JPH05312775A - Oxygen sensor using zirconia containing gadorinium oxide - Google Patents

Oxygen sensor using zirconia containing gadorinium oxide

Info

Publication number
JPH05312775A
JPH05312775A JP4141014A JP14101492A JPH05312775A JP H05312775 A JPH05312775 A JP H05312775A JP 4141014 A JP4141014 A JP 4141014A JP 14101492 A JP14101492 A JP 14101492A JP H05312775 A JPH05312775 A JP H05312775A
Authority
JP
Japan
Prior art keywords
zirconia
molten metal
solid electrolyte
oxygen sensor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4141014A
Other languages
Japanese (ja)
Inventor
Shigeo Matsubara
茂雄 松原
Tatsuhiro Den
達博 傳
Ryuji Tagami
竜司 田上
Kazunari Nakamoto
一成 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP4141014A priority Critical patent/JPH05312775A/en
Publication of JPH05312775A publication Critical patent/JPH05312775A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To provide a zirconia solid electrolyte internal vessel containing Gd2O3 as an improved zirconia oxygen sensor which permits stable measurement of oxygen potential of alloys or molten metals having low melting point and low oxygen potential for an extended period. CONSTITUTION:A zirconia oxygen sensor, for measuring oxygen potential of alloys or a molten metal 5 whose melting point is as low as 350-550 deg.C, comprises a reference electrode 2 forming a system consisting of a metal which shows liquid phase at the temperature of measuring the molten metal 5 or the alloy and the oxides distributed in it, a vessel 1 of zirconia solid electrolyte containing 5-15mol%, Gd2O3 of (6-12)mol% desirable, being let to receive the system and contact the molten metal or the alloy, lead wires 3 and 4 connected to either the reference electrode 2 or the molten metal 5 or each alloy and a means 6 for measuring electromotive force between the lead wires 3 and 4. By using the zirconia solid electrolyte internal vessel 1 containing Gd2O3, oxygen potential of alloys or the molten metal 5 of low melting point and oxide potential can be stably measured for an extended period, more effectively as a zirconia oxygen sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低融点の溶融金属およ
び合金(以下溶融金属と称す)浴の酸素ポテンシャルを
測定するためのジルコニア酸素センサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia oxygen sensor for measuring the oxygen potential of low melting point molten metal and alloy (hereinafter referred to as molten metal) baths.

【0002】[0002]

【従来技術とその問題点】近年、金属材料の多様化が進
み、金属材料に要求される品質が厳しくなり、種々の溶
融金属を取り扱うプロセスにおいて、品質に直接結び付
く不純物元素等の濃度管理が重視されるようになってき
た。その中で溶融金属中の酸素ポテンシャルの測定は、
溶融金属中の酸素濃度およびそれと平衡する不純物元素
の濃度管理を行う上でも非常に重要となっている。その
例として溶鋼、溶銅中の酸素ポテンシャル測定があげら
れる。
2. Description of the Related Art In recent years, with the diversification of metal materials, the quality required for metal materials has become stricter, and in the process of handling various molten metals, it is important to control the concentration of impurity elements etc. that directly relate to the quality. It has started to be done. Among them, the measurement of oxygen potential in molten metal is
It is also very important for controlling the oxygen concentration in the molten metal and the concentration of the impurity element in equilibrium with it. An example of this is the measurement of oxygen potential in molten steel and molten copper.

【0003】従来より、溶融金属中の酸素ポテンシャル
測定用のジルコニア酸素センサーとして、固体電解質の
起電力を利用する溶鋼や溶銅用酸素センサーが知られて
いる。しかしながら、酸素センサーの使用温度領域は、
溶鋼では1500〜1800℃、溶銅については100
0〜1300℃というかなりの高温度に限定されてい
る。
Conventionally, as a zirconia oxygen sensor for measuring oxygen potential in molten metal, an oxygen sensor for molten steel or molten copper utilizing the electromotive force of a solid electrolyte is known. However, the operating temperature range of the oxygen sensor is
1500 ~ 1800 ℃ for molten steel, 100 for molten copper
It is limited to a fairly high temperature of 0 to 1300 ° C.

【0004】ところが、本発明の対象とするような55
0℃以下で溶融状態にある低融点金属、例えば亜鉛、
鉛、スズ、ビスマス、インジウム、ガリウムおよびそれ
らの金属の合金等については、従来から溶鋼や溶銅中の
酸素ポテンシャルの測定に使用されているジルコニア酸
素センサーでは、550℃以下の溶融金属中の酸素ポテ
ンシャルを測定することは不可能と考えられていたため
か、測定例はほとんど見当たらない。ことに、例えば溶
融亜鉛めっき浴のように比較的低温度(450〜500
℃)では、ジルコニア固体電解質の酸素イオン電導率が
小さくなることから、起電力の測定そのものが困難と考
えられていた。
However, as the object of the present invention, 55
A low melting point metal in a molten state at 0 ° C. or lower, such as zinc,
For lead, tin, bismuth, indium, gallium and alloys of these metals, the zirconia oxygen sensor conventionally used to measure the oxygen potential in molten steel or molten copper has an oxygen content in the molten metal of 550 ° C or lower. Since it was thought that it was impossible to measure the potential, there are few measurement examples. In particular, relatively low temperatures (450-500), such as hot dip galvanizing baths.
At (° C.), The oxygen ion conductivity of the zirconia solid electrolyte becomes small, so it was considered difficult to measure the electromotive force itself.

【0005】また、低温の溶融金属用の酸素センサーと
しては、特開昭52−53494のようにトリア固体電
解質を用いた液体ナトリウム用の酸素センサーがあげら
れる。しかしながら、このセンサーで使用しているトリ
ア固体電解質は放射性物質であり取扱いが非常に困難で
値段も高価であり、本目的のように工業的に利用するた
めには不利である。以上のように、低融点の溶融金属中
の酸素ポテンシャルを測定するためのジルコニア酸素セ
ンサーは従来ほとんどない。
As an oxygen sensor for molten metal at low temperature, there is an oxygen sensor for liquid sodium using a thoria solid electrolyte as disclosed in JP-A-52-53494. However, the thoria solid electrolyte used in this sensor is a radioactive substance, is very difficult to handle, and is expensive, which is disadvantageous for industrial use for this purpose. As described above, there has been almost no conventional zirconia oxygen sensor for measuring the oxygen potential in a molten metal having a low melting point.

【0006】[0006]

【問題解決の手段】従来より溶鋼や溶銅用のジルコニア
酸素センサーの参照電極として使用されているのは、溶
鋼用にはCr−Cr23系、Mo−MoO2系等、溶銅
用にはNi−NiO系、Fe−FeO系等の固体極であ
る。これらの場合、使用温度が1000〜1800℃と
高いため、起電力の応答は十分速い。ところが、これら
の固体極を温度が350〜550℃の比較的低温の溶融
金属に用いた場合には、起電力が安定するまでに要する
時間が非実用的なほど長いか、または安定しない。本発
明者等はこの点に注目し、低融点の溶融金属と同等かま
たはそれより低い融点を有し測定温度において液相をな
す参照電極と、Y23またはCaOを含むジルコニア固
体電解質の容器をジルコニア酸素センサーに用いること
により、溶融金属中の酸素ポテンシャルを信頼性よく測
定できる知見を既に得た。本発明者等はさらにGd23
を含むジルコニア電解質は、Y23およびCaOを含む
ジルコニア電解質よりイオン電導率が大きいことは公知
であるが、溶融亜鉛浴のような低温かつ低酸素ポテンシ
ャルという環境下でGd23を含むジルコニア電解質を
ジルコニア電解質の容器としてジルコニア酸素センサー
に用いる場合、Y23およびCaOを含むジルコニア電
解質を用いる場合より起電力がさらに長時間安定するこ
とを知見した。本発明は上記知見に基づき改良されたジ
ルコニア酸素センサーを提供するものである。
[Solution to Problem] Conventionally, a reference electrode of a zirconia oxygen sensor for molten steel or molten copper is Cr-Cr 2 O 3 system, Mo-MoO 2 system, etc. for molten steel. Is a solid electrode of Ni-NiO system, Fe-FeO system, or the like. In these cases, since the operating temperature is as high as 1000 to 1800 ° C., the response of electromotive force is sufficiently fast. However, when these solid electrodes are used for a relatively low temperature molten metal having a temperature of 350 to 550 ° C., the time required for the electromotive force to stabilize becomes impractically long or unstable. The present inventors have paid attention to this point, and have a reference electrode having a melting point equal to or lower than that of a low melting point molten metal and forming a liquid phase at a measurement temperature, and a zirconia solid electrolyte containing Y 2 O 3 or CaO. By using the container as a zirconia oxygen sensor, we have already obtained the knowledge that the oxygen potential in molten metal can be measured reliably. The present inventors have further reported that Gd 2 O 3
It is known that the zirconia electrolyte containing Y 2 O 3 has a higher ionic conductivity than the zirconia electrolyte containing Y 2 O 3 and CaO, but contains Gd 2 O 3 in an environment of low temperature and low oxygen potential such as a molten zinc bath. It has been found that when the zirconia electrolyte is used as a container for the zirconia electrolyte in the zirconia oxygen sensor, the electromotive force is more stable for a longer time than when the zirconia electrolyte containing Y 2 O 3 and CaO is used. The present invention provides an improved zirconia oxygen sensor based on the above findings.

【0007】[0007]

【発明の構成】本発明によれば、350〜550℃の低
融点の溶融金属中において、溶融金属と同等かまたはそ
れより低い融点を有し、溶融金属中の測定温度において
液相をなす金属とその中に分散したその酸化物よりなる
系である参照電極と、該系を容れ溶融金属または合金に
接触させられる5〜15mol%、好ましくは6〜12
mol%のGd23を含むジルコニア固体電解質の容器
と、参照電極と溶融金属または合金のそれぞれに接続さ
れるリード線と、該リード線間の起電力を測定するため
の手段によって構成される酸素ポテンシャルを長時間安
定して測定できることを特徴とする改良されたジルコニ
ア酸素センサーが提供される。
According to the present invention, a metal having a melting point equal to or lower than that of a molten metal in a low melting point of 350 to 550 ° C. and forming a liquid phase at the measurement temperature in the molten metal. And a reference electrode, which is a system consisting of the oxide dispersed therein, and 5 to 15 mol%, preferably 6 to 12 that can contain the system and contact it with a molten metal or alloy.
A container of zirconia solid electrolyte containing mol% of Gd 2 O 3 , a lead wire connected to each of a reference electrode and a molten metal or alloy, and means for measuring an electromotive force between the lead wires. An improved zirconia oxygen sensor is provided, which is capable of stably measuring the oxygen potential for a long time.

【0008】ジルコニア酸素センサーは参照電極とジル
コニア固体電解質と溶融金属とリード線からなる酸素濃
淡電池の起電力を測定することにより酸素濃度を決定す
る。本発明において対象とする350〜550℃の温度
で溶融状態となる低融点金属としては、亜鉛、鉛、ス
ズ、ビスマス、インジウム、ガリウムおよびそれらの金
属の合金等である。本発明においてジルコニア固体電解
質は酸素イオンの電導体として機能する。ジルコニア固
体電解質を溶融金属に接触させることにより、参照電極
と溶融金属または合金中の酸素ポテンシャルの差によっ
て起電力が発生する。ジルコニア固体電解質として、5
〜15mol%、好ましくは6〜12mol%のGd2
3を含むジルコニア(ZrO2)が好適に用いられる。
ZrO2のGd23含有量が5%未満では、起電力が安
定せず応答性も極めて悪い。また、ZrO2のGd23
含有量が15mol%を超えるとジルコニア固体電解質
の酸素イオン電導率が低下し実用に耐えない。好ましく
は6〜12mol%のGd23を含有するのがよい。さ
らに、使用温度が350℃以下の温度になると、ジルコ
ニア固体電解質の酸素イオン電導率が極めて小さくなり
測定が不可能となる。
The zirconia oxygen sensor determines the oxygen concentration by measuring the electromotive force of an oxygen concentration cell composed of a reference electrode, a zirconia solid electrolyte, a molten metal and a lead wire. The low melting point metal which is in a molten state at a temperature of 350 to 550 ° C. in the present invention includes zinc, lead, tin, bismuth, indium, gallium and alloys of these metals. In the present invention, the zirconia solid electrolyte functions as a conductor for oxygen ions. By bringing the zirconia solid electrolyte into contact with the molten metal, an electromotive force is generated due to the difference in oxygen potential between the reference electrode and the molten metal or alloy. 5 as a zirconia solid electrolyte
15 mol%, preferably 6~12Mol% of Gd 2
Zirconia containing O 3 (ZrO 2 ) is preferably used.
When the Gd 2 O 3 content of ZrO 2 is less than 5%, the electromotive force is not stable and the response is extremely poor. Also, ZrO 2 Gd 2 O 3
If the content exceeds 15 mol%, the oxygen ion conductivity of the zirconia solid electrolyte decreases and it cannot be put to practical use. It is preferable to contain 6 to 12 mol% of Gd 2 O 3 . Further, when the operating temperature is 350 ° C. or lower, the oxygen ion conductivity of the zirconia solid electrolyte becomes extremely small, and measurement becomes impossible.

【0009】参照電極としては、溶融金属の温度と同等
かまたはそれより低い融点を有する金属とその酸化物に
よって構成され、測定温度において常に液相を呈するも
のが用いられる。参照電極は、測定状態において溶融金
属中にその金属の酸化物粒子が分散した状態にあり、参
照電極金属中には酸素が飽和状態で溶解していると考え
られ、これにより熱力学的に計算される所定の酸素ポテ
ンシャルが与えられる。350〜550℃の低融点の溶
融金属中の測定温度において、液相をなす金属とその中
に分散したその酸化物よりなる系である参照電極として
は、In−In23系、Bi−Bi23系、Zn−Zn
O系が好ましい。
As the reference electrode, an electrode made of a metal having a melting point equal to or lower than the temperature of the molten metal and its oxide and always exhibiting a liquid phase at the measurement temperature is used. In the measurement state, the reference electrode is in a state where oxide particles of the metal are dispersed in the molten metal, and it is considered that oxygen is dissolved in the reference electrode metal in a saturated state. Given oxygen potential is given. At a measurement temperature in a molten metal having a low melting point of 350 to 550 ° C., a reference electrode, which is a system including a liquid phase metal and its oxide dispersed therein, is an In—In 2 O 3 system, a Bi— system. Bi 2 O 3 system, Zn-Zn
O type is preferable.

【0010】次に、参照電極および低融点の溶融金属に
接続されるリード材としてはC、W、Mo、Re、T
a、Ir、Osおよびステンレス鋼が好ましい。
Next, as lead materials connected to the reference electrode and the low melting point molten metal, C, W, Mo, Re and T are used.
Preferred are a, Ir, Os and stainless steel.

【0011】[0011]

【発明の具体的開示】ZrO2−M23(MO)系固体
電解質のイオン電導率とゲスト固溶量の関係(800
℃)を図1に示す。(T. Tannenberg e
t al.,Proc. J. Int′l Etud
e Piles Combust.p19(196
5))。図1よりGd23は、Y23およびCaOより
イオン電導率が大きいことが分る。本発明に係るジルコ
ニア酸素センサーの模式図を図2に示す。図2に示すよ
うに、Gd23を含むジルコニア固体電解質容器と、参
照電極2と、リード線3(参照電極側)と、ポテンシオ
メーター6と、リード線4(溶融金属側)よりなる。
DETAILED DESCRIPTION OF THE INVENTION Relationship between ionic conductivity of ZrO 2 -M 2 O 3 (MO) solid electrolyte and guest solid solution amount (800
(° C.) is shown in FIG. (T. Tannenberg e
t al. , Proc. J. Int'l Etud
e Piles Combust. p19 (196
5)). From FIG. 1, it can be seen that Gd 2 O 3 has a higher ionic conductivity than Y 2 O 3 and CaO. A schematic diagram of the zirconia oxygen sensor according to the present invention is shown in FIG. As shown in FIG. 2, it comprises a zirconia solid electrolyte container containing Gd 2 O 3 , a reference electrode 2, a lead wire 3 (reference electrode side), a potentiometer 6, and a lead wire 4 (molten metal side). ..

【0012】[0012]

【実施例および比較例】上記ジルコニア酸素センサーに
おいて9mol%Gd23を含むジルコニア固体電解質
容器と、比較例として8mol%Y23を含むジルコニ
ア固体電解質容器を用い、温度450℃で、参照電極
(In−In23系)を用いて、ジルコニア固体電解質
容器を溶融亜鉛浴中に浸漬して、参照電極と溶融亜鉛の
間に発生する起電力mVの時間変化を測定した結果を図
3に示す。図3より溶融亜鉛浴のような低温かつ低酸素
ポテンシャルという環境下でGd23を含むジルコニア
固体電解質を内部容器として用いる場合、起電力がY2
3を含むジルコニア固体電解質を用いる場合よりも長
時間安定することがわかる。
EXAMPLES AND COMPARATIVE EXAMPLES Reference was made at a temperature of 450 ° C. using a zirconia solid electrolyte container containing 9 mol% Gd 2 O 3 and a zirconia solid electrolyte container containing 8 mol% Y 2 O 3 in the above zirconia oxygen sensor. The result of measuring the time change of the electromotive force mV generated between the reference electrode and the molten zinc by immersing the zirconia solid electrolyte container in the molten zinc bath using the electrode (In-In 2 O 3 system) 3 shows. From FIG. 3, when the zirconia solid electrolyte containing Gd 2 O 3 is used as the inner container in an environment of low temperature and low oxygen potential such as a molten zinc bath, the electromotive force is Y 2
It can be seen that the zirconia solid electrolyte containing O 3 is more stable for a longer period of time than when it is used.

【0013】[0013]

【発明の効果】本発明によれば、Gd23を含むジルコ
ニア固体電解質内部容器を用いることによって、低融点
かつ低酸素ポテンシャルの溶融金属または合金の酸素ポ
テンシャル測定を長時間安定して測定できジルコニア酸
素センサーとして有効に活用できる。
According to the present invention, by using the zirconia solid electrolyte inner container containing Gd 2 O 3 , it is possible to stably measure the oxygen potential of a molten metal or alloy having a low melting point and a low oxygen potential for a long time. It can be effectively used as a zirconia oxygen sensor.

【0014】[0014]

【図面の簡単な説明】[Brief description of drawings]

【図1】ZrO2−M23(MO)系固体電解質のイオ
ン電導率とゲスト固溶量の関係(800℃)を示すグラ
フ。
FIG. 1 is a graph showing the relationship (800 ° C.) between the ionic conductivity of a ZrO 2 —M 2 O 3 (MO) -based solid electrolyte and the amount of guest solid solution.

【図2】ジルコニア酸素センサーの使用状態を示す模式
図。
FIG. 2 is a schematic view showing a usage state of a zirconia oxygen sensor.

【図3】参照電極と溶融金属の間に発生する起電力の時
間変化を示すグラフ。
FIG. 3 is a graph showing a time change of an electromotive force generated between a reference electrode and a molten metal.

【符号の説明】[Explanation of symbols]

1…固体電解質容器 2…参照電極 3、4…リード線 5…溶融金属浴 6…ポテンシオメーター 1 ... Solid electrolyte container 2 ... Reference electrode 3, 4 ... Lead wire 5 ... Molten metal bath 6 ... Potentiometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中本 一成 兵庫県尼崎市鶴町1番地 日新製鋼株式会 社加工技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Issei Nakamoto 1 Tsurumachi, Amagasaki City, Hyogo Prefecture Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 350℃〜550℃の低融点の溶融金属
または合金浴の酸素ポテンシャルを測定するための、溶
融金属または合金中の測定温度において液相をなす金属
とその中に分散したその酸化物よりなる系である参照電
極と、該系を容れ溶融金属または合金に接触させられる
5〜15mol%のGd23を含むジルコニア固体電解
質の容器と、参照電極と溶融金属または合金のそれぞれ
に接続されるリード線と、該リード線間の起電力を測定
するための手段によって構成される改良されたジルコニ
ア酸素センサー。
1. To measure the oxygen potential of a molten metal or alloy bath having a low melting point of 350 ° C. to 550 ° C., a metal in a liquid phase at a measurement temperature in the molten metal or alloy and its oxidation dispersed therein. A reference electrode which is a system consisting of a substance, a container of zirconia solid electrolyte containing 5 to 15 mol% of Gd 2 O 3 which is contained in the system and brought into contact with a molten metal or alloy, and a reference electrode and a molten metal or alloy, respectively. An improved zirconia oxygen sensor comprised of connected leads and means for measuring the electromotive force between the leads.
【請求項2】 ジルコニア固体電解質が6〜12mol
%のGd23を含む請求項1に記載のジルコニア酸素セ
ンサー。
2. The zirconia solid electrolyte is 6 to 12 mol.
The zirconia oxygen sensor according to claim 1, comprising% Gd 2 O 3 .
JP4141014A 1992-05-06 1992-05-06 Oxygen sensor using zirconia containing gadorinium oxide Withdrawn JPH05312775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141014A JPH05312775A (en) 1992-05-06 1992-05-06 Oxygen sensor using zirconia containing gadorinium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141014A JPH05312775A (en) 1992-05-06 1992-05-06 Oxygen sensor using zirconia containing gadorinium oxide

Publications (1)

Publication Number Publication Date
JPH05312775A true JPH05312775A (en) 1993-11-22

Family

ID=15282193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141014A Withdrawn JPH05312775A (en) 1992-05-06 1992-05-06 Oxygen sensor using zirconia containing gadorinium oxide

Country Status (1)

Country Link
JP (1) JPH05312775A (en)

Similar Documents

Publication Publication Date Title
Fruehan Activities in liquid Fe− Al− O and Fe− Ti− O alloys
Laitinen et al. Electrochemical Study of Metallic Oxides in Fused Lithium Chloride‐Potassium Chloride Eutectic
Hussey et al. The electrochemistry of copper in a room temperature acidic chloroaluminate melt
JPS61260156A (en) Method and apparatus for measuring silicon concentration in molten metal
JPH04249758A (en) Constituent sensor for molten metal
Galus et al. Electrochemical behaviors of metal amalgams
US3689394A (en) Oxygen sensors
JPH05312775A (en) Oxygen sensor using zirconia containing gadorinium oxide
JPH05312776A (en) Oxygen sensor using zirconia containing scandium oxide
JPH05312777A (en) Oxygen sensor using zirconia containing ytterbium oxide
Janz et al. Anodic polarization curves in molten carbonate electrolysis
Lambertin et al. Determination of the solubility product of plutonium sesquioxide in the NaCl+ CaCl2 eutectic and calculation of a potential–pO2− diagram
Feller et al. Relation of Electron Configuration to Passivity in Cr‐Ni‐Fe Alloys
Selis et al. A High‐Rate, High‐Energy Thermal Battery System
JP3029327B2 (en) Zirconia oxygen sensor
Katayama et al. Activity Measurement of Gallium in Ga–Bi and Ga–Sb–Bi Alloys by EMF Method Using Zirconia as Solid Electrolyte
Hoare Catalytic Activity and Electronic Structure of Rhodium‐Palladium‐Hydrogen Cathodes in Acid Solution
EP0463541B1 (en) Zirconia oxygen sensor
Noyes et al. THE RELATIVE ELECTRODE POTENTIALS OF TIN AND LEAD DETERMINED BY EQUILIBRIUM MEASUREMENTS WITH THEIR PERCHLORATES.
JP3290809B2 (en) Chlorine compound gas sensor
JPH05164733A (en) Bismuth type reference electrode zirconia oxygen sensor
Love et al. Polarographic determination of tin in ores
JPH05164734A (en) Zinc type reference electrode zirconia oxygen sensor
JPH05164732A (en) Indium type reference electrode zirconia oxygen sensor
Gaur et al. Standard electrode potentials in molten chlorides—II

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706