JPH05311390A - Production of fe16n2 iron nitride having high saturation magnetization - Google Patents

Production of fe16n2 iron nitride having high saturation magnetization

Info

Publication number
JPH05311390A
JPH05311390A JP4122057A JP12205792A JPH05311390A JP H05311390 A JPH05311390 A JP H05311390A JP 4122057 A JP4122057 A JP 4122057A JP 12205792 A JP12205792 A JP 12205792A JP H05311390 A JPH05311390 A JP H05311390A
Authority
JP
Japan
Prior art keywords
iron
saturation magnetization
fe16n2
rolling direction
high saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4122057A
Other languages
Japanese (ja)
Other versions
JP3021957B2 (en
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4122057A priority Critical patent/JP3021957B2/en
Publication of JPH05311390A publication Critical patent/JPH05311390A/en
Application granted granted Critical
Publication of JP3021957B2 publication Critical patent/JP3021957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • ing And Chemical Polishing (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce an Fe16N2 iron nitride having high saturation magnetization by nitriding the surface of a thin sheet of iron or iron alloy having a specified texture to form Fe16N2 and then etching off the iron or iron alloy. CONSTITUTION:A steel sheet is annealed while impressing a magnetic field in the rolling direction to grow a crystal grain with the [100] axes strongly accumulated in the rolling direction. The iron or iron alloy thin sheet thus obtained is nitrided at about 100-700 deg.C in a nitriding atmosphere while impressing a magnetic field in the rolling direction, and Fe16N2 is formed on the thin sheet surface. The nitrided thin sheet is then preferably quenched and etched with a weak liq. etchant such as aq. several % nitric acid, and the iron or iron alloy is removed and the nitride is extracted. An Fe16N2 iron nitride having high saturation magnetization is stably supplied in large quantities in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高い飽和磁化を有す
るFe16N2鉄窒化物の有利な製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an advantageous method for producing Fe 16 N 2 iron nitride having a high saturation magnetization.

【0002】[0002]

【従来の技術】近年の電子工業の飛躍的発展は、磁性材
料の開発研究に負うところが極めて大きいが、とくに最
近では鉄心、磁気録音、電気機器の小型化及び情報の高
密度化などのため飽和磁気モーメントが高くまた磁歪特
性も良好な磁性材料が求められている。従来、磁気モー
メントの高い材料を得るためには、鉄を合金化すること
によりその飽和磁化を増大させる手法が主流であった
が、かような合金化添加元素はPtやPd等の高価な元素ば
かりであるため、工業的に利用されるまでには至ってい
ない。
2. Description of the Related Art Recent breakthroughs in the electronic industry are greatly owed to the research and development of magnetic materials, but recently, especially due to the downsizing of iron cores, magnetic recording, electrical equipment, and high density of information, saturation has occurred. There is a demand for a magnetic material having a high magnetic moment and good magnetostriction characteristics. In the past, in order to obtain a material with a high magnetic moment, the method of increasing the saturation magnetization by alloying iron was the mainstream, but such alloying additive elements are expensive elements such as Pt and Pd. However, it has not been industrially used yet.

【0003】1972年に、高橋らは、{高橋実:固体物
理. Vol.7 (1972), 483 }, {T. K.Kim and M. Takaha
shi:Appl. Phys. Lett. Vol.20 (1972), 492}及び
{高橋実:学術月報、Vol.24 (1972), 719}において、
2×10-4〜2×10-3Torrの窒素雰囲気中で蒸着した鉄薄
膜の飽和磁化の値は 26400〜29000 ガウス(G)であ
り、純鉄薄膜の飽和磁化の値 21500Gに比較してはるか
に高いという極めて興味深い実験結果を示した。そして
この高い飽和磁化は、鉄薄膜中に優先形成したFe16N2
鉄窒化物に由来することを電子回折による結晶構造解析
から明らかにした。その後、光岡及び近角らは、{光岡
勝也、宮島英紀、近角総信、第2回日本応用磁気学会講
演概要集、(1978) P.176}及び{近角総信:応用物理、
53 (1984),291 }において、Fe16N2鉄窒化物はB.C.
T.(Body Centered Tetragonal)構造であるためN原
子の侵入による格子の伸びによって磁化が増加すること
を示した。
In 1972, Takahashi et al. {Mr. Takahashi: Solid State Physics. Vol. 7 (1972), 483}, {TKKim and M. Takaha.
In Shi: Appl. Phys. Lett. Vol.20 (1972), 492} and {Mr. Takahashi: Academic Monthly Report, Vol.24 (1972), 719},
The saturation magnetization value of the iron thin film deposited in the nitrogen atmosphere of 2 × 10 −4 to 2 × 10 −3 Torr is 26400 to 29000 Gauss (G), which is higher than that of the pure iron thin film of 21500G. It showed a very interesting experimental result that is much higher. And it was clarified from the crystal structure analysis by electron diffraction that this high saturation magnetization originates from the iron nitride of Fe 16 N 2 preferentially formed in the iron thin film. After that, Mitsuoka and Chikazumi et al. {Katsuya Mitsuoka, Hideki Miyajima, Sonobu Chikaku, 2nd Annual Meeting of the Applied Magnetics Society of Japan, (1978) P.176} and {Sonobu Chikaku: Applied Physics,
53 (1984), 291}, Fe 16 N 2 iron nitride is described in B. C.
T. Since the structure is a (Body Centered Tetragonal) structure, it has been shown that the magnetization increases due to the lattice extension caused by the penetration of N atoms.

【0004】また上記の技術とは別に発明者らは、{Y.
Inokuti, N.Nishida and N.Ohashi:Met. Trans. 6A (1
975), 733}及び{井口征夫:日本金属学会報, 15 (197
5),101 }において、(100)面方位の純鉄単結晶
を、 450℃から 500℃の温度範囲においてアンモニアと
水素ガスとの窒化雰囲気中で処理すると、単結晶試料表
面近傍に 0.5〜5μm 程度のFe16N2が優先析出するこ
と、またFe16N2と地鉄マトリックスとの整合関係は、
In addition to the above-mentioned technique, the inventors have proposed {Y.
Inokuti, N.Nishida and N.Ohashi: Met. Trans. 6A (1
975), 733} and {Seio Iguchi: The Japan Institute of Metals, 15 (197)
5), 101}, pure iron single crystal with (100) orientation was treated in a nitriding atmosphere of ammonia and hydrogen gas in the temperature range of 450 ° C to 500 ° C, and 0.5 to 5 μm was formed near the surface of the single crystal sample. The degree of Fe 16 N 2 preferentially precipitates, and the matching relationship between Fe 16 N 2 and the matrix is

【数1】 {001}Fe16N2 // {001}α , <100> Fe16N2 //<100>α を満足することを示した。## EQU1 ## It has been shown that {001} Fe 16 N 2 // {001} α, <100> Fe 16 N 2 // <100> α is satisfied.

【0005】さらに最近、日立研究所の小園らは、日刊
工業新聞(1989年11月28日発行)において、Fe16N2の格
子定数がインジウム、ガリウム・砒素合金と同じことに
着目し、MBE法によりFe16N2の薄膜を作成し、これが
29000Gの飽和磁化を有することを示した。またNTT
の小野らは、ECRスパッタ法を用いてGaAs(100) の上
にN2雰囲気中でFe薄膜を作成、さらに長岡大学の中島ら
は、イオンプランテーション法を用いて MgO(100) の上
にFe薄膜を作成し〔高橋実:汎用材料委員会資料、平成
2年11月22日、(JCRM)〕、いずれもこれらの薄膜は高い
飽和磁化を有することを報告している。
More recently, Kozono et al. Of Hitachi Research Laboratories noted in the Nikkan Kogyo Shimbun (published November 28, 1989) that the lattice constant of Fe 16 N 2 is the same as that of indium and gallium arsenide alloys. By the method, a thin film of Fe 16 N 2 was created.
It was shown to have a saturation magnetization of 29000G. Also NTT
Ono et al. Prepared an Fe thin film on GaAs (100) in N 2 atmosphere using ECR sputtering method, and Nakajima et al. In Nagaoka University et al. Used Fe on MgO (100) by ion plantation method. Thin films were prepared [Mr. Takahashi: Material for General Purpose Material, November 22, 1990, (JCRM)], and all reported that these thin films had high saturation magnetization.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Fe16N2
に関する最近の研究成果はFeの薄膜が主体であり、工業
材料として使用するにはあまりも小さすぎるため、材料
として安定に大量使用するには難点があることがしばし
ば指摘されている。またFe薄膜中に析出させたFe16N2
利用するには工程が不安定であることから、高飽和磁化
を有するFe16N2を安定して得ることができ、しかもかか
るFe16N2析出物の大量供給が可能な製造方法の開発が待
ち望まれている。この発明は、上記の要請に有利に応え
るもので、高飽和磁化を有するFe16N2鉄窒化物の安定し
た大量供給が可能な製造方法を提案することを目的とす
る。
[Problems to be Solved by the Invention] However, Fe 16 N 2
It is often pointed out that the recent research results on Fe are mainly thin films of Fe, which are too small to be used as industrial materials, so that they are difficult to stably use in large quantities as materials. In addition, since the process of using Fe 16 N 2 deposited in the Fe thin film is unstable, it is possible to stably obtain Fe 16 N 2 having a high saturation magnetization, and to use such Fe 16 N 2 Development of a manufacturing method capable of supplying a large amount of precipitates has been awaited. The present invention advantageously responds to the above-mentioned requirements, and an object thereof is to propose a manufacturing method capable of stably supplying a large amount of Fe 16 N 2 iron nitride having high saturation magnetization.

【0007】[0007]

【課題を解決するための手段】さて発明者らは、上記の
要請に応えるべく鋭意研究を重ねた結果、〔100〕軸
が圧延方向に強く集積した方位の結晶粒を有する薄板に
対して窒化処理を施すことにより、Fe16N2が表層に優先
的に析出し、しかもそのFe16N2をエッチングにより抽出
することによって高い飽和磁化を有するFe16N2が容易に
得られることの知見を得た。この発明は、上記の知見立
脚するものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to meet the above demands, and as a result, nitrided a thin plate having crystal grains in which the [100] axis was strongly integrated in the rolling direction. by performing processing, Fe 16 N 2 is preferentially deposited on the surface layer, yet the knowledge that the Fe 16 N 2 is Fe 16 N 2 having a high saturation magnetization by extracting by etching easily obtained Obtained. The present invention is based on the above findings.

【0008】すなわちこの発明は、結晶粒の〔100〕
軸が圧延方向に強く集積した集合組織を有する鉄又は鉄
合金薄板に、窒化処理を施し、該薄板の表面にFe16N2
優先形成させたのち、エッチングにより鉄又は鉄合金を
除去してFe16N2鉄窒化物を取り出すことからなる高い飽
和磁化を有するFe16N2鉄窒化物の製造方法(第1発明)
である。
That is, the present invention is based on [100] crystal grains.
The iron or iron alloy thin plate having a texture in which the axis is strongly integrated in the rolling direction is subjected to a nitriding treatment, Fe 16 N 2 is preferentially formed on the surface of the thin plate, and then the iron or iron alloy is removed by etching. method of manufacturing a Fe 16 N 2 iron nitride having a high saturation magnetization which comprises taking out a Fe 16 N 2 iron nitride (first invention)
Is.

【0009】またこの発明は、結晶粒の〔100〕軸が
圧延方向に強く集積した集合組織を有する鉄又は鉄合金
薄板に、圧延方向と同方向に磁場を印加しながら窒化処
理を施し、該薄板の表面にFe16N2を優先形成させたの
ち、エッチングにより鉄又は鉄合金を除去してFe16N2
窒化物を取り出すことからなる高い飽和磁化を有するFe
16N2鉄窒化物の製造方法(第2発明)である。
Further, according to the present invention, the [100] axis of the crystal grain is
Iron or iron alloy with a texture that is strongly integrated in the rolling direction
Nitriding treatment is applied to a thin plate while applying a magnetic field in the same direction as the rolling direction.
The surface of the thin plate.16N2Was formed preferentially
After removing iron or iron alloy by etching,16N2iron
Fe with high saturation magnetization consisting of taking out nitrides
16N2It is a method for manufacturing an iron nitride (second invention).

【0010】以下、この発明の基礎となった実験結果に
ついて説明する。C:0.002 wt%(以下単に%で示
す)、Si:0.003 %、Mn:0.08%、P:0.005 %、S:
0.005 %、Al:0.004 %、N:0.0015%及びO:0.007
%を含み、残部は実質的にFeの組成になる高純度溶鋼
を、連続鋳造によりスラブとしたのち、熱間圧延により
1.6 mm厚の熱延板とした。ついで熱延方向と同じ方向
(L方向)及び90°方向(C方向)の冷間圧延を交互に
行ういわゆるクロス圧延によって、0.15mm厚の冷延板と
した。その後、圧延方向に磁場を印加しながら 880℃の
温度で焼鈍することにより、圧延方向に〔100〕軸が
強く集積した結晶粒を成長させたのち、表面を研削し、
ついで電解研磨を施して鏡面状態に仕上げたのち 450℃
の窒素雰囲気中で窒化処理を施すことにより、表面にFe
16N2を析出させた。なおかかる窒化処理は、表1に示す
3条件、すなわち(a) 試料と垂直方向、(b) 試料と圧延
方向にそれぞれ2000Gの磁場を印加しながら、(c) 磁場
の印加なしに、行った。その後、しゅう酸とH2O2との混
合水溶液からなるエッチング液を用いて鋼板表面上に析
出したFe16N2を抽出した。このようにして抽出したFe16
N2の飽和磁化について調べた結果を、表1に併記する。
Hereinafter, the experimental results which are the basis of the present invention will be described. C: 0.002 wt% (simply indicated by% hereinafter), Si: 0.003%, Mn: 0.08%, P: 0.005%, S:
0.005%, Al: 0.004%, N: 0.0015% and O: 0.007
%, And the balance is a high-purity molten steel having a composition of substantially Fe.
A hot rolled sheet having a thickness of 1.6 mm was used. Then, a so-called cross rolling in which the cold rolling in the same direction as the hot rolling direction (L direction) and the 90 ° direction (C direction) are alternately performed was performed to obtain a cold rolled sheet having a thickness of 0.15 mm. After that, by annealing at a temperature of 880 ° C. while applying a magnetic field in the rolling direction to grow crystal grains in which the [100] axis is strongly integrated in the rolling direction, the surface is ground,
Then, electrolytically polish it to a mirror finish and then 450 ℃
Nitrogen treatment in the nitrogen atmosphere of
16 N 2 was deposited. The nitriding treatment was performed under the three conditions shown in Table 1, that is, (a) the sample and the vertical direction, and (b) the sample and the rolling direction, respectively, while applying a 2000 G magnetic field, and (c) without applying a magnetic field. .. Then, Fe 16 N 2 precipitated on the surface of the steel sheet was extracted using an etching solution composed of a mixed aqueous solution of oxalic acid and H 2 O 2 . Fe 16 extracted in this way
The results of examining the saturation magnetization of N 2 are also shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】同表から明らかなように、(b), (c), (a)
の順に飽和磁化が高い。これらの試料をそれぞれ、SE
MによりFe16N2の観察を行ったところ、図1(a),
(b),(c)にそれぞれ示すようにFe16N2の析出状態
に相違が認められた。また、析出した後のFe16N2につい
ても同様のSEM観察を行ったところ、(b)の試料はほ
ぼ完全な形、すなわち本発明者がすでに発表した論文
{Y. Inokuti,N. Nishida and N. Ohashi:Met. Tran
s., 6A (1975), 733 参照}と同様の 0.5〜5μm Fe16N
2をほぼ完全な形態で抽出できたことが確認された。こ
れに対して(a) 及び(c) の条件では、Fe16N2とFeとが混
在した状況が観察された。またこの場合、Fe16N2がエッ
チングによって形状が壊れたものも観察された。
As is clear from the table, (b), (c), (a)
The saturation magnetization is higher in the order of. SE of each of these samples
Observation of Fe 16 N 2 with M revealed that
As shown in (b) and (c), respectively, a difference was observed in the precipitation state of Fe 16 N 2 . Moreover, when the same SEM observation was performed on Fe 16 N 2 after precipitation, the sample of (b) was almost perfect, that is, the paper {Y. Inokuti, N. Nishida and N. Ohashi: Met. Tran
s., 6A (1975), 733} same as 0.5 ~ 5 μm Fe 16 N
It was confirmed that 2 could be extracted in almost perfect form. On the other hand, under the conditions of (a) and (c), a situation in which Fe 16 N 2 and Fe were mixed was observed. Further, in this case, it was also observed that the shape of Fe 16 N 2 was broken by etching.

【0013】上述した実験結果から、この発明に従い、
圧延方向に対する結晶粒の〔100〕軸集積度の高いFe
又はFe合金薄板について、窒化処理、より好ましくは
〔100〕軸方向への磁場印加の下に、窒化処理を施し
て、Fe16N2を優先析出させ、その後このFe16N2をほぼ完
全な形で抽出することにより、飽和磁化の高い磁性材料
を安定して得ることが可能となったのである。
From the above experimental results, according to the present invention,
Fe with a high degree of [100] -axis integration of crystal grains in the rolling direction
Or for Fe alloy sheet, nitriding, and more preferably under a magnetic field applied to the [100] axial direction, subjected to a nitriding treatment, the Fe 16 N 2 to prioritize precipitate, then almost completely the Fe 16 N 2 By extracting in the form, it became possible to stably obtain a magnetic material with high saturation magnetization.

【0014】[0014]

【作用】この発明の出発素材としては、Feを主成分とす
るものであれば良く、添加元素はとくに限定しない。し
かし、とくに好ましくは下記のように各元素を制限した
高純度鋼である。
The starting material of the present invention is not particularly limited as long as it has Fe as a main component, and the additive element is not particularly limited. However, particularly preferred is a high-purity steel in which each element is restricted as described below.

【0015】C:0.05%以下 Cは、鋼中に多量に存在すると磁気特性を劣化させるだ
けでなく、〔100〕軸に集束した結晶粒を発達させる
ことが困難となるので、0.05%以下とすることが好まし
い。
C: 0.05% or less If C is present in a large amount in the steel, not only the magnetic properties are deteriorated, but also it becomes difficult to develop the crystal grains focused on the [100] axis. Preferably.

【0016】Si:0.001 〜0.1 % Siは、電気抵抗を高めて鉄損を低下させる有用元素であ
るが、多量添加は磁束密度の低下を招くので、10%以下
とする必要があり、とくに〔100〕軸に強く集積した
結晶粒を発達させるためには、 0.001〜0.1 %が好適で
ある。
Si: 0.001 to 0.1% Si is a useful element that increases the electric resistance and lowers the iron loss, but addition of a large amount causes a decrease in the magnetic flux density, so it is necessary to make it 10% or less, In order to develop the crystal grains that are strongly integrated in the [100] axis, 0.001 to 0.1% is preferable.

【0017】Mn:0.01〜0.5 % Mnは、加工性の向上に有効に寄与するが、大量に添加す
ると磁気特性を劣化させるだけでなく、MnS 等の介在物
量が増大するので、0.01〜0.5 %程度が好ましい。
Mn: 0.01 to 0.5% Mn effectively contributes to the improvement of workability, but if added in a large amount, not only the magnetic characteristics are deteriorated but also the amount of inclusions such as MnS increases, so 0.01 to 0.5%. A degree is preferable.

【0018】P:0.05%以下 Pは、鋼中において、結晶粒界や表面に濃縮して粒界割
れを多発させるので、0.05%以下程度に抑制することが
好ましい。
P: 0.05% or less P is concentrated in the crystal grain boundaries and the surface in the steel and causes frequent intergranular cracking, so P is preferably suppressed to about 0.05% or less.

【0019】S:0.02%以下 Sは、Pと同様、鋼中において粒界偏析元素であり、結
晶粒界や表面に濃縮して粒界割れを多発させるので、0.
02%以下程度に抑制することが好ましい。
S: 0.02% or less S, like P, is a grain boundary segregation element in the steel and is concentrated at crystal grain boundaries and surfaces to cause frequent grain boundary cracking.
It is preferable to suppress it to about 02% or less.

【0020】Al:0.01%以下 Alは、酸化物等の介在物をつくり、しかもFe16N2の優先
析出を阻害する元素であるので、0.01%以下に抑制する
ことが好ましい。
Al: 0.01% or less Al is an element that forms inclusions such as oxides and inhibits preferential precipitation of Fe 16 N 2. Therefore, it is preferable to suppress it to 0.01% or less.

【0021】N:0.01%以下 Nは、〔100〕軸集積度の高い結晶粒を製造するに
は、出発素材中における含有量はできる限り少なく、具
体的には0.01%以下程度とするのが好ましい。
N: 0.01% or less N is contained in the starting material as small as possible in order to produce crystal grains having a high [100] axis integration degree, and specifically, it is about 0.01% or less. preferable.

【0022】O:0.02%以下 Oも、Alと同様、酸化物等の介在物をつくり、またFe16
N2の優先析出を阻害する元素でもあるので、0.02%以下
に抑制することが好ましい。
O: 0.02% or less O, like Al, forms inclusions such as oxides, and Fe 16
Since it is also an element that inhibits preferential precipitation of N 2 , it is preferable to suppress it to 0.02% or less.

【0023】その他の元素についても、少量であればこ
の発明を妨げるものではない。
As for other elements, the present invention is not hindered as long as the amount is small.

【0024】次に、製造方法について具体的に説明す
る。さて所望の成分組成に調整した溶鋼を、連続鋳造に
よりスラブとしたのち、通常の製造工程すなわちスラブ
加熱−粗圧延−熱間圧延により熱延板とし、ついで熱延
方向と直角方向に圧延(C方向圧延)を行ったり、又は
上記したようなクロス圧延の後、好ましくは再結晶焼鈍
又はかかる圧延と焼鈍を繰り返し行うことによって{1
00}面方位の結晶粒を発達させるが、この発明のよう
に{100}面よりもむしろ〔100〕軸に強く集積し
た結晶粒を得るためには、圧延・再結晶処理の回復・初
期再結晶段階において圧延方向と同一方向に20〜200000
G程度の磁場を印加することが必要である。
Next, the manufacturing method will be specifically described. Now, the molten steel adjusted to the desired composition is made into a slab by continuous casting, and then a hot rolled sheet is produced by a normal manufacturing process, that is, slab heating-rough rolling-hot rolling, and then rolled in a direction perpendicular to the hot rolling direction (C Direction rolling) or after cross rolling as described above, preferably by recrystallization annealing or repeating such rolling and annealing {1
Although crystal grains having a {00} plane orientation are developed, in order to obtain crystal grains that are strongly integrated on the [100] axis rather than on the {100} plane as in the present invention, the rolling / recrystallization treatment recovery / initial recrystallization treatment is performed. 20 to 200,000 in the same direction as the rolling direction at the crystallization stage
It is necessary to apply a magnetic field of about G.

【0025】ついで上記のようにして結晶粒の〔10
0〕軸を圧延方向に高度に集積させた薄板を、表面研磨
後、 100〜700 ℃の窒化雰囲気中で、より好ましくは薄
板の圧延方向に磁場を印加しつつ、窒化処理を施すこと
により、Fe16N2鉄窒化物を、前掲図1の(b) に示した析
出形態に優先析出させる。なお窒化処理後の冷却は、急
冷処理とする方が望ましい。またその後、鋼板表面上に
析出したFe16N2のみを地鉄表面から取り出すためには、
Fe16N2が準安定物であることから、弱いエッチング例え
ば数%のHNO3液又はしゅう酸とH2O2との混合液等を用い
て鉄基板を除去すれば良い。
Then, the crystal grains [10
[0] A thin plate having axes highly integrated in the rolling direction is subjected to nitriding treatment after surface polishing in a nitriding atmosphere at 100 to 700 ° C, more preferably while applying a magnetic field in the rolling direction of the thin plate. Fe 16 N 2 iron nitride is preferentially precipitated in the precipitation morphology shown in FIG. 1 (b). The cooling after the nitriding treatment is preferably a quenching treatment. After that, in order to take out only Fe 16 N 2 precipitated on the steel plate surface from the base steel surface,
Since Fe 16 N 2 is a metastable substance, the iron substrate may be removed using weak etching, for example, HNO 3 solution of several% or a mixed solution of oxalic acid and H 2 O 2 .

【0026】[0026]

【実施例】【Example】

【表2】 をそれぞれ含み、残部は実質的にFeの組成になる各熱延
板に、クロス圧延を施して0.1 mm厚の冷延板とした。つ
いで圧延方向に 500Gの磁場を印加しつつ、880℃で焼
鈍して、〔100〕軸に強く集積した結晶粒を発達させ
たのち、この試料表面を研磨して鏡面状態に仕上げた。
その後(NH3+H2)中で、圧延方向に1000Gの磁場を印加
しながら(a-1, b-1)、また磁場印加なし(a-2, b-2)
で 460℃,20分間の窒化処理を施したのち、数%のHNO3
液中でFe16N2を抽出した。
[Table 2] Each of the hot-rolled sheets containing the above and having the balance of substantially Fe was cross-rolled to form a cold-rolled sheet having a thickness of 0.1 mm. Then, while applying a magnetic field of 500 G in the rolling direction, it was annealed at 880 ° C. to develop crystal grains strongly integrated on the [100] axis, and then the sample surface was polished to a mirror-finished state.
Then, in (NH 3 + H 2 ), applying a magnetic field of 1000 G in the rolling direction (a-1, b-1), and without applying a magnetic field (a-2, b-2).
After nitriding treatment at 460 ℃ for 20 minutes, several% of HNO 3
Fe 16 N 2 was extracted in the liquid.

【0027】かくして得られたFe16N2薄膜の飽和磁化を
測定したところ、表3に示すような値が得られた。また
比較のため、磁場を印加せずに回復・再結晶を施して得
たもの(a-3, b-3、a-4, b-4)についての測定結果も、
表3に併せて示す。
When the saturation magnetization of the Fe 16 N 2 thin film thus obtained was measured, the values shown in Table 3 were obtained. In addition, for comparison, the measurement results of those obtained by performing recovery / recrystallization without applying a magnetic field (a-3, b-3, a-4, b-4) are also shown.
It is also shown in Table 3.

【表3】 [Table 3]

【0028】[0028]

【発明の効果】かくしてこの発明によれば、飽和磁化が
極めて高いFe16N2を、容易かつ簡単に得ることができ、
従ってその大量供給を安定して行うことができる。
As described above, according to the present invention, Fe 16 N 2 having extremely high saturation magnetization can be obtained easily and easily,
Therefore, the large-scale supply can be stably performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化処理に際し、磁場を試料と垂直方向(同図
a)、平行方向(同図b)に印加した場合及び磁場を印
加しなかった場合(同図c)における、Fe16N2の析出状
態を比較して示した図である。
FIG. 1 shows Fe 16 N 2 when a magnetic field is applied to the sample in a direction perpendicular to the sample (FIG. 1A), a parallel direction (FIG. 1B) and no magnetic field (FIG. 1C). It is the figure which compared and showed the precipitation state of.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶粒の〔100〕軸が圧延方向に強く
集積した集合組織を有する鉄又は鉄合金薄板に、窒化処
理を施して、該薄板の表面にFe16N2を優先形成させたの
ち、エッチングにより鉄又は鉄合金を除去してFe16N2
窒化物を取り出すことを特徴とする高い飽和磁化を有す
るFe16N2鉄窒化物の製造方法。
1. An iron or iron alloy thin plate having a texture in which [100] axes of crystal grains are strongly integrated in the rolling direction is subjected to a nitriding treatment to preferentially form Fe 16 N 2 on the surface of the thin plate. later, the manufacturing method of the Fe 16 N 2 iron nitride having a high saturation magnetization, wherein the iron or iron alloy is removed by etching retrieve the Fe 16 N 2 iron nitride.
【請求項2】 結晶粒の〔100〕軸が圧延方向に強く
集積した集合組織を有する鉄又は鉄合金薄板に、圧延方
向と同方向に磁場を印加しながら窒化処理を施して、該
薄板の表面にFe16N2を優先形成させたのち、エッチング
により鉄又は鉄合金を除去してFe16N2鉄窒化物を取り出
すことを特徴とする高い飽和磁化を有するFe16N2鉄窒化
物の製造方法。
2. An iron or iron alloy thin plate having a texture in which [100] axes of crystal grains are strongly integrated in the rolling direction, is subjected to a nitriding treatment while applying a magnetic field in the same direction as the rolling direction, After the Fe 16 N 2 was preferentially formed on the surface, of the Fe 16 N 2 iron nitride having a high saturation magnetization, wherein the taking out by removing the iron or iron alloy Fe 16 N 2 iron nitride by etching Production method.
JP4122057A 1992-05-14 1992-05-14 Method for producing Fe16N2 iron nitride having high saturation magnetization Expired - Fee Related JP3021957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4122057A JP3021957B2 (en) 1992-05-14 1992-05-14 Method for producing Fe16N2 iron nitride having high saturation magnetization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4122057A JP3021957B2 (en) 1992-05-14 1992-05-14 Method for producing Fe16N2 iron nitride having high saturation magnetization

Publications (2)

Publication Number Publication Date
JPH05311390A true JPH05311390A (en) 1993-11-22
JP3021957B2 JP3021957B2 (en) 2000-03-15

Family

ID=14826557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4122057A Expired - Fee Related JP3021957B2 (en) 1992-05-14 1992-05-14 Method for producing Fe16N2 iron nitride having high saturation magnetization

Country Status (1)

Country Link
JP (1) JP3021957B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026007A3 (en) * 2011-08-17 2013-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2014124135A2 (en) * 2013-02-07 2014-08-14 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2016122971A1 (en) * 2015-01-26 2016-08-04 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
CN110257755A (en) * 2018-03-12 2019-09-20 通用电气公司 Make the method and associated components with the component of changeable magnetization
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
CN114829648A (en) * 2019-12-25 2022-07-29 株式会社日立制作所 Soft magnetic steel sheet, method for producing the same, and iron core and rotating electrical machine using the same
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103975A (en) * 2011-08-17 2017-08-29 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
CN103827986A (en) * 2011-08-17 2014-05-28 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2020010039A (en) * 2011-08-17 2020-01-16 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet, and formation technology of iron nitride permanent magnet
JP2014529682A (en) * 2011-08-17 2014-11-13 リージェンツオブ ザ ユニバーシティ オブ ミネソタ Formation technology of iron nitride permanent magnet and iron nitride permanent magnet
WO2013026007A3 (en) * 2011-08-17 2013-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN103827986B (en) * 2011-08-17 2017-02-15 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2017122277A (en) * 2011-08-17 2017-07-13 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet, and formation technology of iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2014124135A3 (en) * 2013-02-07 2015-01-15 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2014124135A2 (en) * 2013-02-07 2014-08-14 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US11217370B2 (en) 2015-01-26 2022-01-04 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
US11581113B2 (en) 2015-01-26 2023-02-14 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
WO2016122971A1 (en) * 2015-01-26 2016-08-04 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
CN110257755A (en) * 2018-03-12 2019-09-20 通用电气公司 Make the method and associated components with the component of changeable magnetization
CN110257755B (en) * 2018-03-12 2021-08-24 通用电气公司 Method for making a component with variable magnetization and related component
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
CN114829648A (en) * 2019-12-25 2022-07-29 株式会社日立制作所 Soft magnetic steel sheet, method for producing the same, and iron core and rotating electrical machine using the same
EP4083239A4 (en) * 2019-12-25 2024-01-17 Hitachi, Ltd. Soft magnetic steel sheet, method for manufacturing said soft magnetic steel sheet, and core and dynamo-electric machine in which said soft magnetic steel sheet is used

Also Published As

Publication number Publication date
JP3021957B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP4698581B2 (en) R-Fe-B thin film magnet and method for producing the same
JP3021957B2 (en) Method for producing Fe16N2 iron nitride having high saturation magnetization
JPH08213225A (en) Unidirectional flat-rolled magnetic steel sheets and strip high in magnetic flux density and low in iron loss
JPH0741891A (en) Wear resistant high permeability alloy, its production and magnetic recording and reproducing head
US6123783A (en) Magnetic data-storage targets and methods for preparation
KR100973406B1 (en) Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same
JPH0343336B2 (en)
JP3956621B2 (en) Oriented electrical steel sheet
JPS6257688B2 (en)
JPH0567703B2 (en)
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JPH0643615B2 (en) Method for manufacturing ribbon having high saturation magnetization
US3124491A (en) Heavy gauge double oriented magnetic sheet material
JPH04268027A (en) Production of magnetic strip having high saturating magnetization
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP6537131B2 (en) Iron plate and method of manufacturing the same
JP3969125B2 (en) Fe-Pt magnet and method for producing the same
JP4224880B2 (en) Co-Ni alloy sputtering target and manufacturing method thereof
JPS62186511A (en) Target member
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPH04246126A (en) Production of foil having high saturation magnetization
JP2004197125A (en) Magnetic ribbon superior in soft magnetic characteristic and manufacturing method therefor
JPH1161259A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JP2023125603A (en) MANUFACTURING METHOD FOR FeCoV-BASED ALLOY-BASED HARD MAGNETIC MATERIAL
JPS6217132A (en) Manufacture of iron nitride magnetic material having superior corrosion resistance and high saturation magnetization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees