JPH05312708A - Distinguishing method of mixed gas - Google Patents

Distinguishing method of mixed gas

Info

Publication number
JPH05312708A
JPH05312708A JP11494792A JP11494792A JPH05312708A JP H05312708 A JPH05312708 A JP H05312708A JP 11494792 A JP11494792 A JP 11494792A JP 11494792 A JP11494792 A JP 11494792A JP H05312708 A JPH05312708 A JP H05312708A
Authority
JP
Japan
Prior art keywords
gas
detected
mixed gas
adsorption
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11494792A
Other languages
Japanese (ja)
Other versions
JP2723209B2 (en
Inventor
Masayuki Nakamura
雅之 中村
Iwao Sugimoto
岩雄 杉本
Hiroki Kuwano
博喜 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11494792A priority Critical patent/JP2723209B2/en
Publication of JPH05312708A publication Critical patent/JPH05312708A/en
Application granted granted Critical
Publication of JP2723209B2 publication Critical patent/JP2723209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a distinguishing method of a mixed gas which can surely identify the kind and the concentration of a gas in the mixed gas. CONSTITUTION:A plurality of quartz oscillators each having a different kind of adsorption film 2 provided on the surface thereof are used. Each quartz oscillator is exposed to a gaseous sample. The saturating adsorption of each gas to be detected is predicted from the change with time of the resonant frequency with the use of the time constant of the gas for every quartz oscillator, so that the gas is identified from the saturating adsorption. Accordingly, the mixed gas can be identified correctly although it is conventionally difficult.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は混合ガス中の各被検知ガ
スの種類、濃度を同定する混合ガス判別方法に関し、特
に、表面に吸着膜を設けた水晶発振子を用い、被検知ガ
スの前記吸着膜への吸着による前記水晶発振子の共振周
波数の変化を求めることにより、各被検知ガスの種類、
濃度を同定する混合ガス判別方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed gas discrimination method for identifying the type and concentration of each gas to be detected in a mixed gas, and in particular, using a quartz oscillator having an adsorption film on the surface thereof, By determining the change in the resonance frequency of the crystal oscillator due to adsorption to the adsorption film, the type of each detected gas,
The present invention relates to a mixed gas discrimination method for identifying the concentration.

【0002】[0002]

【従来の技術】火災報知器や化学センサなどでは、微量
の被検知ガスを感度良く検知し、判別する必要がある。
従来よりこのような用途におけるガス判別方法として、
表面に吸着膜を設けた水晶発振子を用いる方法がある。
この方法は、被検知ガス分子がこの吸着膜に吸着したと
き、水晶発振子の共振周波数が吸着膜の質量変化に比例
して変化することを利用するものであり、共振周波数の
最大変化量から被検知ガスの種類、濃度を同定するもの
である。被検知ガスが混合ガス中に含まれている場合、
それぞれ異なる吸着膜を設けた複数の水晶発振子を用
い、それぞれの飽和吸着量の値からパターン認識等の方
法によって同定を行っていた。
2. Description of the Related Art In a fire alarm or a chemical sensor, it is necessary to detect and discriminate a small amount of a target gas with high sensitivity.
Conventionally, as a gas discrimination method in such applications,
There is a method of using a crystal oscillator provided with an adsorption film on the surface.
This method utilizes the fact that when the gas molecules to be detected are adsorbed on this adsorption film, the resonance frequency of the crystal oscillator changes in proportion to the mass change of the adsorption film. The type and concentration of the gas to be detected are identified. If the gas to be detected is contained in the mixed gas,
A plurality of crystal oscillators provided with different adsorption films are used, and identification is performed by a method such as pattern recognition from the value of each saturated adsorption amount.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の混合ガ
ス判別方法では以下のような欠点があった。すなわち、
混合ガス中の各被検知ガスを同定するには、構成ガスの
種類及びその濃度が既知の混合ガスに対する各センサの
飽和吸着量をデータベースとして用意し、パターンマッ
チングによって各被検知ガスを同定しなければならな
い。しかしながら、ある混合ガスとそれに対する各セン
サの飽和吸着量のパターンは一対一に応じないため、正
確な混合ガスの判別を行うことができないのが現状であ
る。
The above-mentioned conventional mixed gas discrimination method has the following drawbacks. That is,
In order to identify each gas to be detected in the mixed gas, the saturated adsorption amount of each sensor for the mixed gas whose type and concentration of the constituent gas are known must be prepared as a database, and each detected gas must be identified by pattern matching. I have to. However, since the pattern of a certain mixed gas and the saturated adsorption amount of each sensor for it does not correspond one-to-one, it is the current situation that the mixed gas cannot be accurately discriminated.

【0004】本発明の目的は、混合ガス中の被検知ガス
の種類、濃度を確実に同定できる混合ガス判別方法を提
供することにある。
An object of the present invention is to provide a mixed gas discriminating method which can surely identify the type and concentration of the gas to be detected in the mixed gas.

【0005】[0005]

【課題を解決するための手段】本発明の混合ガス判別方
法は、それぞれ異なる種類の吸着膜を表面に設けた複数
の水晶発振子を用い、前記各水晶発振子をガス状の試料
に曝し、前記各水晶発振子ごとに、各被検知ガスの時定
数を用いて、共振周波数の時間変化から各被検知ガスの
飽和吸着量を推定し、前記各飽和吸着量から各被検知ガ
スの同定を行う。
The mixed gas discrimination method of the present invention uses a plurality of crystal oscillators each having a different type of adsorption film on the surface thereof, and exposes each of the crystal oscillators to a gaseous sample, For each of the crystal oscillators, using the time constant of each detected gas, the saturated adsorption amount of each detected gas is estimated from the time change of the resonance frequency, and the detected gas is identified from each saturated adsorption amount. To do.

【0006】即ち、本発明は、表面に吸着膜を設けた水
晶発振子を用い、被検知ガスの前記吸着膜への吸着によ
る前記水晶発振子の共振周波数の変化を求めることによ
り、混合ガス中の各被検知ガスの種類を同定する混合ガ
ス判別方法において、それぞれ異なる種類の吸着膜を表
面に設けた複数の水晶発振子を用い、前記各水晶発振子
をガス状の試料に曝し、前記各水晶発振子ごとに共振周
波数の時間変化を、各被検知ガスに対して単独ガスの場
合の共振周波数の時間変化を表す指数関数から得られる
各時定数を用いた指数関数の和で近似し、各指数関数の
係数を求めることにより各被検知ガスの飽和吸着量を推
定し、単独ガスの場合の散布図を用いて各被検知ガスの
同定および定量を行うことを特徴とする混合ガス判別方
法である。
That is, the present invention uses a crystal oscillator provided with an adsorption film on the surface thereof, and obtains the change in the resonance frequency of the crystal oscillator due to the adsorption of the gas to be detected on the adsorption film, thereby In the mixed gas discrimination method for identifying the type of each gas to be detected, a plurality of crystal oscillators provided with adsorption films of different types respectively on the surface are used, and each crystal oscillator is exposed to a gaseous sample, Resonance frequency change for each crystal oscillator, approximated to the sum of the exponential function using each time constant obtained from the exponential function representing the time change of the resonance frequency for each gas to be detected, A mixed gas discrimination method characterized in that the saturated adsorption amount of each detected gas is estimated by obtaining the coefficient of each exponential function, and each detected gas is identified and quantified using the scatter diagram for a single gas. Is.

【0007】[0007]

【作用】本発明は吸着膜への被検知ガス分子の吸着過程
を詳細に検討した結果なされたものである。ここで、本
発明者らが得た知見を説明することにより本発明の作用
を説明する。
The present invention has been made as a result of detailed examination of the adsorption process of the gas molecules to be detected on the adsorption film. Here, the operation of the present invention will be described by explaining the findings obtained by the present inventors.

【0008】ポリクロロトリフルオロエチレン(PCTF
E)の高周波スパッタによって水晶発振子上に吸着膜を
形成し、この吸着膜への被検知ガス分子の吸着による水
晶発振子の共振周波数の変化を調べた。上述のように水
晶発振子の共振周波数は、吸着膜の質量変化すなわち吸
着した被検知ガスの質量に比例することが知られてい
る。その結果、被検知ガスが通常の有機化合物、たとえ
ば各種のアルコール、芳香族化合物、ケトンである場
合、被検知ガスを全く吸着していない状態のこの吸着膜
を一定濃度の被検知ガスに曝したところ、共振周波数の
時間変化m(t)は
Polychlorotrifluoroethylene (PCTF
The adsorption film was formed on the quartz oscillator by the high frequency sputtering of E), and the change of the resonance frequency of the quartz oscillator due to the adsorption of the gas molecules to be detected on the adsorption film was investigated. As described above, it is known that the resonance frequency of the crystal oscillator is proportional to the mass change of the adsorption film, that is, the mass of the adsorbed gas to be detected. As a result, when the gas to be detected is a normal organic compound such as various alcohols, aromatic compounds, and ketones, this adsorbed film in a state in which the gas to be detected is not adsorbed at all is exposed to the gas having a certain concentration. However, the time change m (t) of the resonance frequency is

【0009】[0009]

【数1】 と表されるようになる。上式のAは被検知ガスの飽和吸
着量を表しており、また時定数Tは、吸着膜と被検知ガ
スの種類に深く関わっていることが分かっている。
[Equation 1] Will be expressed as It is known that A in the above equation represents the saturated adsorption amount of the gas to be detected, and the time constant T is deeply related to the types of the adsorption film and the gas to be detected.

【0010】混合ガス(n種類の被検知ガスを含む)に
対する水晶発振子の共振周波数の時間変化m(t)は次
のように指数関数の和で表されることが分かった。
It has been found that the time change m (t) of the resonance frequency of the crystal oscillator with respect to the mixed gas (including n kinds of detected gases) is expressed by the sum of exponential functions as follows.

【0011】[0011]

【数2】 ここで各被検知ガスの時定数Tiは混合ガス中でも変化
しないため、予め各被検知ガスの標準試料に対して測定
した時定数Tiを用い、最小自乗法によって測定データ
から上式のAiすなわち各被検知ガスの飽和吸着量をA
i≧0という条件の下で推定する。
[Equation 2] Here, since the time constant Ti of each detected gas does not change even in the mixed gas, the time constant Ti measured beforehand with respect to the standard sample of each detected gas is used, and Ai of the above equation, that is, each The saturated adsorption amount of the detected gas is A
Estimate under the condition that i ≧ 0.

【0012】この知見から、各被検知ガスの共振周波数
の変化の時定数を考慮することによって各被検知ガスの
飽和吸着量を推定でき、本発明の方法によって従来困難
であった混合ガス判別が可能となることが分かる。
From this knowledge, the saturated adsorption amount of each gas to be detected can be estimated by considering the time constant of the change of the resonance frequency of each gas to be detected, and the method of the present invention can discriminate the mixed gas which has been difficult in the past. It turns out that it will be possible.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明のガス判別方法の実施に用い
られるガス判別装置の一例の構成を示すブロック図であ
る。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an example of a gas discriminating apparatus used for carrying out the gas discriminating method of the present invention.

【0014】ガス試料がガス発生器8から流れるセンサ
セル1には、複数個の水晶発振子3が配置され、各水晶
発振子3の表面には、それぞれ異なるガス吸着膜2が設
けられている。また、各水晶発振子3ごとに発振回路4
が設けられ、この発振回路4は対応する水晶発振子3の
共振周波数で発振するようになっている。各発振回路4
の出力は共通に設けられたアナログスイッチ5の入力に
それぞれ接続されている。このアナログスイッチ5は後
述するコンピュータ7からの信号によって各発振回路4
のうちの1つを選択するためのものであり、その出力は
周波数カウンタ6の入力に接続されている。そして、周
波数カウンタ6の出力はコンピュータ7に接続されてい
る。コンピュータ7は、一定時間間隔でアナログスイッ
チ5を切り替え、周波数カウンタ6で計測された各発振
回路4の発振周波数の変化を追跡し、各水晶発振子3の
共振周波数の変化から、各被検知ガスの時定数を用い
て、各被検知ガスの飽和吸着量を推定し、センサセル1
内の被検知ガスの種類の同定を行うものである。コンピ
ュータ7には表示装置9が接続されている。ガス吸着膜
2は、グラファイト、ポリクロロトリフルオロエチレン
等をターゲットとしてスパッタリングを行い、水晶発振
子3の表面に被覆をおこなうことによって形成すること
ができる。
A plurality of crystal oscillators 3 are arranged in a sensor cell 1 in which a gas sample flows from a gas generator 8, and different gas adsorption films 2 are provided on the surface of each crystal oscillator 3. In addition, an oscillator circuit 4 is provided for each crystal oscillator 3.
Is provided, and the oscillation circuit 4 oscillates at the resonance frequency of the corresponding crystal oscillator 3. Each oscillator circuit 4
Are connected to the inputs of the analog switch 5 provided in common. This analog switch 5 operates in response to a signal from a computer 7 which will be described later to generate each oscillation circuit
For selecting one of them, the output of which is connected to the input of the frequency counter 6. The output of the frequency counter 6 is connected to the computer 7. The computer 7 switches the analog switch 5 at regular time intervals, tracks changes in the oscillation frequency of each oscillation circuit 4 measured by the frequency counter 6, and detects changes in the resonance frequency of each crystal oscillator 3 from each detected gas. The saturated adsorption amount of each gas to be detected is estimated using the time constant of
The type of the gas to be detected is identified. A display device 9 is connected to the computer 7. The gas adsorption film 2 can be formed by sputtering targeting graphite, polychlorotrifluoroethylene, or the like to cover the surface of the crystal oscillator 3.

【0015】次に、このガス判別装置の動作について説
明する。各発振回路4を動作状態にして、コンピュータ
7によりアナログスイッチ5を一定の時間間隔、例え
ば、0.12秒間隔で順次切り替える。水晶発振子3の
数をkとすれば、ある特定の水晶発振子3に対しては
0.12×k秒おきにデータを取り込むことができるよ
うになる。ガス吸着膜2への吸着時間は一般に数分であ
ることを考えると、kが10程度までであれば、各水晶
発振子3ごとに順次測定したとしても同時計測であると
みなすことができる。
Next, the operation of this gas discriminating apparatus will be described. With each oscillating circuit 4 in the operating state, the computer 7 sequentially switches the analog switch 5 at fixed time intervals, for example, at 0.12 second intervals. If the number of the crystal oscillators 3 is k, it becomes possible to take in data for a specific crystal oscillator 3 every 0.12 × k seconds. Considering that the adsorption time to the gas adsorption film 2 is generally several minutes, if k is up to about 10, it can be regarded as simultaneous measurement even if the quartz oscillators 3 are sequentially measured.

【0016】ガス発生器8から被検知ガスを含むガス試
料をセンサセル1内に送りだし、測定時間に比べ無視で
きる時間内にセンサセル1の内部の気体をガス試料で置
換する。すると、各水晶発振子3のガス吸着膜2への被
検知ガス分子の吸着が開始し、吸着量に応じてそれぞれ
の水晶発振子3の共振周波数がシフトし、各発振回路4
の発振周波数がシフトする。この発振周波数のシフト
は、それぞれの水晶発振子3のガス吸着膜2に吸着した
被検知ガスの質量に比例するが、周波数カウンタ6で計
測される周波数の変化として検出され、各水晶発振子3
ごとにコンピュータ7によってサンプリングされる。そ
して、コンピュータ7は各水晶発振子3ごとに周波数の
シフトの時間変化を追跡し、予め標準試料について行っ
た測定に基づく時定数を用いて、最小自乗法によって各
被検知ガスの飽和吸着量を推定する。
A gas sample containing a gas to be detected is sent out from the gas generator 8 into the sensor cell 1, and the gas inside the sensor cell 1 is replaced with the gas sample within a negligible time compared to the measurement time. Then, the gas molecules to be detected start to be adsorbed on the gas adsorption film 2 of each crystal oscillator 3, the resonance frequency of each crystal oscillator 3 is shifted according to the adsorption amount, and each oscillation circuit 4
The oscillation frequency of shifts. This oscillation frequency shift is proportional to the mass of the gas to be detected adsorbed on the gas adsorption film 2 of each crystal oscillator 3, but is detected as a change in frequency measured by the frequency counter 6, and each crystal oscillator 3
The data is sampled by the computer 7 every time. Then, the computer 7 tracks the time change of the frequency shift for each crystal oscillator 3, and uses the time constant based on the measurement performed on the standard sample in advance to calculate the saturated adsorption amount of each detected gas by the least square method. presume.

【0017】そののちコンピュータ7は標準試料に対し
て行った測定から得られた飽和吸着量を多変量解析の一
つである主成分分析によって得られた散布図を基にし
て、求めた飽和吸着量から被検知ガスの種類が何である
かの判別を行う。被検知ガスの判別の後、標準試料に対
して行った測定から得られた飽和吸着量を基にして、推
定した飽和吸着量から被検知ガスの濃度を推定する。
After that, the computer 7 calculates the saturated adsorption amount obtained from the measurement performed on the standard sample based on the scatter diagram obtained by the principal component analysis which is one of the multivariate analysis. The type of the detected gas is discriminated from the amount. After the detection gas is discriminated, the concentration of the detection gas is estimated from the estimated saturated adsorption amount based on the saturated adsorption amount obtained from the measurement performed on the standard sample.

【0018】これらの処理を図2のフローチャートにて
説明する。
These processes will be described with reference to the flowchart of FIG.

【0019】先ず、各標準試料に対するセンサ応答か
ら、各標準試料の飽和吸着量、時定数を求める。得られ
た飽和吸着量から主成分分析により散布図を作成する。
First, the saturated adsorption amount and time constant of each standard sample are obtained from the sensor response to each standard sample. A scatter plot is created from the obtained saturated adsorption amount by principal component analysis.

【0020】次に、センサセルに測定する混合ガスを導
入し、混合ガスに対するセンサ応答を獲得する。ここで
各標準試料の時定数を用い、最小自乗法により指数関数
の和の中のAiを推定する。Aiがしきい値diより大
きいかどうかが判断される。Ai≦diの時、ガスiは
判別されない。Ai>diの時、予め作成された散布図
中にAiをプロットし、それがガスiの群内にあるかど
うかが判断される。プロットが群内にない場合、ガスi
は存在しないことになり、群内に存在する場合はガスi
の存在が判別される。こうして得られたAiからガスi
の濃度を推定することができる。
Next, the mixed gas to be measured is introduced into the sensor cell, and the sensor response to the mixed gas is obtained. Here, using the time constant of each standard sample, Ai in the sum of exponential functions is estimated by the method of least squares. It is determined whether Ai is greater than the threshold value di. When Ai ≦ di, the gas i is not discriminated. When Ai> di, plot Ai in the scatter plot previously created and determine if it is in the group of gas i. If the plot is not in a group, gas i
Will be absent, and gas i if present in the group
The presence of is determined. Gas A obtained from Ai thus obtained
The concentration of can be estimated.

【0021】次に、本実施例に基づき本発明の有効性を
調べた結果について説明する。水晶発振子3は6個と
し、ガス吸着膜2としてグラファイト、ポリクロロトリ
フルオロエチレン、ポリエチレン、ポリテトラフルオロ
エチレンの各ターゲットを用いた高周波スパッタリング
により、それぞれの水晶発振子3の表面に形成したもの
を用いた。各吸着膜は以下の通りである。 吸着膜1 ポリクロロトリフルオロエチレン 2 ポリエチレンとポリテトラフルオロエチレンの混合物 3 グラファイト 4 ポリエチレンとグラファイトの混合物 5 ポリクロロトリフルオロエチレン(作製条件を変えた) 6 ポリクロロトリフルオロエチレン(作製条件を変えた) そして、混合ガスとしてはメタノール(1800pp
m)とアセトン(200ppm)の混合ガス1、メタノ
ール(400ppm)とベンゼン(1100ppm)の
混合ガス2を用いた。
Next, the results of examining the effectiveness of the present invention based on this embodiment will be described. The number of crystal resonators 3 is 6, and the gas adsorption film 2 is formed on the surface of each crystal resonator 3 by high frequency sputtering using graphite, polychlorotrifluoroethylene, polyethylene, or polytetrafluoroethylene targets. Was used. Each adsorption film is as follows. Adsorption membrane 1 Polychlorotrifluoroethylene 2 Mixture of polyethylene and polytetrafluoroethylene 3 Graphite 4 Mixture of polyethylene and graphite 5 Polychlorotrifluoroethylene (changed production conditions) 6 Polychlorotrifluoroethylene (changed production conditions) ) And, as the mixed gas, methanol (1800 pp
m) and acetone (200 ppm) mixed gas 1 and methanol (400 ppm) and benzene (1100 ppm) mixed gas 2 were used.

【0022】図3において、アセトン(○)、ベンゼン
(◇)、メタノール(□)の群は予め標準試料(100
ppmから3000ppmの濃度)に対して行った測定
から得られた飽和吸着量を規格化したものを特性値と
し、主成分分析により得られたものである。混合ガス
1、混合ガス2に対して各水晶発振子3ごとの吸着量を
各水晶発振子3の総吸着量の和で規格化したものを特性
値とし主成分分析したものが図4の散布図の中の×であ
る。この散布図を分析しても混合ガス1がメタノールと
アセトンの混合ガス1、混合ガス2がメタノールとベン
ゼンの混合ガスであることを判定することは困難であ
る。混合ガス1に対する各水晶発振子3の周波数のシフ
トの変化から各被検知ガスの時定数を用いて最小自乗法
により各被検知ガスの飽和吸着量を推定し、主成分分析
したものが図5の散布図である。メタノールとアセトン
の飽和吸着量は正しく推定されているため、それぞれメ
タノール、アセトンの群内に×でプロットされている。
ベンゼンについては正しくない位置に×でプロットされ
ているが、これは混合ガス1にはベンゼンが含まれてい
ないことを表している。混合ガス2に対しても図6に示
すように、メタノールとベンゼンの群内には×がプロッ
トされており、メタノールとベンゼンは判別された。一
方、アセトンの群内には×がプロットされておらず、混
合ガス2に含まれていないアセトンは判別されなかった
ことがわかる。
In FIG. 3, the groups of acetone (∘), benzene (∘), and methanol (□) were prepared in advance as standard samples (100
It is obtained by the principal component analysis with the characteristic value obtained by normalizing the saturated adsorption amount obtained from the measurement performed for the concentration (ppm to 3000 ppm). The adsorption amount of each crystal oscillator 3 for the mixed gas 1 and the mixed gas 2 is standardized by the sum of the total adsorption amount of each crystal oscillator 3, and the result of the principal component analysis is shown in FIG. It is an x in the figure. Even if this scatter diagram is analyzed, it is difficult to determine that the mixed gas 1 is the mixed gas 1 of methanol and acetone and the mixed gas 2 is the mixed gas of methanol and benzene. The saturated adsorption amount of each detected gas is estimated by the least square method using the time constant of each detected gas from the change in the frequency shift of each crystal oscillator 3 with respect to the mixed gas 1, and the principal component analysis is shown in FIG. FIG. Since the saturated adsorption amounts of methanol and acetone are correctly estimated, they are plotted as x in the groups of methanol and acetone, respectively.
For benzene, an incorrect position is plotted with x, which means that mixed gas 1 does not contain benzene. As for the mixed gas 2, as shown in FIG. 6, x is plotted in the group of methanol and benzene, and methanol and benzene were discriminated. On the other hand, x is not plotted in the acetone group, and it can be seen that acetone not contained in the mixed gas 2 was not discriminated.

【0023】以上の結果から、本発明の方法のように時
定数を用いて混合ガスに含まれる被検知ガスの飽和吸着
量を推定し主成分分析したものは、従来の混合ガスの吸
着量を主成分分析したものに比べ、分析結果の分布が被
検知ガスの種類ごとにはっきりと分かれており、本発明
の方法によって混合ガスの判別が良好に行えることがわ
かった。
From the above results, when the saturated adsorption amount of the gas to be detected contained in the mixed gas is estimated using the time constant as in the method of the present invention and the principal component analysis is performed, the adsorption amount of the conventional mixed gas is calculated. It was found that the distribution of the analysis results was clearly divided according to the type of the gas to be detected, as compared with the one obtained by the principal component analysis, and that the method of the present invention could favorably discriminate the mixed gas.

【0024】[0024]

【発明の効果】以上説明したように本発明は、それぞれ
異なる種類の吸着膜を表面に設けた複数の水晶発振子を
用いて、各水晶発振子ごとに各被検知ガスの時定数を用
いて共振周波数の時間変化から各被検知ガスの飽和吸着
量を推定し、各被検知ガスの同定を行うので、従来困難
であった混合ガス同定を正確に行えるようになるという
効果がある。
As described above, the present invention uses a plurality of crystal oscillators each having a different type of adsorption film on the surface thereof, and uses the time constant of each gas to be detected for each crystal oscillator. Since the saturated adsorption amount of each gas to be detected is estimated from the time change of the resonance frequency and each gas to be detected is identified, there is an effect that the mixed gas, which has been difficult in the past, can be accurately identified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス判別方法の実施に用いられるガス
判別装置の一例の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an example of a gas discriminating apparatus used for carrying out a gas discriminating method of the present invention.

【図2】本発明のガス判別方法を説明するフローチャー
トである。
FIG. 2 is a flowchart illustrating a gas discrimination method of the present invention.

【図3】標準試料(100ppmから3000ppmの
濃度)に対して行った測定から得られた飽和吸着量を規
格化したものを特性値とし、主成分分析により得られた
散布図である。
FIG. 3 is a scatter diagram obtained by principal component analysis using a standardized saturated adsorption amount obtained from measurement performed on a standard sample (concentration of 100 ppm to 3000 ppm) as a characteristic value.

【図4】混合ガス1、混合ガス2に対して各水晶発振子
3ごとの吸着量を各水晶発振子3の総吸着量の和で規格
化したものを特性値とし、主成分分析により得られた散
布図である。
FIG. 4 is a characteristic value obtained by normalizing the adsorption amount of each crystal oscillator 3 with respect to the mixed gas 1 and the mixed gas 2 by the sum of the total adsorption amount of each crystal oscillator 3 and obtained by the principal component analysis. FIG.

【図5】混合ガス1に対する各水晶発振子3の周波数の
シフトの変化から各被検知ガスの時定数を用いて最小自
乗法により各被検知ガスの飽和吸着量を推定し、主成分
分析により得られた散布図である。
FIG. 5: The saturated adsorption amount of each detected gas is estimated by the least square method from the change in the frequency shift of each crystal oscillator 3 with respect to the mixed gas 1 by using the time constant of each detected gas, and the principal component analysis is performed. It is the obtained scatter diagram.

【図6】混合ガス2に対する各水晶発振子3の周波数の
シフトの変化から各被検知ガスの時定数を用いて最小自
乗法により各被検知ガスの飽和吸着量を推定し、主成分
分析により得られた散布図である。
FIG. 6 is a graph showing the saturated adsorption amount of each detected gas estimated by the least squares method from the change in the frequency shift of each crystal oscillator 3 with respect to the mixed gas 2 by using the time constant of each detected gas. It is the obtained scatter diagram.

【符号の説明】[Explanation of symbols]

1 センサセル 2 ガス吸着膜 3 水晶発振子 4 発振回路 5 アナログスイッチ 6 周波数カウンタ 7 コンピュータ 8 ガス発生器 9 表示装置 1 Sensor Cell 2 Gas Adsorption Film 3 Crystal Oscillator 4 Oscillation Circuit 5 Analog Switch 6 Frequency Counter 7 Computer 8 Gas Generator 9 Display Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に吸着膜を設けた水晶発振子を用
い、被検知ガスの前記吸着膜への吸着による前記水晶発
振子の共振周波数の変化を求めることにより、混合ガス
中の各被検知ガスの種類を同定する混合ガス判別方法に
おいて、それぞれ異なる種類の吸着膜を表面に設けた複
数の水晶発振子を用い、前記各水晶発振子をガス状の試
料に曝し、前記各水晶発振子ごとに共振周波数の時間変
化を、各被検知ガスに対して単独ガスの場合の共振周波
数の時間変化を表す指数関数から得られる各時定数を用
いた指数関数の和で近似し、各指数関数の係数を求める
ことにより各被検知ガスの飽和吸着量を推定し、単独ガ
スの場合の散布図を用いて各被検知ガスの同定および定
量を行うことを特徴とする混合ガス判別方法。
1. A quartz oscillator having an adsorption film on the surface thereof is used, and a change in resonance frequency of the quartz oscillator due to adsorption of the gas to be detected to the adsorption film is obtained to obtain each of the substances to be detected in the mixed gas. In the mixed gas discrimination method for identifying the type of gas, a plurality of crystal oscillators provided with adsorption films of different types on the surface are used, each crystal oscillator is exposed to a gaseous sample, and each crystal oscillator is exposed. The time variation of the resonance frequency is approximated by the sum of the exponential functions using the time constants obtained from the exponential function representing the time variation of the resonance frequency for each gas to be detected. A method for determining a mixed gas, wherein the saturated adsorption amount of each detected gas is estimated by obtaining a coefficient, and each detected gas is identified and quantified using a scatter diagram in the case of a single gas.
JP11494792A 1992-05-07 1992-05-07 Mixed gas determination method Expired - Lifetime JP2723209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11494792A JP2723209B2 (en) 1992-05-07 1992-05-07 Mixed gas determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11494792A JP2723209B2 (en) 1992-05-07 1992-05-07 Mixed gas determination method

Publications (2)

Publication Number Publication Date
JPH05312708A true JPH05312708A (en) 1993-11-22
JP2723209B2 JP2723209B2 (en) 1998-03-09

Family

ID=14650598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11494792A Expired - Lifetime JP2723209B2 (en) 1992-05-07 1992-05-07 Mixed gas determination method

Country Status (1)

Country Link
JP (1) JP2723209B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350313A (en) * 2001-05-25 2002-12-04 Mitsubishi Electric Corp Method and device for chemicals quantification
JP2003004617A (en) * 2001-06-19 2003-01-08 Mitsubishi Electric Corp System and method for managing odor
JP2003065926A (en) * 2001-08-27 2003-03-05 Mitsubishi Electric Corp Detection apparatus and method
JP2007218704A (en) * 2006-02-15 2007-08-30 Futaba Electronics:Kk Smell discrimination method, smell measuring method, smell discrimination program, smell discrimination device and smell measuring instrument
JP2010216851A (en) * 2009-03-13 2010-09-30 Olympus Corp Substance detecting system
JP2020165826A (en) * 2019-03-29 2020-10-08 太陽誘電株式会社 Gas sensor and gas detection system
JP2022109290A (en) * 2017-12-22 2022-07-27 太陽誘電株式会社 Sensing system and information processor
US11644449B2 (en) 2017-12-22 2023-05-09 Taiyo Yuden Co., Ltd. Sensing system, information processing apparatus, and sensor apparatus
WO2023175933A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Abnormality determination device, abnormality detection device, abnormality determination method, and abnormality determination program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350313A (en) * 2001-05-25 2002-12-04 Mitsubishi Electric Corp Method and device for chemicals quantification
JP2003004617A (en) * 2001-06-19 2003-01-08 Mitsubishi Electric Corp System and method for managing odor
JP2003065926A (en) * 2001-08-27 2003-03-05 Mitsubishi Electric Corp Detection apparatus and method
JP2007218704A (en) * 2006-02-15 2007-08-30 Futaba Electronics:Kk Smell discrimination method, smell measuring method, smell discrimination program, smell discrimination device and smell measuring instrument
JP2010216851A (en) * 2009-03-13 2010-09-30 Olympus Corp Substance detecting system
JP2022109290A (en) * 2017-12-22 2022-07-27 太陽誘電株式会社 Sensing system and information processor
US11644449B2 (en) 2017-12-22 2023-05-09 Taiyo Yuden Co., Ltd. Sensing system, information processing apparatus, and sensor apparatus
JP2020165826A (en) * 2019-03-29 2020-10-08 太陽誘電株式会社 Gas sensor and gas detection system
WO2023175933A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Abnormality determination device, abnormality detection device, abnormality determination method, and abnormality determination program

Also Published As

Publication number Publication date
JP2723209B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US7140230B2 (en) Odor measuring apparatus
US6291821B1 (en) Method of monitoring the status of the gas drying system in an ion mobility spectrometer
EP0509171A1 (en) Method and apparatus for improving the specificity of an ion mobility spectrometer utilizing sulfur dioxide dopant chemistry
KR100542460B1 (en) Plasma processing apparatus and plasma processing method
Özmen et al. Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network
JPH05312708A (en) Distinguishing method of mixed gas
EP1463938B1 (en) Diagnostic apparatus and methods for a chemical detection system
EP2144211A2 (en) Multi-sensor detectors
Hamacher et al. Online measurement of odorous gases close to the odour threshold with a QMB sensor system with an integrated preconcentration unit
JP3757329B2 (en) Hazardous chemical substance monitoring apparatus and method
EP2372357B1 (en) Identification of Substances by Ion Mobility Spectrometry
EP0172969A2 (en) Discriminant analysis of gas constituents
JP3141969B2 (en) Method and apparatus for determining and quantifying mixed gas components
US5908600A (en) Monitor for detecting hydrocarbons and other gases in an open area
JPH05164670A (en) Method of distinguishing gas
US5627307A (en) Method for measuring intensity index of odor
Tan et al. E-nose screening of pesticide residue on chilli and double-checked analysis through different data-recognition algorithms
JP3199293B2 (en) Gas detector
WO2004005907A1 (en) Improved method of chemical sensing
McAlernon et al. Interpreting signals from an array of non-specific piezoelectric chemical sensors
Jansen et al. Internal quality control system for non-stationary, non-ergodic analytical processes based upon exponentially weighted estimation of process means and process standard deviation
Saeed et al. Experimental use of electronic nose for analysis of volatile organic compound (VOC)
Chuanzhi et al. A novel toxic gases detection system based on saw resonator array and probabilistic neural network
US4680472A (en) Process and apparatus for the stabilization of measuring results furnished by an "electron capture" detector with identification of anomalies affecting the detector
JPH02293644A (en) Sensor for concentration of ruthenium tetraoxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20121128

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20121128