JPH05310028A - Air conditioning control method for vehicle - Google Patents

Air conditioning control method for vehicle

Info

Publication number
JPH05310028A
JPH05310028A JP14099392A JP14099392A JPH05310028A JP H05310028 A JPH05310028 A JP H05310028A JP 14099392 A JP14099392 A JP 14099392A JP 14099392 A JP14099392 A JP 14099392A JP H05310028 A JPH05310028 A JP H05310028A
Authority
JP
Japan
Prior art keywords
season
temperature
damper
vehicle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14099392A
Other languages
Japanese (ja)
Inventor
Katsunori Hamaya
克則 濱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP14099392A priority Critical patent/JPH05310028A/en
Publication of JPH05310028A publication Critical patent/JPH05310028A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To compensate the difference of apparatus ability that is caused by the change of season, and improve responsiveness, convergence and stability by conducting optimum control according to a season. CONSTITUTION:On the basis of the combination of an outer air temperature To measured by means of an outer air temperature measuring sensor 13 provided at a vehicle and an isolation amount SUN measured by means of an insolation amount measuring sensor 14, the fuzzy reasoning of season is conducted so that season may come to summer from winter via the middle according as the outer air temperature To comes to 'high' from 'low' and the insolation amount SUN comes to 'large' from 'small'. Optimum control according to a season becomes possible by controlling an air conditioning device by means of a control mode set beforehand at every season on the basis of the season reasoned as above. Accordingly, the difference of apparatus ability that is due to season can get to be compensated by control, and responsiveness, convergence and stability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の空調装置の制御
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a vehicle air conditioner.

【0002】[0002]

【従来の技術】従来の車両の空調装置として、図8に示
すようなものがある。
2. Description of the Related Art A conventional vehicle air conditioner is shown in FIG.

【0003】図8において、1は外気取入口、2は外気
取入口1に設けた内外気切替用ダンパ、3は外気取入口
1に一端が連続するダクトで、このダクト3内には、送
風機4、蒸発器5、エアミックスダンパ(以下A/Mダ
ンパという)6、ヒータ7が順次配設され、ダクト3の
他端は、フェース用ダクト8、デフ用ダクト9、及びフ
ット用ダクト10に分岐している。
In FIG. 8, 1 is an outside air intake, 2 is an inside / outside air switching damper provided in the outside air intake 1, and 3 is a duct whose one end is continuous with the outside air intake 1. Inside this duct 3, a blower is installed. 4, an evaporator 5, an air mix damper (hereinafter referred to as an A / M damper) 6, and a heater 7 are sequentially arranged, and the other end of the duct 3 includes a face duct 8, a differential duct 9, and a foot duct 10. It is branched.

【0004】フェース用ダクト8には、フェース用ダン
パ11が、またデフ用ダクト9とフット用ダクト10と
の間には、デフ−フット切換用ダンパ12がそれぞれ設
けられている。
A face damper 11 is provided in the face duct 8, and a diff-foot switching damper 12 is provided between the diff duct 9 and the foot duct 10.

【0005】この他に、車体には、空調制御用のセンサ
として、外気温測定センサ13、日射量測定センサ1
4、及び室温測定センサ15等が設けられている。
In addition to this, on the vehicle body, as an air conditioning control sensor, an outside air temperature measuring sensor 13 and a solar radiation measuring sensor 1 are provided.
4, a room temperature measuring sensor 15 and the like are provided.

【0006】16は、空調装置全体を制御するマイクロ
コンピュータよりなるコントローラで、次のような制御
方法を具現化するものである。
Reference numeral 16 denotes a controller composed of a microcomputer for controlling the entire air conditioner, and embodies the following control method.

【0007】このような空調装置の従来の制御方法とし
ては、 制御量=A・(Ts−Tr)+B・(Ts−To)+C・SUN の式で表されるような制御を行っているのが一般的であ
る。
As a conventional control method for such an air conditioner, the control represented by the formula: control amount = A. (Ts-Tr) + B. (Ts-To) + C.SUN is performed. Is common.

【0008】このうち、第1項のA・(Ts−Tr)は、空
調操作パネル(図示略)に設けた温度設定装置(図示略)に
より設定された設定温度Tsと、室温測定センサ15に
より測定された室温Trとの偏差(Ts−Tr)に、予め定
めた定数Aを掛けたものであり、室温Trが、設定温度
Tsに収束するようにフィードバック制御するものであ
る。
Of these, A · (Ts-Tr) in the first term is set by the temperature setting device (not shown) provided on the air conditioning operation panel (not shown) and the room temperature measuring sensor 15. The deviation (Ts-Tr) from the measured room temperature Tr is multiplied by a predetermined constant A, and feedback control is performed so that the room temperature Tr converges to the set temperature Ts.

【0009】第2項のB・(Ts−To)は、設定温度Ts
と、外気温測定センサ13により測定された外気温To
との偏差(Ts−To)に、予め定めた定数Bを掛けたも
の、また第3項のC・SUNは、日射量測定センサ14
により測定された日射量SUNに、予め定めた定数Cを
掛けたもので、いずれもフィードフォワード制御項であ
る。
The second term B. (Ts-To) is the set temperature Ts.
And the outside air temperature To measured by the outside air temperature measurement sensor 13.
Is the deviation (Ts-To) multiplied by a predetermined constant B, and C · SUN in the third term is the solar radiation measurement sensor 14
The solar radiation amount SUN measured by the above is multiplied by a predetermined constant C, and both are feedforward control terms.

【0010】[0010]

【発明が解決しようとする課題】上述のような従来の制
御方法によると、次のような問題点がある。 (1) 全季節を通じて、上記定数A、B、Cを固定したま
まの制御を行っていたので、特に冬期又は夏期の高負荷
時には、応答性が悪い。 (2) 全季節を通じて適用できるように、上記定数A、
B、Cを定めなければならず、その決定や調整が面倒で
あり、その調整が不十分だと、設定温度に対して偏差が
存在したまま安定するといった不都合が生じるおそれが
ある。 (3) 蒸発器の能力、及びヒータの能力が外気温によって
大きく変るため、制御量に対して、実際のA/Mダンパ
6の開度の調整が面倒である。
The conventional control method as described above has the following problems. (1) Since the constants A, B, and C were fixed and controlled throughout the whole season, the responsiveness was poor especially during heavy loads in winter or summer. (2) The above constant A, so that it can be applied throughout the season
Since B and C have to be determined, the determination and adjustment thereof are troublesome, and if the adjustment is insufficient, there is a possibility that there is a disadvantage that the deviation is stable with respect to the set temperature. (3) Since the capacity of the evaporator and the capacity of the heater greatly change depending on the outside air temperature, it is troublesome to adjust the opening degree of the actual A / M damper 6 with respect to the control amount.

【0011】本発明は、従来の技術が有する上記のよう
な問題点に鑑み、季節に応じた最適な制御を行うことに
より、季節による機器能力の相違を補償し、もって応答
性、収束性及び安定性を向上しうるようにした車両用空
調制御方法を提供することを目的としている。
In view of the above-mentioned problems of the prior art, the present invention compensates for the difference in the equipment capability depending on the season by performing the optimal control according to the season, thereby providing the response, convergence and An object of the present invention is to provide a vehicle air conditioning control method capable of improving stability.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の車両用空調制御方法は、車両に設けた外気
温測定センサにより測定した外気温と、車両に設けた日
射量測定センサにより測定した日射量との組合せに基づ
いて、外気温が低から高、及び日射量が小から大となる
にしたがって、季節が冬から中間を経て夏に至るように
季節をファジー推論し、その推論した季節に基づいて、
各季節毎に予め設定した制御態様で空調装置を制御する
ことを特徴としている。
In order to achieve the above object, the vehicle air conditioning control method of the present invention uses an outside air temperature measured by an outside air temperature measuring sensor provided in the vehicle and an insolation measuring sensor provided in the vehicle. Based on the combination with the measured insolation, fuzzy inference of the season from winter to mid-summer as the outside temperature becomes low to high and insolation from small to large, and the inference is made. Based on the season
It is characterized in that the air conditioner is controlled in a control mode preset for each season.

【0013】[0013]

【作用】外気温測定センサにより測定された外気温が低
く、かつ日射量測定センサにより測定された日射量が小
さいときは冬、同じく外気温が高く、かつ日射量測定セ
ンサにより測定された日射量が大きいときは夏と推論さ
れ、それ以外は、予め定めたファジー推論の規則にした
がって、それなりの中間的な季節として推論され、推論
された季節に基づいて、各季節毎に定めた制御態様で空
調装置は制御されるので、季節に応じた最適な制御が可
能となり、季節による機器能力の相違を、制御によって
補償することができ、応答性、収束性及び安定性を向上
することができる。
[Operation] When the outside air temperature measured by the outside air temperature measuring sensor is low and the amount of solar radiation measured by the solar radiation amount measuring sensor is small, in winter, the outside air temperature is also high and the amount of solar radiation measuring by the solar radiation amount measuring sensor is the same. Is inferred to be summer, otherwise is inferred as a reasonably intermediate season according to a predetermined fuzzy inference rule, and based on the inferred season, a control mode determined for each season is used. Since the air conditioner is controlled, it is possible to perform optimum control according to the season, and it is possible to compensate for the difference in the device capability due to the season by the control, and improve the responsiveness, convergence and stability.

【0014】[0014]

【実施例】本発明の制御方法の一実施例を、図1〜図7
を参照して説明する。なお、制御する空調装置及びセン
サは、すべて図8に示すものと同一とし、図8に示す符
号をそのまま用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the control method of the present invention is shown in FIGS.
Will be described. It should be noted that all the air conditioners and sensors to be controlled are the same as those shown in FIG. 8, and the description will be given using the reference numerals shown in FIG.

【0015】図1は、本発明の制御方法を実施するコン
トローラ16を、便宜上回路的に表したブロック図であ
る。実際には、このように区分された具体的な回路があ
るわけではなく、マイクロコンピュータの中に混然一体
として形成されていることはもちろんである。
FIG. 1 is a block diagram showing a controller 16 for carrying out the control method of the present invention in a circuit form for convenience. Actually, there is no specific circuit divided in this way, and it is needless to say that they are integrally formed in the microcomputer.

【0016】図1において、17は季節推論回路(ファ
ジー推論I)で、この回路には、外気温測定センサ13
及び日射量測定センサ14が接続され、外気温測定セン
サ13により測定した外気温Toと、日射量測定センサ
14により測定された日射量SUNとの組合せに基づい
て、外気温Toが低から高へ、及び日射量SUNが小か
ら大へとなるにしたがって、季節が冬から中間を経て夏
に至るように季節をファジー推論するものである。
In FIG. 1, reference numeral 17 is a seasonal inference circuit (fuzzy inference I).
And the solar radiation amount measurement sensor 14 is connected, and the outdoor air temperature To changes from low to high based on the combination of the outdoor air temperature To measured by the outdoor air temperature measurement sensor 13 and the solar radiation amount SUN measured by the solar radiation amount measurement sensor 14. , And the amount of solar radiation SUN from small to large, the season is fuzzy inferred such that the season goes from winter to intermediate to summer.

【0017】すなわち、季節推論回路17においては、
例えば図2に示す外気温メンバシップ関数と、図3に示
す日射量メンバシップ関数と、次のような推論規則とに
基づいて季節のグレードを求める。
That is, in the seasonal inference circuit 17,
For example, the seasonal grade is obtained based on the outside temperature membership function shown in FIG. 2, the solar radiation membership function shown in FIG. 3, and the following inference rules.

【0018】〔ファジー推論I〕 推論規則 ルール1:もし外気温が低くくて(Low)、日射なし(Non)
なら冬 ルール2:もし外気温が低くくて(Low)、日射が大(Big)
なら中間 ルール3:もし外気温がほどほどで(Medium)、日射なし
(Non)なら中間 ルール4:もし外気温がほどほどで(Medium)、日射が大
(Big)なら夏 ルール5:もし外気温が高くて(High)、日射なし(Non)
なら夏 ルール6:もし外気温が高くて(High)、日射が大(Big)
なら夏 例えば、外気温Toが20°Cのとき、図2からMedium
のグレードが1.0であり、このとき、日射量SUNが
400Kcal/m2・hであるとすると、Nonのグレードが0.
5であり、Bigのグレードが0.5である。
[Fuzzy reasoning I] Reasoning rule Rule 1: If the outside temperature is low (Low), no solar radiation (Non)
Then Winter Rule 2: If the outside temperature is low (Low), the amount of solar radiation is large (Big)
Then Intermediate Rule 3: If the outside temperature is moderate (Medium), no solar radiation
If it is (Non), it is an intermediate rule 4: If the outside temperature is moderate (Medium), the solar radiation is large.
If (Big), Summer Rule 5: If the outside temperature is high (High), no sunlight (Non)
Then Summer Rule 6: If the outside temperature is high (High) and the solar radiation is big (Big)
Then summer, for example, when the outside temperature To is 20 ° C, from Fig. 2 Medium
Grade is 1.0, and if the solar radiation SUN is 400 Kcal / m 2 · h, the grade of Non is 0.0.
5 and the Big grade is 0.5.

【0019】したがって、ルール3及び4により、中間
が0.5のグレードとなり、かつ、夏もまた0.5のグレ
ードとなる。
Therefore, according to the rules 3 and 4, the middle grade becomes 0.5 grade, and the summer grade also becomes 0.5 grade.

【0020】図1において、18は室温制御回路(ファ
ジー推論II)で、この回路には、季節推論回路17と、
室温測定センサ15と、温度設定装置19と、空調装置
における各制御部である送風機4、A/Mダンパ6、内
外気切替用ダンパ2、フェース用ダンパ11及びデフ−
フット切換用ダンパ12とが接続され、上述した季節推
論回路17により推論した季節に基づいて、各季節毎に
予め設定した制御態様で空調装置を制御するものであ
る。
In FIG. 1, reference numeral 18 denotes a room temperature control circuit (fuzzy reasoning II), which includes a season reasoning circuit 17 and
Room temperature measuring sensor 15, temperature setting device 19, blower 4, A / M damper 6, inside / outside air switching damper 2, face damper 11 and differential, which are each control unit in the air conditioner.
The foot switching damper 12 is connected to control the air conditioner in a control mode preset for each season based on the season inferred by the season inference circuit 17 described above.

【0021】すなわち、室温制御回路18においては、
例えば図4に示す設定温度Tsと室温Trとの偏差(Ts−
Tr)のメンバシップ関数と、図5に示す時間変化(現在
の偏差−15秒前の偏差)のメンバシップ関数と、次の
ような推論規則(季節が冬の場合を例示)とに基づいて、
空調装置における各制御部を制御する。
That is, in the room temperature control circuit 18,
For example, the deviation (Ts−) between the set temperature Ts and the room temperature Tr shown in FIG.
Based on the membership function of Tr), the membership function of the time change (current deviation minus 15 seconds before) shown in FIG. 5, and the following inference rules (in the case of winter season). ,
Controls each control unit in the air conditioner.

【0022】〔ファジー推論II〕 推論規則 ルール1:もし大きく寒く(E=PB)、温度上昇が少し(ΔE
=NS)なら、送風量の変化なしで、かつA/Mダンパも変
化なし ルール2:もし中くらい寒く(E=PM)、温度上昇が少し
(ΔE=NS)なら、送風量を少し落とし、かつA/Mダンパ
は変化なし ルール3:もし少し寒く(E=PS)、温度上昇が少し(ΔE=N
S)なら、送風量を少し落とし、かつA/Mダンパを少し
Cool側へ制御 ルール4:もしほどほどで(E=ZO)、温度上昇が少し(ΔE
=NS)なら、送風量を少し落とし、かつA/Mダンパを少
しCool側へ制御 ルール5:もし少し暑く(E=NS)、温度上昇が少し(ΔE=N
S)なら、送風量の変化なしで、かつA/Mダンパを少し
Hot側へ制御 ルール6:もしほどほどで(E=ZO)、温度変化がなし(ΔE
=O)なら、送風量の変化なしで、かつA/Mダンパも変
化なし [設定温度Tsを上昇側に変更した時] ルール7:もし中くらい寒く(E=PM)、温度も大きく変化
(ΔE=PB)するなら、送風量大きく増加させ、かつA/M
ダンパも大きくHot側へ制御 [設定温度Tsを下降側に変更した時] ルール8:もし中くらい暑く(E=NM)、温度も大きく変化
(ΔE=NB)するなら、送風量を少し減少させ、かつA/M
ダンパを大きくCool側へ制御 ルール9:もし少し暑く(E=NS)、温度下降が少し(ΔE=P
S)なら、送風量の変化なしで、かつA/Mダンパを少し
Hot側へ制御 この推論規則によると、例えば立ちあがり時には、室温
Trは、図6に示すようにルール1〜6に従って順次上
昇し、設定温度Tsに短時間で収束する。
[Fuzzy Inference II] Inference Rule Rule 1: If it is significantly cold (E = PB), the temperature rise is small (ΔE
= NS), there is no change in the air flow rate and no change in the A / M damper Rule 2: If it is moderately cold (E = PM), the temperature rises a little
If it is (ΔE = NS), the air flow rate will be slightly reduced, and the A / M damper will not change Rule 3: If it is a little cold (E = PS), the temperature rise will be a little (ΔE = N
If it is S), reduce the air flow a little and add a little A / M damper.
Control to Cool side Rule 4: If it is moderate (E = ZO), temperature rise is a little (ΔE
= NS), the air flow rate is reduced a little, and the A / M damper is controlled to the Cool side a little. Rule 5: If it is a little hot (E = NS), the temperature rise is a little (ΔE = N
If S), there is no change in air flow and a little A / M damper
Control to Hot side Rule 6: Moderate (E = ZO), no temperature change (ΔE
= O), there is no change in the air flow rate and no change in the A / M damper [when the set temperature Ts is changed to the rising side] Rule 7: If it is moderately cold (E = PM), the temperature also changes significantly
If (ΔE = PB), the air flow rate will be greatly increased and A / M
Damper is also greatly controlled to the Hot side [When the set temperature Ts is changed to the lower side] Rule 8: If it is moderately hot (E = NM), the temperature also changes greatly
If (ΔE = NB), the air flow rate is reduced a little and A / M
Damper is greatly controlled to the Cool side Rule 9: If it is a little hot (E = NS), the temperature drop is a little (ΔE = P
If S), there is no change in air flow and a little A / M damper
Control to Hot Side According to this inference rule, for example, at the time of rising, the room temperature Tr gradually rises according to rules 1 to 6 as shown in FIG. 6, and converges to the set temperature Ts in a short time.

【0023】また、設定温度Tsを途中で高く変更した
場合は、図7に示すように、室温Trがルール7,3,
6・・・に従って順次上昇し、反対に低く変更した場合
は、ルール8,9,6・・・に従って順次下降し、変更
後の設定温度Tsに速やかに収束する。
Further, when the set temperature Ts is changed to a higher value on the way, the room temperature Tr is ruled by rules 7, 3, as shown in FIG.
When the temperature gradually rises in accordance with 6 ... and decreases to the contrary, the temperature gradually decreases in accordance with rules 8, 9, 6 ..., and quickly converges to the changed set temperature Ts.

【0024】上記の季節を冬とした場合と同様に、季節
を中間、又は夏とした場合についても、それぞれ専用の
制御規則を定めておき、かつ季節、偏差(Ts−Tr)、及
び時間変化の3つの入力のグレードMin演算をして、規
則の重みとし、出力集合を求める。
Similar to the case where the above season is winter, when the season is intermediate or summer, dedicated control rules are set for each season, and the season, deviation (Ts-Tr), and time change are also set. The three-input grade Min operation is performed to obtain the rule weight, and the output set is obtained.

【0025】出力集合は、重心演算により制御量に変換
する。
The output set is converted into a controlled variable by the calculation of the center of gravity.

【0026】さらに、内外気切替用ダンパ2、吹出口の
制御部であるフェース用ダンパ11、デフ−フット切換
用ダンパ12の制御、及びエアコン、すなわち蒸発器5
に冷媒を供給するコンプレッサ(図示略)のON/OFF
に関しては、例えば次のような制御規則に従って、室温
制御回路18により制御する。
Further, the inside / outside air switching damper 2, the face damper 11, which controls the outlet, and the diff-foot switching damper 12, and the air conditioner, that is, the evaporator 5 are controlled.
ON / OFF of a compressor (not shown) that supplies refrigerant to the
With respect to, the room temperature control circuit 18 controls, for example, according to the following control rules.

【0027】制御規則 ルール10:もし冬なら、外気導入側及びフット側へダ
ンパを制御し、かつエアコンはOFF ルール11:もし中間なら、外気導入側及びフット側/
フェース側の両方へ吹き出すようにダンパを制御し、か
つエアコンはON ルール12:もし夏なら、内気導入側及びフェース側へ
ダンパを制御し、かつエアコンはON 吹出口は、フェース用ダンパ11及びデフ−フット切換
用ダンパ12の制御により、フット側〜フェース側の間
を連続的に変化しうるようにするのがよい。
Control Rule 10: If it is winter, the damper is controlled to the outside air introduction side and the foot side, and the air conditioner is turned off Rule 11: If it is intermediate, the outside air introduction side and the foot side /
The damper is controlled so that it blows out to both the face side, and the air conditioner is ON Rule 12: If it is summer, the damper is controlled to the inside air introduction side and the face side, and the air conditioner is ON. The air outlet is the face damper 11 and differential. -By controlling the foot switching damper 12, it is preferable that the foot-side face can be continuously changed.

【0028】内外気の切換制御に関しては、外気導入側
へ切換る場合は、外気グレード > 内気グレード+0.
1 となるように、反対に、内気導入側へ切換る場合
は、外気グレード+0.1 < 内気グレード となるよ
うにするのがよい。なお、0.1という数字は一例を示
すものであり、これに限定されないのは勿論である。
Regarding the switching control of inside / outside air, when switching to the outside air introduction side, outside air grade> inside air grade + 0.
On the contrary, when switching to the inside air introduction side so that it becomes 1, it is preferable that the outside air grade + 0.1 <inside air grade. It should be noted that the number 0.1 is only an example and is not limited to this.

【0029】また、エアコンのON/OFF制御に関し
ても、上述した内外気の切換制御と同様にすればよい。
Also, the ON / OFF control of the air conditioner may be performed in the same manner as the above-mentioned inside / outside air switching control.

【0030】[0030]

【発明の効果】本発明によると、季節に応じて最適な制
御を行うことができるので、季節による機器能力の相違
を補償し、もって応答性、収束性及び安定性を向上する
ことができる。
According to the present invention, since optimum control can be performed according to the season, it is possible to compensate for the difference in the equipment capability depending on the season, thereby improving the responsiveness, convergence and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の制御方法を実施するのに用いる制御回
路の一例を示すブロック図である。
FIG. 1 is a block diagram showing an example of a control circuit used to carry out a control method of the present invention.

【図2】外気温メンバシップ関数の一例を示す図であ
る。
FIG. 2 is a diagram showing an example of an outside air temperature membership function.

【図3】日射量メンバシップ関数の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of a solar radiation amount membership function.

【図4】設定温度Tsと室温Trとの偏差(Ts−Tr)のメ
ンバシップ関数の一例を示す図である。
FIG. 4 is a diagram showing an example of a membership function of a deviation (Ts−Tr) between a set temperature Ts and a room temperature Tr.

【図5】時間変化(現在の偏差−15秒前の偏差)のメン
バシップ関数の一例を示す図である。
FIG. 5 is a diagram showing an example of a membership function of time change (current deviation−deviation of 15 seconds before).

【図6】冬の立上がり時の室温と時間との関係を示す図
である。
FIG. 6 is a diagram showing a relationship between room temperature and time at the start of winter.

【図7】設定温度変更時の室温と時間との関係を示す図
である。
FIG. 7 is a diagram showing a relationship between room temperature and time when a set temperature is changed.

【図8】従来の空調装置の一例を示す概略側面図であ
る。
FIG. 8 is a schematic side view showing an example of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 外気取入口 2 内外気切替用ダンパ 3 ダクト 4 送風機 5 蒸発器 6 エアミックスダンパ(A/Mダンパ) 7 ヒータ 8 フェース用ダクト 9 デフ用ダクト 10 フット用ダクト 11 フェース用ダンパ 12 デフ−フット切換用ダンパ 13 外気温測定センサ 14 日射量測定センサ 15 室温測定センサ 16 コントローラ 17 季節推論回路(ファジー推論I) 18 室温制御回路(ファジー推論II) 19 温度設定装置 1 Outside air intake 2 Inside / outside air switching damper 3 Duct 4 Blower 5 Evaporator 6 Air mix damper (A / M damper) 7 Heater 8 Face duct 9 Differential duct 10 Foot duct 11 Face damper 12 Differential-foot switching Damper 13 Outdoor temperature measurement sensor 14 Solar radiation measurement sensor 15 Room temperature measurement sensor 16 Controller 17 Seasonal inference circuit (fuzzy inference I) 18 Room temperature control circuit (fuzzy inference II) 19 Temperature setting device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】車両に設けた外気温測定センサにより測定
した外気温と、車両に設けた日射量測定センサにより測
定した日射量との組合せに基づいて、外気温が低から
高、及び日射量が小から大となるにしたがって、季節が
冬から中間を経て夏に至るように季節をファジー推論
し、その推論した季節に基づいて、各季節毎に予め設定
した制御態様で空調装置を制御することを特徴とする車
両用空調制御方法。
1. An outside air temperature is low to high, and an amount of solar radiation is based on a combination of an outside air temperature measured by an outside air temperature measuring sensor provided on a vehicle and an amount of solar radiation measured by an insolation amount measuring sensor provided on the vehicle. From small to large, the season is fuzzy inferred so that the season goes from winter to the middle to summer, and based on the inferred season, the air conditioner is controlled in a preset control mode for each season. A vehicle air conditioning control method characterized by the above.
JP14099392A 1992-05-06 1992-05-06 Air conditioning control method for vehicle Withdrawn JPH05310028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14099392A JPH05310028A (en) 1992-05-06 1992-05-06 Air conditioning control method for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14099392A JPH05310028A (en) 1992-05-06 1992-05-06 Air conditioning control method for vehicle

Publications (1)

Publication Number Publication Date
JPH05310028A true JPH05310028A (en) 1993-11-22

Family

ID=15281662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14099392A Withdrawn JPH05310028A (en) 1992-05-06 1992-05-06 Air conditioning control method for vehicle

Country Status (1)

Country Link
JP (1) JPH05310028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085114A (en) * 1994-06-17 1996-01-12 Mitsubishi Electric Corp Control device of air conditioning equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085114A (en) * 1994-06-17 1996-01-12 Mitsubishi Electric Corp Control device of air conditioning equipment

Similar Documents

Publication Publication Date Title
JPS5839083B2 (en) Automotive air conditioner
JPH0443114A (en) Air-conditioning control device for vehicle
JPS58220939A (en) Controller for idle rotational speed
JPH09217953A (en) Air conditioning control equipment
JPH05310028A (en) Air conditioning control method for vehicle
JPH0213750A (en) Airconditioning system control device
JPH0322322B2 (en)
JPS5918015A (en) Air conditioner for vehicle
JPH06344756A (en) Air conditioner for vehicle
JP3420610B2 (en) Vehicle air conditioner control method
JPS61139507A (en) Air conditioning device for vehicle
JPS5833516A (en) Vehicular air conditioning equipment
JPH0632135A (en) Vehicle air conditioner
JPH0339843B2 (en)
JPH02120117A (en) Controlling method of air conditioner for vehicle
JPS59221545A (en) Air conditioner
JPS6121974Y2 (en)
JP2745744B2 (en) Automotive air conditioning controller
JPH0541444B2 (en)
JP3213381B2 (en) Control device for air conditioner
JPH0349042Y2 (en)
JPH0262406B2 (en)
JPS5822712A (en) Controller of air conditioner for vehicle
JP3286967B2 (en) Constant temperature and humidity device
JPS6266042A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706