JPH0531026B2 - - Google Patents

Info

Publication number
JPH0531026B2
JPH0531026B2 JP61055989A JP5598986A JPH0531026B2 JP H0531026 B2 JPH0531026 B2 JP H0531026B2 JP 61055989 A JP61055989 A JP 61055989A JP 5598986 A JP5598986 A JP 5598986A JP H0531026 B2 JPH0531026 B2 JP H0531026B2
Authority
JP
Japan
Prior art keywords
clutch
pressure
gear transmission
regulating valve
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61055989A
Other languages
Japanese (ja)
Other versions
JPS62215155A (en
Inventor
Tetsuya Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP61055989A priority Critical patent/JPS62215155A/en
Publication of JPS62215155A publication Critical patent/JPS62215155A/en
Publication of JPH0531026B2 publication Critical patent/JPH0531026B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変速用油圧クラツチへの圧油供給系
統に供給油圧を制御するクラツチ圧調節弁機構を
設けて、円滑な油圧クラツチ作動を得られるよう
に構成した油圧操作式ギヤ変速装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a clutch pressure regulating valve mechanism for controlling supply oil pressure in a pressure oil supply system to a hydraulic clutch for transmission, thereby achieving smooth hydraulic clutch operation. The present invention relates to a hydraulically operated gear transmission configured to allow

〔従来の技術〕[Conventional technology]

この種のものとしては、特開昭60−237251号公
報で開示されたもの、すなわち、第7図に示すよ
うに、変速操作後における油圧クラツチでの初期
昇圧速度OQ1を大きく、かつ、以後の昇圧速度
OQ2を小さくする状態に制御する技術が知られて
いる。
This type of device is disclosed in Japanese Patent Application Laid-Open No. 60-237251, as shown in FIG . boost rate of
Techniques for controlling OQ 2 to a small state are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成のものでは、確かに、初期昇圧速度が
大きいので半クラツチ状態まで短時間に立上り、
時間短縮が図れるとともに、以後の昇圧速度が小
であるので、半クラツチ状態から完全な継り状態
に移行する過程を変速シヨツクの少ない状態で行
うことができ、有効ではあるが、その昇圧特性は
固定のものであるから、負荷抵抗の違いによつ
て、第7図に示すように、その抵抗が大であると
立上り時間t1が設定時間t0より長くなるととも
に、反対に抵抗が小であると、変速シヨツクが発
生するといつた問題があり、細部に亘る制御が不
十分であつた。
With the above configuration, it is true that the initial pressure increase rate is high, so it rises to the half-clutch state in a short time, and
Not only can the time be shortened, but since the subsequent boost rate is small, the process of transitioning from a half-clutch state to a fully engaged state can be performed with fewer shift shocks, which is effective, but its boost characteristics are Since it is fixed, depending on the difference in load resistance, as shown in Figure 7, if the resistance is large, the rise time t1 will be longer than the set time t0, and conversely, if the resistance is small, the rise time t1 will be longer than the set time t0 . However, there were problems such as shift shocks occurring, and detailed control was insufficient.

本発明の目的は簡単な機構を付加することによ
つて、よりきめ細かく油圧クラツチの立上り特性
を制御できるものを提供する点にある。
An object of the present invention is to provide a system that can more precisely control the rise characteristics of a hydraulic clutch by adding a simple mechanism.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による特徴構成は変速用油圧クラツチへ
の圧油供給系統に、変速操作後における油圧クラ
ツチでの初期昇圧速度を大きく、かつ、以後の昇
圧速度を小さくする状態に制御するクラツチ圧調
節弁機構を設けてある油圧操作式ギヤ変速装置に
おいて、油圧クラツチへの入力軸と出力軸との双
方の回転数を各別に検出する回転数検出センサを
設け、これら両回転数検出センサの検出結果によ
る回転数差が大きい程、初期昇圧速度を大きくす
るようにクラツチ圧調節弁機構を自動制御する制
御回路を備えてあることを特徴とする。
The characteristic structure of the present invention is a clutch pressure regulating valve mechanism in the pressure oil supply system to the hydraulic clutch for shifting, which controls the initial pressure increase rate in the hydraulic clutch after a shift operation to be large and the subsequent pressure increase rate to be small. In a hydraulically operated gear transmission equipped with The present invention is characterized in that it is equipped with a control circuit that automatically controls the clutch pressure regulating valve mechanism so that the larger the difference in number, the greater the initial pressure increase speed.

〔作用〕[Effect]

つまり、負荷抵抗の大小を油圧クラツチ前後の
回転数の差の大小として認識できる点に着目し、
この回転数差の大小に応じて、例えば、第3図
イ,ロ,ハに示すように初期昇圧速度Q1を大小
に変化させる。
In other words, we focused on the fact that the magnitude of load resistance can be recognized as the magnitude of the difference in rotation speed before and after the hydraulic clutch.
Depending on the magnitude of this rotational speed difference, for example, the initial pressure increase rate Q 1 is varied in magnitude as shown in FIG. 3 A, B, and C.

すなわち、回転数差が少なく負荷抵抗が小さい
ときには、第3図イのように単位時間当たりの昇
圧値が少となる遅い初期昇圧速度で、回転数差が
大きく負荷抵抗が大であるときには、第3図ハの
ように単位時間当たりの昇圧値が大となる速い初
期昇圧速度で、また、回転数差が中くらいで負荷
抵抗が中くらいであるときには、第3図ハのよう
に中くらいの昇圧速度になるといつた具合にクラ
ツチ圧調節弁機構が自動的に制御されるようにな
り、負荷抵抗の大小に拘らずに半クラツチ状態に
到達する高い圧力P3を所期の設定時間t0で得られ
るようになる。
In other words, when the rotational speed difference is small and the load resistance is small, the initial pressure increase rate is low, resulting in a small boost value per unit time, as shown in Figure 3A, and when the rotational speed difference is large and the load resistance is large, the As shown in Figure 3 C, when the initial pressure increase rate is high and the pressure increase value per unit time is large, and when the rotational speed difference is medium and the load resistance is medium, as shown in Figure 3 C, As the pressure increases, the clutch pressure regulating valve mechanism is automatically controlled to maintain the high pressure P3 that reaches the half-clutch state at the desired set time t0 , regardless of the load resistance. You will be able to get it with

これにより、負荷抵抗が大きく半クラツチ状態
への立上がり時間が長く緩慢になるとか、負荷抵
抗が小さく変速シヨツクが発生するといつたこと
を解消できるものとなる。
As a result, it is possible to eliminate the problems that occur when the load resistance is large and the rise time to the half-clutch state is long and slow, or when the load resistance is small and a shift shock occurs.

〔発明の効果〕〔Effect of the invention〕

その結果、昇圧制御系の工夫により、初期昇圧
速度を以後に比べて大に設定できる利点を、負荷
抵抗の大小に拘らずに発揮させることができ、よ
り性能が向上される油圧操作式ギヤ変速装置を提
供することができた。
As a result, by improving the boost control system, the advantage of being able to set the initial boost rate to a higher rate than in the subsequent steps can be achieved regardless of the load resistance, resulting in a hydraulically operated gear shift that further improves performance. We were able to provide the equipment.

ただし、このような効果を奏するものとして、
変速前の負荷抵抗を基に前記昇圧速度を可変する
形態のものが考えられるが、かな場合には変速前
の情報であるから、現時点での負荷抵抗とズレを
生じる場合もあり、それに比べて本発明の場合に
は現時点での負荷抵抗に対応できるのでより正確
な制御が行える。
However, as having such an effect,
One possibility is to vary the boost speed based on the load resistance before the gear shift, but in some cases, since the information is before the gear shift, there may be a discrepancy with the current load resistance. In the case of the present invention, more accurate control can be performed because it can correspond to the current load resistance.

〔実施例〕〔Example〕

第2図はトラクタに装備のミツシヨケースM内
の伝動構造を示し、エンジンEに連動連結させた
入力軸1と走行用第1伝動軸2とに亘つて、4段
切換自在なシンクロメツシユ式主ギヤ変速装置
H1を設け、油圧クラツチCへの入力軸としての
第1伝動軸2と油圧クラツチCへの出力軸として
の走行用第2伝動軸3との間に、摩擦板式油圧ク
ラツチCを設け、第2伝動軸3の出力を正逆転変
更するシンクロメツシユ式前後進ギヤ変速装置
H2、それからの出力を高低2段に切換自在なシ
ンクロメツシユ式第1副ギヤ変速装置H3、及び、
それからの出力を高低2段に切換自在な第2副ギ
ヤ変速装置H4の夫々を設け、そして、第2副ギ
ヤ変速装置H4の出力を後輪4の作動機構4A、
及び、前輪5の作動機構5Aに伝動させるように
構成してある。
Fig. 2 shows the transmission structure inside the transmission case M installed on the tractor.The input shaft 1, which is interlocked with the engine E, and the first transmission shaft 2 for traveling are connected to a synchronized mesh type main shaft that can freely switch between four stages. gear transmission
A friction plate type hydraulic clutch C is provided between the first transmission shaft 2 as an input shaft to the hydraulic clutch C and the second driving transmission shaft 3 as an output shaft to the hydraulic clutch C. Synchronous mesh type forward/reverse gear transmission that changes the output of 2 transmission shafts 3 in forward and reverse directions.
H 2 , a synchromesh type first auxiliary gear transmission H 3 that can freely switch the output therefrom into two high and low stages, and
A second auxiliary gear transmission H 4 that can freely switch the output from the second gear transmission H 4 into two high and low stages is provided, and the output of the second auxiliary gear transmission H 4 is transferred to the rear wheel 4 operating mechanism 4A,
The power is also transmitted to the operating mechanism 5A of the front wheel 5.

前記入力軸1の動力を4段に変速して動力取出
伝動軸6に伝動するシンクロメツシユ式ギヤ変速
装置7を設けると共に、伝動軸6と動力取出軸8
との間に、中継伝動軸9を設け、もつて、動力取
出軸8を変速できるように構成してある。
A synchromesh type gear transmission 7 is provided which changes the power of the input shaft 1 into four stages and transmits it to the power output transmission shaft 6, and the transmission shaft 6 and the power output shaft 8
A relay transmission shaft 9 is provided between the power output shaft 8 and the power output shaft 8, so that the speed of the power take-off shaft 8 can be changed.

次に、走行用伝動系に対する変速操作構造につ
いて、第1図及び第2図に基づいて詳述する。
Next, the speed change operation structure for the driving transmission system will be described in detail with reference to FIGS. 1 and 2.

すなわち、主ギヤ変速装置H1に、択一的に作
動される2個の主ギヤ変速用シフター10A,1
0Bの夫々を連動連結した2個の操作用油圧シリ
ンダ11A,11Bを付設するとともに、第1副
ギヤ変速装置H3に、第1副ギヤ変速用シフター
12を連動連結した操作用油圧シリンダ13を付設
してある。
That is, the main gear transmission H 1 includes two main gear transmission shifters 10A, 1 that are alternatively operated.
Two operating hydraulic cylinders 11A and 11B are connected to each other in conjunction with each other, and the first auxiliary gear transmission H3 is equipped with a first auxiliary gear shifter.
An operating hydraulic cylinder 13 in which 12 are interlocked and connected is attached.

又、前記主ギヤ変速装置H1に対する2個の操
作用油圧シリンダ11A,11B及び前記第1副
ギヤ変速装置H3に対する操作用油圧シリンダ1
3のピストを摺動スプールとして兼用利用する状
態で3個の3位置切換弁S1,S2,S3を構成してあ
る。
Also, two operating hydraulic cylinders 11A, 11B for the main gear transmission H1 and an operating hydraulic cylinder 1 for the first auxiliary gear transmission H3 .
Three 3-position switching valves S 1 , S 2 , and S 3 are constructed in such a manner that the pistons of 3 are also used as sliding spools.

前記操作用油圧シリンダ11A,11B,13
に対する圧油の供給、並びに、前3位置切換弁
S1,S2,S3に対する圧油の供給は、主制御弁V1
としてのロータリ式の9位置N〜F1〜F8切換弁
の操作によつて行われ、この9位置切換弁V1
対する圧油の供給は、油圧ポンプPから減圧弁1
5を介して行われる。
The operating hydraulic cylinders 11A, 11B, 13
Supply of pressure oil to and front 3-position switching valve
Pressure oil is supplied to S 1 , S 2 , and S 3 through the main control valve V 1
Pressure oil is supplied to this 9-position switching valve V1 from a hydraulic pump P to a pressure reducing valve 1 .
5.

前記伝動油圧クラツチCは、前記減圧弁15か
らクラツチ圧調節弁機構としての電磁比例減圧弁
16を介して供給される油圧によつて駆動される
もので、前記電磁比例減圧弁16と前記油圧クラ
ツチCとの間に、圧油をクラツチCに供給するク
ラツチ入り状態と、クラツチC内の圧油をタンク
Tに戻すクラツチ切り状態とに択一的に切換自在
な切換弁17としての4個のパイロツト圧操作式
2位置切換弁17A,17B,17C,17Dを
直列に接続してあり、これらのうちの1個のパイ
ロツト圧操作式2位置切換弁17Aは、前記前後
進ギヤ変速装置H2を操作する手動操作レバー1
8と連動して操作され、かつ、前記主制御弁V1
と並列に接続された補助制御弁V2から供給され
る圧油によつて操作され、残る3個のパイロツト
圧操作式2位置切換弁17B,17C,17D
は、夫々、前記3位置切換弁S1,S2,S3から供給
される圧油によつて操作され、もつて、主ギヤ変
速装置H1、前後進ギヤ変速装置H2、及び、第1
副ギヤ変速装置H3の全てが伝動状態にあるとき
にのみ、4個のパイロツト圧操作式2位置切換弁
17A,17B,17C,17Dの全てが連通す
る状態に切換わるとクラツチ入り状態に切換わつ
て、変速操作に伴つて自動的にクラツチCが切換
操作されるように構成してある。
The transmission hydraulic clutch C is driven by hydraulic pressure supplied from the pressure reducing valve 15 through an electromagnetic proportional pressure reducing valve 16 as a clutch pressure regulating valve mechanism, and the transmission hydraulic clutch C is driven by the hydraulic pressure supplied from the pressure reducing valve 15 through an electromagnetic proportional pressure reducing valve 16 as a clutch pressure regulating valve mechanism. Between the clutch C and the clutch C, there are four switching valves 17 that can be selectively switched between a clutch engaged state that supplies pressure oil to the clutch C and a clutch disengaged state that returns pressure oil in the clutch C to the tank T. Pilot pressure-operated two-position switching valves 17A, 17B, 17C, and 17D are connected in series, and one of these pilot pressure-operated two-position switching valves 17A controls the forward/reverse gear transmission H2. Manual operation lever 1 to operate
8 and is operated in conjunction with the main control valve V 1
The remaining three pilot pressure-operated two-position switching valves 17B, 17C, and 17D are operated by pressure oil supplied from the auxiliary control valve V2 connected in parallel with the
are operated by pressure oil supplied from the three-position switching valves S 1 , S 2 , and S 3 , respectively, and the main gear transmission H 1 , the forward/reverse gear transmission H 2 , and the 1
Only when all of the auxiliary gear transmission H3 is in the transmission state, when all four pilot pressure operated two-position switching valves 17A, 17B, 17C, and 17D are switched to a communicating state, the clutch is switched to the engaged state. Furthermore, the clutch C is configured to be automatically switched in conjunction with the gear shifting operation.

但し、主ギヤ変速装置H1の2個の油圧シリン
ダ11A,11Bの一方を変速側に操作した状態
において、他方の油圧シリンダを中立位置に圧油
によつて操作保持させるように構成してある。
又、第2副ギヤ変速装置H4には、変速レバーに
て操作自在なシフターを付設してある。さらに、
動力取出軸8に対する変速装置7を人為的に操作
するように構成してある。
However, when one of the two hydraulic cylinders 11A, 11B of the main gear transmission H1 is operated to the gear shifting side, the other hydraulic cylinder is operated and held in the neutral position by pressure oil. .
Further, the second auxiliary gear transmission H4 is provided with a shifter that can be operated using a speed change lever. moreover,
The transmission device 7 relative to the power take-off shaft 8 is configured to be manually operated.

尚、図中、N及びF1乃至F3の夫々は、主制御
弁V1の操作位置を示し、又、F及びRは、補助
制御弁V2の操作位置を示す。
In the figure, N and F 1 to F 3 each indicate the operating position of the main control valve V 1 , and F and R indicate the operating position of the auxiliary control valve V 2 .

第1図に示すように、圧油供給系統で2位置切
換弁17Dと油圧クラツチCとの間には、電磁比
例減圧弁16が設けられており、その構造を第4
図に基づいて詳述すると、左右に揺動可能なスプ
ール14の一端側にソレノイドコイル19及び、
他端側に油圧ポート20P,20C,20Tを形
成するとともに、スプール14の肉厚内に油圧ポ
ート20C及びスプール14先端側圧力室21と
に連通可能な通路22を形成し、もつて、ソレノ
イドコイル19によつて押出力Fを受けたスプー
ル14の移動によつて、油圧ポート20P,20
Cが連通状態になり、この連通状態になることに
よつて、ポート20Pからポート20Cに圧油が
供給され、このポート20Cに供給された圧油が
通路22を通つて圧力室21に導入され、スプー
ル14を前記押出力Fに抗して、力fで現状復帰
させようとし、両者F,fがつり合つた所でスプ
ール14は静止し、ポート20C圧力が設定さ
れ、この設定された圧油が油圧クラツチCに送ら
れることになる。つまり、ソレノイド19の励磁
電圧に比例した圧力調整が可能である。
As shown in FIG. 1, an electromagnetic proportional pressure reducing valve 16 is provided between the two-position switching valve 17D and the hydraulic clutch C in the pressure oil supply system.
To explain in detail based on the figure, a solenoid coil 19 is attached to one end side of the spool 14 that can swing left and right,
Hydraulic ports 20P, 20C, and 20T are formed on the other end side, and a passage 22 that can communicate with the hydraulic port 20C and the pressure chamber 21 on the tip side of the spool 14 is formed within the wall thickness of the spool 14. Due to the movement of the spool 14 which receives the pushing force F by the hydraulic port 20P, 20
C enters a communication state, and by entering this communication state, pressure oil is supplied from the port 20P to the port 20C, and the pressure oil supplied to the port 20C is introduced into the pressure chamber 21 through the passage 22. , an attempt is made to return the spool 14 to its current state with a force f against the pushing force F, and when both F and f are balanced, the spool 14 comes to rest, and the port 20C pressure is set, and this set pressure Oil will be sent to hydraulic clutch C. In other words, the pressure can be adjusted in proportion to the excitation voltage of the solenoid 19.

従つて、この電磁比例減圧弁16に対して、こ
の励磁電圧を自動制御するマイコンを内蔵した制
御回路23が備えてあり、第3図に示すように、
クラツチオン作動時における初期昇圧速度Q1
大きく、以降の昇圧速度Q2が小さくなるように
励磁電圧を制御できる。
Therefore, the electromagnetic proportional pressure reducing valve 16 is equipped with a control circuit 23 containing a microcomputer that automatically controls the excitation voltage, as shown in FIG.
The excitation voltage can be controlled so that the initial boost rate Q 1 at the time of clutch-on operation is large and the subsequent boost rate Q 2 is small.

次に、走行負荷抵抗に準じた初期昇圧速度Q1
の可変制御を説明する。第1図に示すように、油
圧クラツチCへの入力軸としての走行用第1伝動
軸2と出力軸としての第2伝動軸3とに、夫々回
転数検出用ギヤ24,24を嵌着するとともに、
このギヤ24の回転数を検出する電磁プツクアツ
プ式のセンサ28,28を設け、このセンサ2
8,28での検出回転数Rin,Routに基づいて、
第3図イ,ロ,ハのグラフと第5図のフロートチ
ヤートで示すように、回転数差ΔRが大きなもの
程初期昇圧速度Q1を大きくするようにしてある。
Next, the initial boost rate Q 1 according to the running load resistance
Explain the variable control of. As shown in FIG. 1, rotation speed detection gears 24, 24 are fitted to the first transmission shaft 2 for running as an input shaft to the hydraulic clutch C and the second transmission shaft 3 as an output shaft, respectively. With,
Electromagnetic pull-up type sensors 28, 28 are provided to detect the rotation speed of this gear 24.
Based on the detected rotation speeds Rin and Rout at 8 and 28,
As shown by the graphs A, B, and C in FIG. 3 and the float chart in FIG. 5, the larger the rotational speed difference ΔR is, the larger the initial pressure increase rate Q 1 is.

〔別実施例〕[Another example]

○イ 前記クラツチ調節弁機構16としては次のよ
うな構造のものでもよい。第6図に示すよう
に、油圧クラツチCに通じる二次側パイロツト
圧力の作用によつてスプリング25Aの付勢力
に抗して開作動するハイパスバルブ25と、二
次側パイロツト圧力の作用によつてスプリング
26Aの付勢力に抗して閉作動するローパルバ
ルブ26と、オリフイス27とを並列に介装し
て構成したものでもよい。この場合には両スプ
リング26A,25Aに対して同時に付勢力を
調節する形態をとり、回転数差が大きい程、付
勢力を大きくするように構成すればよい。
B. The clutch control valve mechanism 16 may have the following structure. As shown in FIG. 6, the high-pass valve 25 is opened against the biasing force of the spring 25A by the action of the secondary pilot pressure connected to the hydraulic clutch C, and the high-pass valve 25 is opened by the action of the secondary pilot pressure. The low pal valve 26, which closes against the biasing force of the spring 26A, and the orifice 27 may be interposed in parallel. In this case, the biasing force for both springs 26A, 25A may be adjusted simultaneously, and the biasing force may be increased as the rotational speed difference is larger.

○ロ クラツチ圧調節弁機構16としては可変リリ
ーフバルブでもよい。
○B The clutch pressure regulating valve mechanism 16 may be a variable relief valve.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る油圧操作式ギヤ変速装置の
実施例を示し、第1図は油圧回路構成図、第2図
はミツシヨンケース内構造を示す構成図、第3図
イ,ロ,ハは夫々油圧クラツチの昇圧特性を示
し、イは軽負荷に対応したもの、ロは中負荷、ハ
は重負荷に対応したもの、第4図は電磁比例制御
弁の一部切欠側面図、第5図は油圧クラツチ昇圧
特性に対する制御フローチヤート、第6図はクラ
ツチ圧調節弁機構の別実施例を示す構成図であ
り、第7図は従来の油圧クラツチ昇圧特性グラフ
である。 C……油圧クラツチ、Q1……初期昇圧速度、
Q2……以後の昇圧速度、2……油圧クラツチへ
の入力軸、3……油圧クラツチの出力軸、16…
…クラツチ圧調節弁機構、23……制御回路、2
8……回転数検出センサ。
The drawings show an embodiment of the hydraulically operated gear transmission according to the present invention, in which Fig. 1 is a hydraulic circuit configuration diagram, Fig. 2 is a configuration diagram showing the internal structure of the transmission case, and Fig. 3 A, B, and C are The pressure increase characteristics of each hydraulic clutch are shown, A is for light loads, B is for medium loads, C is for heavy loads, Figure 4 is a partially cutaway side view of the electromagnetic proportional control valve, and Figure 5 6 is a control flowchart for hydraulic clutch pressure increasing characteristics, FIG. 6 is a block diagram showing another embodiment of the clutch pressure regulating valve mechanism, and FIG. 7 is a graph of conventional hydraulic clutch pressure increasing characteristics. C...Hydraulic clutch, Q1 ...Initial pressure increase speed,
Q 2 ... Subsequent pressure increase speed, 2... Input shaft to hydraulic clutch, 3... Output shaft of hydraulic clutch, 16...
...Clutch pressure regulating valve mechanism, 23...Control circuit, 2
8...Rotation speed detection sensor.

Claims (1)

【特許請求の範囲】 1 変速用油圧クラツチCへの圧油供給系統に、
変速操作後における前記油圧クラツチCでの初期
昇圧速度Q1を大きく、かつ、以後の昇圧速度Q2
を小さくする状態に制御するクラツチ圧調節弁機
構16を設けるとともに、前記油圧クラツチCへ
の入力軸2と出力軸3との双方の回転数を各別に
検出する回転数検出センサ28,28を設け、こ
れら両回転数検出センサ28,28の検出結果に
よる回転数差が大きい程、前記初期昇圧速度Q1
を大きくするように前記クラツチ圧調節弁機構1
6を自動制御する制御回路23を備えてある油圧
操作式ギヤ変速装置。 2 前記クラツチ圧調節弁機構16が励磁電圧に
応じて2次側圧を調節する電磁比例減圧弁である
特許請求の範囲第1項に記載の油圧操作式ギヤ変
速装置。 3 前記クラツチ圧調節弁機構16が可変リリー
フバルブである特許請求の範囲第1項に記載の油
圧操作式ギヤ変速装置。
[Claims] 1. A pressure oil supply system to the transmission hydraulic clutch C,
Increase the initial pressure increase rate Q 1 at the hydraulic clutch C after the gear shift operation, and increase the subsequent pressure increase rate Q 2
A clutch pressure regulating valve mechanism 16 is provided to control the clutch pressure to a small state, and rotation speed detection sensors 28 and 28 are provided to separately detect the rotation speeds of both the input shaft 2 and the output shaft 3 to the hydraulic clutch C. , the larger the rotational speed difference between the detection results of these two rotational speed detection sensors 28, 28, the higher the initial pressure increase rate Q 1
The clutch pressure regulating valve mechanism 1
A hydraulically operated gear transmission device equipped with a control circuit 23 for automatically controlling 6. 2. The hydraulically operated gear transmission according to claim 1, wherein the clutch pressure regulating valve mechanism 16 is an electromagnetic proportional pressure reducing valve that regulates the secondary side pressure according to the excitation voltage. 3. The hydraulically operated gear transmission according to claim 1, wherein the clutch pressure regulating valve mechanism 16 is a variable relief valve.
JP61055989A 1986-03-13 1986-03-13 Hydraulically operated gear transmission Granted JPS62215155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61055989A JPS62215155A (en) 1986-03-13 1986-03-13 Hydraulically operated gear transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61055989A JPS62215155A (en) 1986-03-13 1986-03-13 Hydraulically operated gear transmission

Publications (2)

Publication Number Publication Date
JPS62215155A JPS62215155A (en) 1987-09-21
JPH0531026B2 true JPH0531026B2 (en) 1993-05-11

Family

ID=13014497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61055989A Granted JPS62215155A (en) 1986-03-13 1986-03-13 Hydraulically operated gear transmission

Country Status (1)

Country Link
JP (1) JPS62215155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739217U (en) * 1993-12-16 1995-07-14 新明和工業株式会社 Electric wire end processing device cutter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979599A (en) * 1988-02-09 1990-12-25 Kubota, Ltd. Work vehicle
JPH03209056A (en) * 1990-01-09 1991-09-12 Kubota Corp Working vehicle running shifting structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164017A (en) * 1984-02-07 1985-08-27 Diesel Kiki Co Ltd Car clutch control device
JPS60237251A (en) * 1984-05-09 1985-11-26 Kubota Ltd Speed change device for hydraulic operation type gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164017A (en) * 1984-02-07 1985-08-27 Diesel Kiki Co Ltd Car clutch control device
JPS60237251A (en) * 1984-05-09 1985-11-26 Kubota Ltd Speed change device for hydraulic operation type gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739217U (en) * 1993-12-16 1995-07-14 新明和工業株式会社 Electric wire end processing device cutter

Also Published As

Publication number Publication date
JPS62215155A (en) 1987-09-21

Similar Documents

Publication Publication Date Title
US3682014A (en) Down-shifting transmission lock
JPS62261747A (en) Device for controlling automatic transmission of vehicle
GB1386568A (en) Line pressure modulating device for an automatic power transmission
US5560248A (en) System for the assisted selection of the ratios of an automobile gearbox
GB2302573A (en) Gearshift control for synchroniser clutch has accumulator between restriction and shift valve
US4187739A (en) Hydrostatic torque converter having a stepped transmission
US4598545A (en) Power transmission control apparatus
JPH0531026B2 (en)
US6318530B1 (en) Pressure control apparatus and method for controlling a hydraulic clutch device
EP0332418B1 (en) System for controlling the transfer clutch of a four-wheel drive vehicle
JPS62231841A (en) Hydraulically operated gear transmission
JPH0372846B2 (en)
JPH048651B2 (en)
JPH0718458B2 (en) Hydraulic clutch pressure adjustment structure
JPS62188824A (en) Pressure regulating mechanism of hydraulic clutch
JPS6158695B2 (en)
JP4095690B2 (en) Hydraulic control device for hydraulic clutch transmission
JPS6184419A (en) Hydraulic control device
JPS6238418Y2 (en)
JPH045853B2 (en)
JPS6184420A (en) Clutch hydraulic control device
SU854765A1 (en) Gear-shifting device of hydromechanical transmission
JPS6230500Y2 (en)
JPH02271163A (en) Transmission
JPH045852B2 (en)