one direction parallel to the film surface.

【0031】次に第1層を形成した上に第2層を形成す
る。塗布工程までは第1層作製の際と同じである。ただ
し非線形光学化合物及び、紫外線及び/又は電子線の照
射及び/又は加熱により架橋するモノマー及び/又はオ
リゴマーは必ずしも第1層と同じである必要はない。膜
厚も第1層と異なって良く、それらは、非線形光学薄膜
としての設計を基に決めることができる。
Next, a second layer is formed on the first layer. Up to the coating step, it is the same as in the first layer production. However, the non-linear optical compound and the monomer and / or oligomer that are crosslinked by irradiation with ultraviolet rays and / or electron beams and / or heating are not necessarily the same as those in the first layer. The film thickness may also be different from the first layer, which can be determined based on the design as a nonlinear optical thin film.

【0032】そして特に第2層目の膜を硬化させるとき
は、第1層とは電場が逆向きになった環境にすることが
必要である。これには、コロナ放電電極或いは基板上に
形成した電極を第1層の場合と極性を逆にすれば良い。
この状態で紫外線及び/又は電子線の照射及び/又は加
熱により架橋するモノマー及び/又はオリゴマーを架橋
させ、膜を硬化させる。
In particular, when curing the second layer film, it is necessary to create an environment in which the electric field is opposite to that of the first layer. For this purpose, the polarity of the corona discharge electrode or the electrode formed on the substrate may be reversed from that in the case of the first layer.
In this state, the monomer and / or oligomer that crosslink is crosslinked by irradiation with ultraviolet rays and / or electron beams and / or heating to cure the film.

【0033】更に、非線形光学薄膜としての設計を基に
必要に応じて第3層以上を形成しても良い。このとき奇
数層目と偶数層目を硬化形成する際に、コロナ放電など
の電極の極性を反転し、印加する電場の方向を逆転させ
ることが重要である。ここで最後に形成する層、即ち最
上層の材料としては、硬化性の樹脂ではなく通常の熱可
塑性樹脂を用いても構わない。
Further, a third layer or more may be formed, if necessary, based on the design as a non-linear optical thin film. At this time, when the odd-numbered layer and the even-numbered layer are cured and formed, it is important to reverse the polarities of the electrodes such as corona discharge and reverse the direction of the applied electric field. Here, as the material of the last layer formed, that is, the uppermost layer, a usual thermoplastic resin may be used instead of the curable resin.

【0034】このような隣り合う層が互いに反平行な分
極率モーメントを持った多層膜構造にする目的は、例え
ばSHGなど波長変換の効率を高めることにある。そこ
で、各層の厚さ、屈折率、非線形光学定数などを設計に
併せて作製する必要がある。この設計の指針になる計算
法としては、例えば薄膜の導波モードの基本波から導波
モードのSHGへの変換を考える場合は、例えば A.Yar
ivによる“Coupled-mode theory for guided-wave opti
cs”(IEEE Journal of Quantum Electronics,vol.QE-9,
919(1973))に詳細に記してあり、薄膜の導波モードの基
本波から放射モードのSHGへの変換を考える場合は、
例えば H.Tamada による“Coupled-modeanalysis of se
cond harmonic generation in the form of Cerenkov r
adiation from a planar optical waveguide”(IEEE Jo
urnal of Quantum Electronics, vol.27,502(1991)) に
詳細が記されている。
The purpose of forming a multilayer film structure in which adjacent layers have polarizability moments antiparallel to each other is to enhance the efficiency of wavelength conversion such as SHG. Therefore, it is necessary to design the thickness, refractive index, nonlinear optical constant, etc. of each layer in accordance with the design. As a calculation method that serves as a guideline for this design, for example, when considering conversion of a fundamental wave of a guided mode of a thin film into a SHG of a guided mode, for example, A.Yar
iv by “Coupled-mode theory for guided-wave opti
cs ”(IEEE Journal of Quantum Electronics, vol.QE-9,
919 (1973)), when considering the conversion of the fundamental wave of the guided mode of the thin film to the SHG of the radiation mode,
For example, “Coupled-mode analysis of se” by H. Tamada
cond harmonic generation in the form of Cerenkov r
adiation from a planar optical waveguide ”(IEEE Jo
urnal of Quantum Electronics, vol.27,502 (1991)).

【0035】これらの方法では、モード結合理論によ
り、基本波及び第2高調波の非線形導波路中での電界の
様子を計算し、それらの重畳積分、正確には基本波の電
界の2乗と第2高調波の電界との重畳積分からSHG変
換効率を計算する方法である。そこで、非線形導波路内
で第2高調波の電界の符号が変わる厚さ方向の位置で、
非線形光学化合物の分極率モーメントの配向方向を逆転
させれば、大きな波長変換効率が得られる。このことに
ついては既に例えば前述の特願平3−278615号出
願において説明されている。
In these methods, the mode of the electric field in the nonlinear waveguide of the fundamental wave and the second harmonic is calculated by the mode coupling theory, and their superposition integral, more precisely, the square of the electric field of the fundamental wave is calculated. This is a method of calculating the SHG conversion efficiency from the superposition integration with the electric field of the second harmonic. Therefore, at the position in the thickness direction where the sign of the electric field of the second harmonic changes in the nonlinear waveguide,
A large wavelength conversion efficiency can be obtained by reversing the orientation direction of the polarizability moment of the nonlinear optical compound. This has already been described in the above-mentioned Japanese Patent Application No. 3-278615, for example.

【0036】本発明による非線形光学素子の各例の層構
造を図1及び図2に示し、従来構造による非線形光学素
子の一例の層構造を図15に示す。図1及び図2に示す
ように本発明非線形光学素子においては光透過性のガラ
ス等より成る基板10上に、それぞれ非線形光学材料よ
り成る第1層1及び第2層2が形成された多層構造を有
し、従来構造においては図15に示すように基板10上
に単層の非線形材料層20が形成されて構成される。図
1及び図2において、矢印d1 〜d4 (またはd11〜d
14)はそれぞれ各層の双極子モーメントの向きを示し、
膜厚方向に関して互いに反平行になるように各層が積層
される。図15A及びBにおいてd31及びd32、または
33及びd34はそれぞれ材料層20内の双極子モーメン
トの向きを示す。
The layer structure of each example of the nonlinear optical element according to the present invention is shown in FIGS. 1 and 2, and the layer structure of an example of the conventional nonlinear optical element is shown in FIG. As shown in FIGS. 1 and 2, in the nonlinear optical element of the present invention, a multilayer structure in which a first layer 1 and a second layer 2 each made of a nonlinear optical material are formed on a substrate 10 made of light transmissive glass or the like. In the conventional structure, as shown in FIG. 15, a single-layer nonlinear material layer 20 is formed on the substrate 10. 1 and 2, arrows d 1 to d 4 (or d 11 to d)
14 ) indicates the direction of dipole moment of each layer,
The layers are laminated so as to be antiparallel to each other in the film thickness direction. In FIGS. 15A and 15B, d 31 and d 32 , or d 33 and d 34 indicate the directions of dipole moments in the material layer 20, respectively.

【0037】本実施例においては、このような反転累積
構造の光導波路の設計を行い、これに基いて第2高調波
発生素子を夫々その双極子モーメントの向きを変えて作
製した。以下の各例においては、下記化7に示す材料M
NA(3−メチル−4−ニトロアニリン)を、紫外線硬
化型のオリゴマーSD−17(大日本インキ社製、商品
名)に添加した材料と、ガラス基板FC5(HOYAガ
ラス社製、商品名)とを用いて作製した。
In this embodiment, an optical waveguide having such an inversion-accumulation structure was designed, and based on this, the second harmonic generation elements were manufactured by changing the directions of their dipole moments. In each of the following examples, the material M shown in Chemical formula 7 below
A material in which NA (3-methyl-4-nitroaniline) was added to an ultraviolet curable oligomer SD-17 (manufactured by Dainippon Ink and Chemicals, Inc., product name), and a glass substrate FC5 (manufactured by HOYA Glass, product name) Was manufactured using.

【0038】[0038]

【化7】 [Chemical 7]

【0039】下記の表1に添加材料及びガラス基板の、
基本波及び第2高調波に対応する屈折率を示す。
Table 1 below shows the additive materials and the glass substrate,
The refractive index corresponding to a fundamental wave and a 2nd harmonic is shown.

【0040】[0040]

【表1】 [Table 1]

【0041】表1においてMNA5%添加SD−17の
硬化後の屈折率は、無配向状態で硬化した厚さ1mmの
膜に対し、アッベ屈折計2T(アタゴ社製、商品名)で
d(フラウンホーファーd線に対する屈折率)とνd
(フラウンホーファーd線に対するアッベ数)とを測定
してその結果から求めたものである。配向ポリマーは、
電界印加方向とその垂直方向でわずかに屈折率に差(複
屈折)が生じる。これは配向の程度、非線形分子の添加
量による。今回はわずか5%の添加であり配向程度もか
なり低めの状態で行うことを想定し、複屈折を無視して
設計を行った。
In Table 1, the refractive index of SD-17 containing 5% MNA after curing was n d (measured by Abbe refractometer 2T (trade name, manufactured by ATAGO Co., Ltd.) with respect to a film having a thickness of 1 mm cured in an unoriented state. Fraunhofer d-line) and ν d
(Abbe number with respect to Fraunhofer d-line) and was obtained from the result. The oriented polymer is
A slight difference (birefringence) occurs in the refractive index between the direction in which the electric field is applied and the direction perpendicular thereto. This depends on the degree of orientation and the addition amount of the non-linear molecule. This time, assuming that the addition is only 5% and the degree of orientation is considerably low, the design was performed by ignoring the birefringence.

【0042】前述のH.Tamadaによる文献に従って、変換
効率を計算した結果を図3中線aで示す。この場合非線
形光学定数の絶対値が見積もれないので、縦軸のスケー
ルは相対的なSHG変換効率を示す。
The result of calculating the conversion efficiency according to the above-mentioned document by H. Tamada is shown by a line a in FIG. In this case, since the absolute value of the non-linear optical constant cannot be estimated, the scale on the vertical axis shows the relative SHG conversion efficiency.

【0043】このうち膜厚が1.09μmの場合の電界
分布の様子を図4に示す。図4において実線Rは基本波
導波モード電界の2乗、実線SはSHG放射モード電界
の2乗を示す。これから分かるように、SHG放射モー
ドの電界は導波路内で反転しているため、変換効率に2
乗で影響する重なり積分の値は大きく低下する。
FIG. 4 shows the distribution of the electric field when the film thickness is 1.09 μm. In FIG. 4, the solid line R shows the square of the fundamental wave guided mode electric field, and the solid line S shows the square of the SHG radiation mode electric field. As can be seen from this, the electric field of the SHG radiation mode is inverted in the waveguide, so that the conversion efficiency is 2
The value of the overlap integral, which is affected by the power, is greatly reduced.

【0044】これに対し、図4における電界反転位置P
で非線形性を反転させた場合の変換効率を図3の線bで
示す。この場合線aに比し大きく変換効率が向上するこ
とが分かる。線cはチェレンコフ放射角の膜厚依存性を
示す。
On the other hand, the electric field reversal position P in FIG.
The conversion efficiency when the non-linearity is inverted by is shown by the line b in FIG. In this case, it can be seen that the conversion efficiency is greatly improved as compared with the line a. Line c shows the film thickness dependence of the Cherenkov radiation angle.

【0045】変換効率が最大となる膜厚1090nmで
のSHG電界反転位置は基板から400nmであり、そ
こで最初に400nmの配向膜を作製しその上に690
nmの反平行配向膜を作製すれば、図3において線bで
示すように高い変換効率を有する非線形光学素子を得る
ことができることが分かる。
The SHG electric field reversal position at the film thickness of 1090 nm at which the conversion efficiency is maximum is 400 nm from the substrate, and therefore, an alignment film of 400 nm is first formed and 690 is formed thereon.
It can be seen that a non-linear optical element having a high conversion efficiency can be obtained as shown by the line b in FIG. 3 by producing an antiparallel alignment film having a thickness of nm.

【0046】この設計に基づき非線形光学素子の作製を
行った。表面を光学研磨したガラス基板、例えば厚さ1
mm、縦及び横の長さが30mmのFC5(HOYAガ
ラス社製、商品名)より成る基板上に、上述のMNA5
%添加SD−17等より成る非線形光学化合物を含有す
る溶液をスピンコート法で塗布する。膜厚は、SD−1
7オリゴマーにアセトンを添加して濃度を調節すること
と、スピンナーの回転数を1500rpm〜7000r
pm程度に変えることで制御することができる。
A non-linear optical element was manufactured based on this design. A glass substrate whose surface is optically polished, eg, thickness 1
mm, the length and width of 30 mm, FC5 (manufactured by HOYA Glass Co., Ltd.) on the substrate, the above MNA5
A solution containing a non-linear optical compound consisting of% added SD-17 or the like is applied by spin coating. The film thickness is SD-1
Acetone was added to 7 oligomers to adjust the concentration, and the rotation speed of the spinner was 1500 rpm to 7000 r.
It can be controlled by changing to about pm.

【0047】これに対し、コロナ放電法を用いて膜面に
垂直な方向に電界を印加して膜面に垂直な方向へ双極子
モーメントを配向させた。コロナ放電法は、このような
ポリマーなどのマトリックス中の非線形光学化合物を膜
面に垂直方向へ配向するための効果的な方法である。コ
ロナ放電装置の一例を図5に示す。図5において11は
ベース、12は素子試料、13は放電グリッド、14は
高圧電源、15は極性反転用スイッチ、16はUV光
(紫外光)ファイバー、17はUVランプを示す。電圧
は、+5kVとして放電開始後5分ほどあとに紫外線を
照射して硬化させた。
On the other hand, an electric field was applied in the direction perpendicular to the film surface by the corona discharge method to orient the dipole moment in the direction perpendicular to the film surface. The corona discharge method is an effective method for orienting a nonlinear optical compound in a matrix such as a polymer in a direction perpendicular to the film surface. An example of the corona discharge device is shown in FIG. In FIG. 5, 11 is a base, 12 is an element sample, 13 is a discharge grid, 14 is a high-voltage power supply, 15 is a switch for polarity reversal, 16 is a UV light (ultraviolet light) fiber, and 17 is a UV lamp. The voltage was set to +5 kV, and ultraviolet rays were irradiated for curing about 5 minutes after the start of discharge.

【0048】硬化後の膜厚をαステップ等の触針式膜厚
計で測定し、400nm±20nmの厚さのものを選ん
だ。また膜厚むらを測定したところほぼ5%程度で形成
できた。
The film thickness after curing was measured by a stylus type film thickness meter such as α step, and a film having a thickness of 400 nm ± 20 nm was selected. Further, when the film thickness unevenness was measured, it was possible to form the film with a thickness of approximately 5%.

【0049】次に形成した第1層の上に、第1層作製時
と同じ要領でスピンコートする。その後コロナ放電装置
の下に置き、第1層形成時とは逆の極性で放電させる。
第1層と同じように放電電圧は5kV程度として放電開
始後5分ほどあとに紫外線を照射して、硬化させた。そ
の後膜厚を測定しトータルの厚さが1090nmになっ
たものを実施例1とする。即ちこの場合図1に示すよう
に、第1層1の双極子モーメントが矢印d1 で示す如く
上向き、第2層2の双極子モーメントが矢印d 2 で示す
如く下向きとなるようにし、各層1及び2の厚さt1
びt2 をそれぞれ約400nm、約690nmとして構
成した。
When the first layer is formed on the next formed first layer
Spin coat in the same way as. Then corona discharge device
Underneath and discharge with a polarity opposite to that used when forming the first layer.
As with the first layer, the discharge voltage was set to about 5 kV and the discharge started.
About 5 minutes after the start, ultraviolet rays were irradiated to cure the composition. So
After the film thickness is measured, the total thickness becomes 1090 nm.
This is referred to as Example 1. That is, in this case, as shown in FIG.
And the dipole moment of the first layer 1 is the arrow d1As shown in
Upward, the dipole moment of the second layer 2 is indicated by the arrow d. 2Indicated by
And the thickness t of each layer 1 and 2 is1Over
And t2Of about 400 nm and about 690 nm, respectively.
I made it.

【0050】また比較例として、1層、2層をそれぞれ
スピンコートし、電場を印加しない状態で非線形光学化
合物の双極子モーメントの方向がランダムに配向した状
態で硬化させた図6に示す比較例1、更に1層、2層を
形成する際に、どちらも同じ向きの電場を印加しながら
硬化させた図7に示す比較例2を作製した。図7におい
て矢印d5 及びd6 は各層の配向方向を示す。比較例1
及び2の1層と2層の厚さt13及びt14、t5 及びt6
は実施例1における各層の厚さt1 及びt2 と同様に選
定した。
As a comparative example, one layer and two layers were spin-coated, respectively, and cured in a state in which the directions of the dipole moment of the nonlinear optical compound were randomly oriented without applying an electric field, and the comparative example shown in FIG. A comparative example 2 shown in FIG. 7 was produced in which curing was performed while applying an electric field in the same direction when forming 1, 1 layer, and 2 layers. In FIG. 7, arrows d 5 and d 6 indicate the orientation direction of each layer. Comparative Example 1
1 and 2 layer thicknesses t 13 and t 14 , t 5 and t 6
Was selected similarly to the thicknesses t 1 and t 2 of each layer in Example 1.

【0051】実施例1、比較例1及び2による非線形光
学素子に対して、YAGレーザを入射してチェレンコフ
放射SHG光を観測した。その際フィルムの端面からレ
ーザを効率よく入射するためにガラス基板ごとカットし
てその端面からレーザを顕微鏡の対物レンズで絞って入
射させた。光学系を図8に示す。図8において31はY
AGレーザで、偏光レンズ等により矢印E1 で示すよう
にレーザ光が垂直方向に偏光され、このYAGレーザ3
1からのレーザ光をシリンドリカルレンズ32及び対物
レンズ33を介して試料34に入射し、この試料34か
らの出力光即ちSHG光をIRカットフィルター35を
介して光検出器36に入力する。
A YAG laser was incident on the nonlinear optical elements according to Example 1 and Comparative Examples 1 and 2, and Cherenkov radiated SHG light was observed. At that time, in order to efficiently enter the laser from the end face of the film, the glass substrate was cut together and the laser was narrowed down from the end face with the objective lens of the microscope and made incident. The optical system is shown in FIG. In FIG. 8, 31 is Y
With the AG laser, the laser light is vertically polarized by a polarizing lens or the like as shown by an arrow E 1 , and the YAG laser 3
The laser light from No. 1 is incident on the sample 34 via the cylindrical lens 32 and the objective lens 33, and the output light from this sample 34, that is, the SHG light is input to the photodetector 36 via the IR cut filter 35.

【0052】このような構成において、レーザパワーを
焦点位置で約1kWとし、ビームサイズを膜に平行な方
向に200μm、膜に垂直な方向に約10μmとし、レ
ーザ照射時間を60ns、繰り返しを6kHzとしてS
HG光の観測を行った。この結果を図9に示す。図9に
おいて実線A〜Cはそれぞれ実施例1、比較例1及び2
におけるSHG強度を示す。
In such a structure, the laser power is about 1 kW at the focal position, the beam size is 200 μm in the direction parallel to the film, about 10 μm in the direction perpendicular to the film, the laser irradiation time is 60 ns, and the repetition is 6 kHz. S
The HG light was observed. The result is shown in FIG. In FIG. 9, solid lines A to C represent Example 1 and Comparative Examples 1 and 2, respectively.
The SHG intensity | strength in.

【0053】この結果、上述の実施例1及び比較例1か
らはチェレンコフ角4°のSHGが認められた。実施例
1の明るさは比較例1に比し約20倍程度以上であるこ
とをSiパワーメータより成る光検出器36によって確
認した。比較例2からはSHG光は認められなかった。
As a result, SHG having a Cherenkov angle of 4 ° was recognized from Example 1 and Comparative Example 1 described above. It was confirmed by the photodetector 36 including a Si power meter that the brightness of Example 1 was about 20 times higher than that of Comparative Example 1. From Comparative Example 2, SHG light was not recognized.

【0054】次に、図2に示すように、各層の面内方向
に双極子モーメントを有する非線形光学素子を作製し
た。この例においては、上述の実施例1と同様の材料に
よる基板10上に、先ず図10に示すように、Al等よ
り成る電極21を例えば100μmの間隔Wを保持して
パターニング形成し、これを覆うように例えば厚さ10
0nmのSiO2 等より成る絶縁層22を被着し、この
後上述の実施例と同様にMNA5%添加SD−17等よ
り成る材料をスピンコート法等により塗布する。そして
図11に示すように、基板10に形成した対向電極21
に5kVの電圧を印加して膜面に平行に非線形光学分子
の双極子モーメントを配向させ、これと同時に紫外線を
照射して、膜を硬化させた。この場合においても膜厚を
αステップ等の触針式膜厚系で測定し、第1層1の厚さ
3 が400nm±20nmのものを選定した。そして
この上に同様に第2層2をスピンコート法等により塗布
した後、第1層1硬化時とは逆の極性をもって5kV程
度の電圧を印加して第2層2を厚さt4 をほぼ690n
mとして硬化形成し、非線形光学素子を作製した。この
場合においてもトータルの膜厚が1090nmとなるよ
うに選定し、これを実施例2として光学特性を測定し
た。
Next, as shown in FIG. 2, a non-linear optical element having a dipole moment in the in-plane direction of each layer was produced. In this example, first, as shown in FIG. 10, electrodes 21 made of Al or the like are patterned and formed with a distance W of, for example, 100 μm held, on a substrate 10 made of the same material as in the first embodiment. To cover, for example, thickness 10
An insulating layer 22 made of SiO 2 or the like having a thickness of 0 nm is deposited, and thereafter, a material such as SD-17 with MNA added at 5% is applied by a spin coating method or the like as in the above-mentioned embodiment. Then, as shown in FIG. 11, the counter electrode 21 formed on the substrate 10
A voltage of 5 kV was applied to the film to orient the dipole moment of the nonlinear optical molecule parallel to the film surface, and at the same time, ultraviolet rays were irradiated to cure the film. Also in this case, the film thickness was measured by a stylus type film thickness system such as α step, and the first layer 1 having a thickness t 3 of 400 nm ± 20 nm was selected. Then, a second layer 2 is similarly applied thereon by a spin coating method or the like, and then a voltage of about 5 kV is applied with a polarity opposite to that used for curing the first layer 1 to form the second layer 2 with a thickness t 4 . Almost 690n
A non-linear optical element was produced by curing and forming m. Also in this case, the total film thickness was selected to be 1090 nm, and the optical characteristics were measured using this as Example 2.

【0055】そしてこの場合においても、図6において
説明した例と同様に、双極子モーメントの方向がランダ
ムに配向した状態で硬化させた比較例3、更に図12に
おいて矢印d7 及びd8 で示すように、第1層1及び第
2層2を形成する際にどちらも膜面に平行な同じ向きの
電場を印加しながら硬化させた比較例4を作製した。こ
れら比較例3及び4においては、各層1及び2の厚さt
13及びt14、t7 及びt8 を上述の実施例2における厚
さt3 及びt4 と同様に選定した。
Also in this case, as in the example described with reference to FIG. 6, Comparative Example 3 was cured in a state in which the dipole moment directions were randomly oriented, and further shown by arrows d 7 and d 8 in FIG. As described above, Comparative Example 4 was prepared in which the first layer 1 and the second layer 2 were both cured while being applied with an electric field in the same direction parallel to the film surface. In these Comparative Examples 3 and 4, the thickness t of each layer 1 and 2 is t.
13 and t 14 , t 7 and t 8 were selected in the same manner as the thicknesses t 3 and t 4 in Example 2 described above.

【0056】これら実施例2、比較例3及び4におい
て、図8において説明したと同様の光学系を用いて、こ
の場合YAGレーザ31からのレーザ光を矢印E2 で示
すように水平方向に偏光させて入射させ、またレーザパ
ワーを焦点位置で約1kW、ビームサイズを膜に平行方
向に200μm、膜に垂直な方向に約10μmとし、レ
ーザ照射時間は60ns、繰り返しは6kHzとして測
定を行った。この結果を図13に示す。図13において
実線Dは実施例2、実線Eは比較例3、実線Fは比較例
4の結果をそれぞれ示す。この場合においても、実施例
2及び比較例3からSHGを認めることができ、実施例
2におけるSHG光は比較例3に比し約20倍程度以上
明るいことをSiパワーメータで確認した。また、比較
例4からはSHG光は認められなかった。
In these Examples 2 and Comparative Examples 3 and 4, the same optical system as described in FIG. 8 was used, and in this case, the laser light from the YAG laser 31 was polarized in the horizontal direction as shown by arrow E 2. The laser power was set to about 1 kW at the focal position, the beam size was set to 200 μm in the direction parallel to the film, and set to about 10 μm in the direction perpendicular to the film, the laser irradiation time was set to 60 ns, and the measurement was repeated at 6 kHz. The result is shown in FIG. In FIG. 13, the solid line D shows the results of Example 2, the solid line E shows the results of Comparative Example 3, and the solid line F shows the results of Comparative Example 4. Also in this case, SHG can be recognized from Example 2 and Comparative Example 3, and it was confirmed with the Si power meter that the SHG light in Example 2 was about 20 times brighter than that in Comparative Example 3. In addition, SHG light was not observed in Comparative Example 4.

【0057】また、図14に示すようにチャンネル導波
路型の非線形光学素子を作製することもできる。即ち基
板43上に有機非線形光学化合物より成るチャンネル型
光導波路44及び45を積層して構成し、これらを覆う
ようにクラッド層46を被着形成して得ることができ
る。この場合、硬化するために照射するUV光源として
UVレーザを対物レンズで絞り、走査照射することで各
チャンネル型光導波路を形成することができる。
Further, as shown in FIG. 14, a channel waveguide type non-linear optical element can be manufactured. That is, it can be obtained by laminating the channel type optical waveguides 44 and 45 made of an organic nonlinear optical compound on the substrate 43 and depositing and forming the cladding layer 46 so as to cover them. In this case, each channel type optical waveguide can be formed by squeezing and irradiating a UV laser as a UV light source for irradiation for curing with an objective lens.

【0058】このようなチャンネル型光導波路は、非線
形光学素子としてはスラブ導波路型の非線形光学素子よ
り高性能であり、例えば波長変換素子であればその変換
効率が大幅に上昇する。またクラッド層として別のポリ
マー等を導波路層に形成することも可能であり、導波路
層を保護するという利点の他、このクラッド層として最
適な屈折率の材料を選定することで更に変換効率の向上
をはかることができる。
Such a channel type optical waveguide has a higher performance than a slab waveguide type non-linear optical element as a non-linear optical element. For example, in the case of a wavelength conversion element, its conversion efficiency is significantly increased. It is also possible to form another polymer or the like in the waveguide layer as the clad layer, and in addition to the advantage of protecting the waveguide layer, selecting a material with an optimum refractive index for this clad layer further improves conversion efficiency. Can be improved.

【0059】尚、本発明非線形光学素子は、上述の実施
例に限定されるものではなく、その他種々の材料や双極
子モーメントの方向の構成等において変形変更を成し得
るものであり、またその作製方法も種々の態様を採り得
ることはいうまでもない。
The non-linear optical element of the present invention is not limited to the above-mentioned embodiments, but can be modified in various other materials, the configuration of the dipole moment direction, and the like. It goes without saying that the manufacturing method can also adopt various aspects.

【0060】[0060]

【発明の効果】上述したように本発明非線形光学素子及
びその作製方法によれば、従来実際上製造が困難であっ
た双極子が反転した多層膜を有する非線形光学素子を得
ることができる。即ち多層膜で隣合う各層の双極子モー
メントが配向膜作製中に逆転してしまう等の不都合を回
避することができて、安定に反転多層膜構成の非線形光
学素子を得ることができると共に、このような素子及び
その作製に当たって材料の選択性の拡大、熱的及び機械
的安定性の向上をはかり、従来構造に比してはるかに高
い波長変換効率を有する非線形光学素子を得ることがで
きる。
As described above, according to the nonlinear optical element of the present invention and the manufacturing method thereof, it is possible to obtain a nonlinear optical element having a multilayer film in which dipoles are inverted, which has been difficult to manufacture in the past. That is, it is possible to avoid the inconvenience that the dipole moments of adjacent layers in the multilayer film are reversed during the preparation of the alignment film, and it is possible to stably obtain the nonlinear optical element having the inverted multilayer film structure. In such an element and its production, it is possible to obtain a nonlinear optical element having a much higher wavelength conversion efficiency than that of the conventional structure by expanding the material selectivity and improving the thermal and mechanical stability.

【0061】特に反転多層膜構成を採る導波路型SHG
素子に適用する場合、そのSHG変換効率を従来に比し
20倍程度以上に高めることができる。また光和周波発
振素子や光差周波発振素子を作製する場合にも適用する
ことができる。
In particular, a waveguide type SHG adopting an inversion multilayer film structure.
When applied to a device, its SHG conversion efficiency can be increased to about 20 times or more as compared with the conventional one. It can also be applied to the case of producing a photo-sum frequency oscillating element or a photo-difference frequency oscillating element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明非線形光学素子の一例の略線的拡大断面
図である。
FIG. 1 is an enlarged schematic cross-sectional view of an example of a nonlinear optical element of the present invention.

【図2】本発明非線形光学素子の他の例の略線的拡大断
面図である。
FIG. 2 is a schematic linear enlarged cross-sectional view of another example of the nonlinear optical element of the present invention.

【図3】非線形光学素子の変換効率の膜厚依存性を示す
図である。
FIG. 3 is a diagram showing film thickness dependence of conversion efficiency of a nonlinear optical element.

【図4】非線形光学素子内における基本波及び第2高調
波の電界分布を示す図である。
FIG. 4 is a diagram showing electric field distributions of a fundamental wave and a second harmonic in a nonlinear optical element.

【図5】コロナ放電UV硬化装置の概略図である。FIG. 5 is a schematic view of a corona discharge UV curing device.

【図6】非線形光学素子の比較例1の略線的拡大断面図
である。
FIG. 6 is a schematic enlarged cross-sectional view of Comparative Example 1 of a nonlinear optical element.

【図7】非線形光学素子の比較例2の略線的拡大断面図
である。
FIG. 7 is a schematic enlarged cross-sectional view of Comparative Example 2 of a nonlinear optical element.

【図8】チェレンコフ放射型SHG実験光学系の構成図
である。
FIG. 8 is a configuration diagram of a Cherenkov radiation type SHG experimental optical system.

【図9】非線形光学素子の各例のSHG強度を示す図で
ある。
FIG. 9 is a diagram showing the SHG intensity of each example of the nonlinear optical element.

【図10】非線形光学素子の他の例の要部の略線的拡大
断面図である。
FIG. 10 is a schematic linear enlarged cross-sectional view of a main part of another example of a nonlinear optical element.

【図11】UV硬化装置の概略図である。FIG. 11 is a schematic view of a UV curing device.

【図12】非線形光学素子の比較例3の略線的拡大断面
図である。
FIG. 12 is a schematic enlarged cross-sectional view of Comparative Example 3 of a nonlinear optical element.

【図13】非線形光学素子の各例のSHG強度を示す図
である。
FIG. 13 is a diagram showing the SHG intensity of each example of the nonlinear optical element.

【図14】本発明非線形光学素子の他の例の略線的拡大
構成図である。
FIG. 14 is a schematic linear enlarged configuration diagram of another example of the nonlinear optical element of the present invention.

【図15】従来の非線形光学素子の各例の略線的拡大断
面図である。
FIG. 15 is an enlarged schematic cross-sectional view of each example of a conventional nonlinear optical element.

【符号の説明】[Explanation of symbols]

1 第1層 2 第2層 10 基板 1 1st layer 2 2nd layer 10 Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機非線形光学化合物を含んでいる透明
性高分子薄膜中で、有機非線形光学化合物の分子双極子
モーメントの方向が膜厚方向または膜面内方向に配向さ
れて成り、膜厚方向に上記分子双極子モーメントの方向
が互いに反平行になっている層が積層されて成ることを
特徴とする非線形光学素子。
1. A transparent polymer thin film containing an organic nonlinear optical compound, wherein the direction of the molecular dipole moment of the organic nonlinear optical compound is oriented in the film thickness direction or in the film plane direction. A non-linear optical element, characterized in that a layer in which the directions of the molecular dipole moments are antiparallel to each other is laminated.
【請求項2】 紫外線および/または電子線の照射によ
り架橋するモノマーおよび/またはオリゴマーと、有機
非線形光学化合物との混合物をフィルム状に成形した
後、上記フィルム面に垂直な一方向の電場下で、紫外線
および/または電子線の照射によりモノマーおよび/ま
たはオリゴマーを架橋させて第1層を形成する工程と、
その上に上記混合物と同様の混合物を塗布形成し、上記
第1層硬化時とは逆の電場を印加しながら紫外線および
/または電子線の照射によりモノマーおよび/またはオ
リゴマーを架橋させて第2層を形成する工程とを、逐次
逆の電場を印加しながら行い、膜厚方向に分子双極子モ
ーメントの方向が互いに反平行になっている層を積層し
て形成することを特徴とする非線形光学素子の作製方
法。
2. A mixture of a monomer and / or an oligomer that is crosslinked by irradiation with ultraviolet rays and / or electron beams and an organic nonlinear optical compound is formed into a film, and then, under an electric field in one direction perpendicular to the film surface. A step of cross-linking the monomer and / or oligomer by irradiation with ultraviolet rays and / or electron beams to form the first layer,
A mixture similar to the above mixture is formed thereon by coating, and the monomer and / or oligomer is cross-linked by irradiation with ultraviolet rays and / or electron beams while applying an electric field opposite to that used for curing the first layer to form the second layer. The non-linear optical element is characterized in that it is formed by stacking layers in which the directions of the molecular dipole moments are antiparallel to each other in the film thickness direction, by sequentially applying the opposite electric field to the step of forming Of manufacturing.
【請求項3】 紫外線および/または電子線の照射によ
り架橋するモノマーおよび/またはオリゴマーと、有機
非線形光学化合物との混合物をフィルム状に成形した
後、上記フィルム面に平行で、光の伝播方向に垂直な方
向の電場下で、紫外線および/または電子線の照射によ
りモノマーおよび/またはオリゴマーを架橋させて第1
層を形成する工程と、その上に上記混合物とほぼ同様の
混合物を塗布形成し、上記第1層硬化時とは逆の電場を
印加しながら紫外線および/または電子線の照射により
モノマーおよび/またはオリゴマーを架橋させて第2層
を形成する工程とを、逐次逆の電場を印加しながら行
い、膜面方向に分子双極子モーメントの方向が互いに反
平行になっている層を積層して形成することを特徴とす
る非線形光学素子の作製方法。
3. A mixture of a monomer and / or an oligomer which is cross-linked by irradiation with ultraviolet rays and / or electron beams and an organic nonlinear optical compound is formed into a film, and then, the mixture is parallel to the film surface and in the light propagation direction. Under the electric field in the vertical direction, the monomer and / or oligomer is cross-linked by irradiation with ultraviolet rays and / or electron beams,
A step of forming a layer and coating and forming a mixture substantially the same as the above mixture thereon, and irradiating with an ultraviolet ray and / or an electron beam while applying an electric field opposite to that for curing the first layer, and The step of cross-linking the oligomer to form the second layer is performed by sequentially applying opposite electric fields to form layers in which the directions of molecular dipole moments are antiparallel to each other in the film plane direction. A method for manufacturing a non-linear optical element, which is characterized by the above.
JP12087892A 1992-05-13 1992-05-13 Nonlinear optical element and its production Pending JPH05313217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12087892A JPH05313217A (en) 1992-05-13 1992-05-13 Nonlinear optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12087892A JPH05313217A (en) 1992-05-13 1992-05-13 Nonlinear optical element and its production

Publications (1)

Publication Number Publication Date
JPH05313217A true JPH05313217A (en) 1993-11-26

Family

ID=14797204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12087892A Pending JPH05313217A (en) 1992-05-13 1992-05-13 Nonlinear optical element and its production

Country Status (1)

Country Link
JP (1) JPH05313217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032664A1 (en) * 1995-04-11 1996-10-17 Keisuke Sasaki Optical device and method of production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032664A1 (en) * 1995-04-11 1996-10-17 Keisuke Sasaki Optical device and method of production thereof
US5745629A (en) * 1995-04-11 1998-04-28 Sasaki; Keisuke Optical device and method of producing the device

Similar Documents

Publication Publication Date Title
US4865406A (en) Frequency doubling polymeric waveguide
Khanarian et al. Phase‐matched second‐harmonic generation in a polymer waveguide
US5028109A (en) Methods for fabricating frequency doubling polymeric waveguides having optimally efficient periodic modulation zone and polymeric waveguides fabricated thereby
US5061028A (en) Polymeric waveguides with bidirectional poling for radiation phase-matching
JPH05500574A (en) Polymer waveguide device for phase-matched second harmonic generation
JPH03118511A (en) Waveguide electro-optical light modulator with small optical loss
Kinoshita et al. Large photoinduced refractive index changes of a polymer containing photochromic norbornadiene groups
JPH03213822A (en) Polarized light nonsensitive linear waveguide photoelectric phase modulator
JP3507659B2 (en) Optical function element
Che et al. Fabrication of surface relief grating with second-order nonlinearity using urethane-urea copolymer films
JPH05313217A (en) Nonlinear optical element and its production
JP2005227376A (en) Organic nonlinear optical material and nonlinear optical element using the same
JP4453383B2 (en) Organic nonlinear optical material and nonlinear optical element using the same
JP2009145475A (en) Waveguide device
Khalil et al. Modal dispersion phase-matched frequency doubling in composite planar waveguide using ion-exchanged glass and optically nonlinear poled polymer
Masuda et al. Optical properties of an UV-cured liquid-crystal microlens array
JPH02113228A (en) Thin film waveguide element
JP3348297B2 (en) Wavelength conversion element and method of manufacturing wavelength conversion element
JPH047525A (en) Production of nonlinear high-polymer material
Asai et al. Langmuir-Blodgett Film Waveguide with The Nonlinearity Inversion in The Thickness Direction
JP2881183B2 (en) Waveguide-type electro-optical element and method of manufacturing the same
Kim et al. Near UV second harmonic generation using anomalous dispersion of poled polymer
JPH11202108A (en) Production of prism array sheet and sheet-shaped polarizing element using the same
JP2835956B2 (en) Thin film waveguide device
JP2003270685A (en) Waveguide type optical modulator, and method of manufacturing the same