JPH0531201Y2 - - Google Patents

Info

Publication number
JPH0531201Y2
JPH0531201Y2 JP19836886U JP19836886U JPH0531201Y2 JP H0531201 Y2 JPH0531201 Y2 JP H0531201Y2 JP 19836886 U JP19836886 U JP 19836886U JP 19836886 U JP19836886 U JP 19836886U JP H0531201 Y2 JPH0531201 Y2 JP H0531201Y2
Authority
JP
Japan
Prior art keywords
tube
turbine
steam
casing
guide tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19836886U
Other languages
Japanese (ja)
Other versions
JPS63104606U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19836886U priority Critical patent/JPH0531201Y2/ja
Publication of JPS63104606U publication Critical patent/JPS63104606U/ja
Application granted granted Critical
Publication of JPH0531201Y2 publication Critical patent/JPH0531201Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、蒸気タービン内部の上記流れの計
測、並びに送風機及び圧縮機内空気およびガスの
流れ、ガスタービン用軸流圧縮機内空気の流れの
計測にも適用できる計測装置に係り、計測範囲を
増大する技術分野で利用される。
[Detailed description of the invention] Industrial application field The present invention can also be used to measure the above-mentioned flow inside a steam turbine, the flow of air and gas inside a blower and compressor, and the flow of air inside an axial compressor for a gas turbine. It relates to applicable measurement devices and is used in technical fields that increase the measurement range.

従来の技術 蒸気タービン内部の蒸気流れの方向、圧力およ
び湿りの分布等を計測する手段として、検出管を
内蔵した計測装置が一般によく使用されている。
2. Description of the Related Art As a means for measuring the direction of steam flow, pressure, moisture distribution, etc. inside a steam turbine, a measuring device with a built-in detection tube is generally used.

この計測装置は、車室を貫通させて、蒸気ター
ビンの内部すなわち蒸気入口室、抽気室、排気室
および翼列間等に検出管を挿し込み、蒸気通路に
おける蒸気の流れ方向、圧力を検出管を通じて車
室外に取出すもので、流れ方向については検出管
を旋回させて圧力が最大になつた方向即ち検出管
に設けられた穴が蒸気流れに対面した状態を検出
する。また、熱電対によつて温度を検出して、蒸
気の湿り度も検知される。
This measuring device penetrates the casing and inserts a detection tube inside the steam turbine, such as the steam inlet chamber, bleed chamber, exhaust chamber, and between blade rows, and measures the flow direction and pressure of steam in the steam passage. As for the flow direction, the detection tube is rotated to detect the direction in which the pressure is maximum, that is, the state in which the hole provided in the detection tube faces the steam flow. The humidity of the steam is also detected by detecting the temperature with a thermocouple.

考案が解決しようとする問題点 a 上記従来の技術にあつては、車室貫通部の蒸
気漏洩防止のために、検出管用の貫通穴は円形
であつた。このため検出管は旋回運動のほか、
子午線方向即ちロータ軸心に対して半径方向の
移動しかできなかつた。このために計測はロー
タ軸心に対して半径方向のみしかできず、円周
方向即ち翼列方向を計測するためには複数個の
検出管を必要とした。
Problem A to be Solved by the Invention In the above-mentioned conventional technology, the through hole for the detection tube was circular in order to prevent steam leakage through the compartment penetration part. Therefore, in addition to the rotational movement, the detection tube
It was possible to move only in the meridian direction, that is, in the radial direction with respect to the rotor axis. For this reason, measurements can only be made in the radial direction with respect to the rotor axis, and a plurality of detection tubes are required to measure in the circumferential direction, that is, in the direction of the blade rows.

b 検出管には蒸気の流れによる曲げモーメント
が作用する。この曲げモーメントによる検出管
の撓みと破損を防止するためにガイド管および
保護筒が設けられるが、検出管が外部ケーシン
グと内部ケーシングを貫通するとき両ケーシン
グの温度差に伴う熱応力によつて、保護筒が破
損する場合がある。
b A bending moment due to the flow of steam acts on the detection tube. A guide tube and a protective tube are provided to prevent bending and damage of the detection tube due to this bending moment, but when the detection tube passes through the outer casing and the inner casing, thermal stress due to the temperature difference between the two casings causes The protective tube may be damaged.

問題点を解決するための手段 本考案は、上述の問題点を解決するために、タ
ービン内部を計測する検出管を収容し案内するガ
イド管の外側に、ふたつに分割した保護筒を設
け、これら保護筒の一方は外部ケーシングに取付
けると共に他方は内部ケーシングに取付け、両保
護筒間の分割箇所に前記内外部ケーシングの温度
差を伴う熱膨張差を吸収させるベローズを介在さ
せたこと、および前記ガイド管を前記外部ケーシ
ング状に球面支持させると共に前記保護筒の断面
をタービン円周方向に長円形としたことを特徴と
する、タービン内部流動の計測装置を提供するも
のである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a protective tube divided into two parts on the outside of the guide tube that houses and guides the detection tube that measures the inside of the turbine. One of the protection tubes is attached to the outer casing, and the other is attached to the inner casing, and a bellows is interposed at the dividing point between the two protection tubes to absorb a difference in thermal expansion caused by a temperature difference between the inner and outer casings, and the guide The present invention provides a turbine internal flow measuring device, characterized in that a tube is spherically supported in the shape of the outer casing, and the protection tube has an oval cross section in the circumferential direction of the turbine.

作 用 上述した手段によれば、従来、線状であつた計
測範囲を面状とし、半径方向のみならず円周方向
の計測も可能とする。また、従来経験した保護筒
の熱応力による破損を防止することも可能とな
る。
Effects According to the above-mentioned means, the measurement range, which was conventionally linear, becomes planar, and measurement not only in the radial direction but also in the circumferential direction becomes possible. Furthermore, it is also possible to prevent damage to the protective tube due to thermal stress, which has conventionally been experienced.

実施例 次に、本考案の一実施例について第1図、第2
図、第3図および第4図を参照して説明する。な
お、図面で同一部分には同一符号を付している。
Embodiment Next, an embodiment of the present invention will be explained in FIGS. 1 and 2.
This will be explained with reference to FIGS. 3 and 4. Note that the same parts in the drawings are designated by the same reference numerals.

図は検出管(トラバース式プローブと呼称す)
1を蒸気タービンの最終段静翼2と最終段動翼3
の間に挿入した状況を示す。
The figure shows a detection tube (referred to as a traverse probe)
1 is the final stage stationary blade 2 and the final stage rotor blade 3 of the steam turbine.
Indicates the situation inserted between.

第1,2図では検出管1に穴Aを設けたのみに
止まつているがピトー管によつて動圧、静圧を同
時に計測することもできる。該部構造は本考案に
直接関係しないために説明は省略する。
In FIGS. 1 and 2, only the hole A is provided in the detection tube 1, but it is also possible to simultaneously measure dynamic pressure and static pressure using a pitot tube. Since this structure is not directly related to the present invention, a description thereof will be omitted.

検出管1は、複数個のテフロンシール4を介し
て、断面が円形のガイド管5に挿入され、更に保
護筒6によつて保護されている。保護筒6の一端
は内部ケーシング7に溶接され、他端にはベロー
ズ8を介して保護筒9が同軸に配設され、この保
護筒9の他端のフランジ10が外部ケーシング1
1に溶接された金具12にボルトによつて固定さ
れている。
The detection tube 1 is inserted into a guide tube 5 having a circular cross section via a number of Teflon seals 4, and is further protected by a protective tube 6. One end of the protective tube 6 is welded to an inner casing 7, and a protective tube 9 is coaxially disposed at the other end via a bellows 8. A flange 10 at the other end of the protective tube 9 is welded to the outer casing 1.
It is fixed to a metal fitting 12 welded to the base 1 by a bolt.

金具12にボルトで固定された金具13には球
面座(第2図)が設けられ、ブツシユ14を介し
てガイド管5に取付けられた球面軸受15の支点
を形成している。この球面軸受15は金具16を
ボルト17によつて金具13に固定することによ
つて把持される。
A metal fitting 13 fixed to the metal fitting 12 with bolts is provided with a spherical seat (FIG. 2), and forms a fulcrum for a spherical bearing 15 attached to the guide tube 5 via a bush 14. This spherical bearing 15 is held by fixing a metal fitting 16 to the metal fitting 13 with a bolt 17.

金具16の上部にはベローズ18およびブツシ
ユ19が取付けられ、第1,2図の場合は、蒸気
圧力が真空であるために、外気の侵入が防止され
ている。
A bellows 18 and a bush 19 are attached to the upper part of the metal fitting 16, and in the case of FIGS. 1 and 2, since the steam pressure is a vacuum, intrusion of outside air is prevented.

検出された圧力は検出管1の端部Bから、図示
していない指示計および記録計に伝達される。
The detected pressure is transmitted from the end B of the detection tube 1 to an indicator and a recorder (not shown).

第3,4図に示すように保護筒6の断面及びガ
イド管5が貫通する内部ケーシング7の穴はター
ビン円周方向に長円形とし、かつ検出側に近い方
の保護筒内面またはタービン車室に設けられた長
円形の穴の短幅側寸法と球面軸受によつて支持さ
れたガイド管の外径寸法とをすきま嵌め寸法とし
てあるため、図の矢印方向にガイド管5は移動す
ることが出来る。従つて第2図に示すように検出
管1は球面軸受15を支点として振子状に可動
し、これに従来方式の半径方向可動範囲を加える
ことによつて、図中斜線で示された扇形面積にわ
たる範囲の測定が可能となる。
As shown in FIGS. 3 and 4, the cross section of the protection tube 6 and the hole in the inner casing 7 through which the guide tube 5 passes are oval in the turbine circumferential direction, and the inner surface of the protection tube or the turbine casing is located closer to the detection side. Since the short width dimension of the oval hole provided in the guide tube 5 and the outer diameter dimension of the guide tube supported by the spherical bearing are defined as clearance fit dimensions, the guide tube 5 cannot move in the direction of the arrow in the figure. I can do it. Therefore, as shown in FIG. 2, the detection tube 1 moves in a pendulum shape using the spherical bearing 15 as a fulcrum, and by adding the radial movable range of the conventional method to this, the fan-shaped area indicated by diagonal lines in the figure can be obtained. It becomes possible to measure a wide range.

また、両端を内部ケーシング7および外部ケー
シング11に固定された保護筒6,9はその間に
ベローズ8を介在させることによつて、熱応力に
よる破損が防止される。
Moreover, the protective tubes 6 and 9, which are fixed at both ends to the inner casing 7 and the outer casing 11, are prevented from being damaged by thermal stress by interposing the bellows 8 therebetween.

考案の効果 本考案によると次のような効果をあげることが
できる。
Effects of the invention According to the invention, the following effects can be achieved.

a 従来半径方向の分布のみしか計測できなかつ
た蒸気タービン内蒸気流動が、円周方向の分布
も計測できるようになり、翼列をはじめ蒸気入
口室、抽気室、排気室設計のための貴重なデー
タが実機に則して入手できる。
a The steam flow inside a steam turbine, which previously could only be measured in the radial direction, can now be measured in the circumferential direction as well, providing valuable information for designing the blade row, steam inlet chamber, bleed chamber, and exhaust chamber. Data can be obtained based on actual equipment.

b 従来経験した計測器の熱応力による破損が全
く無くなる。
b. Breakage of measuring instruments caused by thermal stress, which was experienced in the past, is completely eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の構成を示す組立断面図、第2
図は第1図の−断面図、第3図は第2図の
−断面図、第4図は第2図の−断面図を示
す。 1……検出管(トラバース式プローブ)、2…
…最終段静翼、3……最終段動翼、4……テフロ
ンシール、5……ガイド管、6,9……保護筒、
7……内部ケーシング、8,18……ベローズ、
10……フランジ、11……外部ケーシング、1
2,13,16……金具、14,19……ブツシ
ユ、15……球面軸受、17……ボルト。
Figure 1 is an assembled sectional view showing the configuration of the present invention, Figure 2 is an assembled sectional view showing the configuration of the present invention.
The figure shows a sectional view taken from FIG. 1, FIG. 3 shows a sectional view taken from FIG. 2, and FIG. 4 shows a sectional view taken from FIG. 2. 1...Detection tube (traverse probe), 2...
...Final stage stationary blade, 3...Final stage rotor blade, 4...Teflon seal, 5...Guide tube, 6, 9...Protection tube,
7... Internal casing, 8, 18... Bellows,
10...Flange, 11...Outer casing, 1
2, 13, 16...metal fittings, 14, 19...buttons, 15...spherical bearings, 17...bolts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] タービン内部を計測する検出管を収容し案内す
るガイド管の外側に、ふたつに分割した保護筒を
設け、これら保護筒の一方は外部ケーシングに取
付けると共に他方は内部ケーシングに取付け、両
保護筒間の分割箇所に前記内外部ケーシングの温
度差を伴う熱膨張差を吸収させるベローズを介在
させたこと、および前記ガイド管を前記外部ケー
シング上に球面支持させると共に前記保護筒の断
面をタービン円周方向に長円形としたことを特徴
とする、タービン内部流動の計測装置。
A protection tube divided into two is installed on the outside of the guide tube that houses and guides the detection tube that measures the inside of the turbine.One of these protection tubes is attached to the outer casing, and the other is attached to the inner casing. A bellows for absorbing a thermal expansion difference caused by a temperature difference between the inner and outer casings is interposed at the dividing point, and the guide tube is supported spherically on the outer casing, and the cross section of the protective tube is arranged in the turbine circumferential direction. A turbine internal flow measurement device characterized by an oval shape.
JP19836886U 1986-12-25 1986-12-25 Expired - Lifetime JPH0531201Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19836886U JPH0531201Y2 (en) 1986-12-25 1986-12-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19836886U JPH0531201Y2 (en) 1986-12-25 1986-12-25

Publications (2)

Publication Number Publication Date
JPS63104606U JPS63104606U (en) 1988-07-06
JPH0531201Y2 true JPH0531201Y2 (en) 1993-08-11

Family

ID=31158989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19836886U Expired - Lifetime JPH0531201Y2 (en) 1986-12-25 1986-12-25

Country Status (1)

Country Link
JP (1) JPH0531201Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648139B2 (en) * 2005-09-14 2011-03-09 三菱重工業株式会社 Gas turbine blade tip clearance management structure
US8573078B2 (en) * 2010-11-23 2013-11-05 General Electric Company System and method for positioning a sensor
JP6249927B2 (en) * 2014-11-11 2017-12-20 三菱日立パワーシステムズ株式会社 Steam turbine

Also Published As

Publication number Publication date
JPS63104606U (en) 1988-07-06

Similar Documents

Publication Publication Date Title
US7819578B2 (en) Fluid temperature measurement device
US6868366B1 (en) Method for measuring piping forces acting on a turbine casing
CN110926826B (en) Cartridge receiver model test device
CA1159561A (en) Method of diagnosis of operating conditions of bearing and apparatus therefor
US20160025592A1 (en) Bearing test apparatus for testing durability of bearing
CN114136645B (en) Inlet flow field measuring device for turbine component tester
CN111982523B (en) Exhaust test structure
US9207128B2 (en) Dynamic fiber temperature sensing package and method of assembling the same
JPH0531201Y2 (en)
CN109489904A (en) A kind of detection system and method for the gas leakage of engine crankcase faying face
JPS6127699B2 (en)
JP2002201960A (en) Temperature pressure combination measuring instrument
US5259234A (en) Calibration system for air metering bellmouths
US5517862A (en) Apparatus and method for measuring ventilation flow exiting a spinning rotor
KR20070019910A (en) Measurement system for axial load
JPS6191532A (en) Fluid temperature measuring apparatus
CN212082624U (en) Radiation-proof total temperature measuring probe
CN114961889B (en) Turbine rotating static disc cavity airflow swirl ratio measuring method
Hughes Flowfield measurements in the NASA Lewis Research Center 9-by 15-foot low-speed wind tunnel
Hall et al. An investigation into the use of a cone-jet sensor for clearance and eccentricity measurement in turbomachinery
Puente et al. Instrumentation improvements for NGV aerodynamic characterization at high Mach numbers
Simmons et al. Tools for diagnosing case deflections and alignment on a power utility combustion turbine
CN117686123A (en) Heat preservation device
Elzarook Blade tip clearance measurement technology in gas turbines
Simmons et al. Tools for diagnosing case deflections and alignment on a power utility combustion turbine